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Problem Formulation DNN as UA Numerical Results

Optimization Problems

Consider a general optimization problem:

minimize J(x ; y)
subject to :

x ∈ D
g(x ; y) ≤ 0
h(x ; y) = 0

where y ∈ E ⊂ Rd denotes a set of parameters (or input) into the
optimization problem, D denotes the allowable domain for the unknown
variable x , g , h : D × E → R (or R̄) define the constraints (D can be
define implicit by an indicator function constraint), and J(x ; y) is the
objective function.
Purpose of this talk: How can deep learning solve optimization problems?
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Optimization Problems
General Approaches

We plan to discuss three approaches to an optimization problem:
1 Deep Neural Network (DNN) as a Universal Approximator (UA)
2 Neural Network as an auxiliary function of an iterative algorithm
3 Deep Neural Network as a representation tool
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The Specific Optimization Problem
Consider a N × R cost matrix C = (Ci ,j)1≤i≤N,1≤j≤R of non-negative
entries associated to edge connections between two sets of nodes,
{x1, · · · , xN} and {y1, · · · , yR} with N ≥ R. The problem is to find the
minimum cost matching/assignment, namely:

minimize
∑N

i=1
∑R

j=1 πi ,jCi ,j
subject to:

πi ,j ∈ {0, 1} , ∀i , j∑N
i=1 πi ,j = 1 , ∀1 ≤ j ≤ R∑R
j=1 πi ,j ≤ 1 , ∀1 ≤ i ≤ N
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First Approach: DNN as a Universal Approximator

The optimal solution of this (or any optimization problem) is a nonlinear
map π = F (C).
Idea: Generate optimal pairs {(C , π)} and then train a Neural Network to
reproduce these values.

Issues to be discussed:
1 How to generate optimal pairs?
2 Network architecture: how many layers? how many nodes in each

layer?
3 How to enforce feasibility?
4 Primal problem – what about the dual problem?
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Second Approach: Emulate an Iterative Descent Algorithm

For the optimization problem minx J(x) use an iterative algorithm:

x (t+1) = x (t) − αtp(t)

where x (t) is the current estimate, αt is the step size at step t, and p(t) is
the marching direction. Possible choices:

Gradient Descent: p(t)
g = ∇J(x (t))

Newton method: p(t)
n = Hess(−1)J(x (t))∇J(x (t))

Mixed methods: p(t) = atpg + btpn + ctp(t−1)

Idea: Implement a descent strategy, but adapt step size and learning rates
using Neural Networks – Recurrent Neural Network.
See also: Google DeepMind group [Andrychowicz et.al. ’16];
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Third Approach: Optimization in a Representation Space
Idea: Perform a two-step procedure: (1) perform a nonlinear representation
of the input data; (2) perform optimization in the representation space.

The nonlinear representation map Φ : C 7→ Γ can be learned using a
Variational Auto-Encoder method.
The Optimization map Ψ : Γ 7→ π̂ can be implemented using a
neural-network such as in the first approach.

Why it makes sense? feasible solutions are graph representable – Use
Graph Convolutive Networks (GCN – KipfWeiling) as a launching pad.
See also: [Nowak et.al.’18]
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First Approach: DNN as a UA
Exact Solutions to Our Problem

minimize
∑N

i=1
∑R

j=1 πi ,jCi ,j
subject to:

πi ,j ∈ {0, 1} , ∀i , j∑N
i=1 πi ,j = 1 , ∀1 ≤ j ≤ R∑R
j=1 πi ,j ≤ 1 , ∀1 ≤ i ≤ N

Luckily, this problem admits an exact convex relaxation: the associated
Linear Program produces the same optimal solution:

minimize
∑N

i=1
∑R

j=1 πi ,jCi ,j
subject to:

0 ≤ πi ,j ≤ 1 , ∀i , j∑N
i=1 πi ,j = 1 , ∀1 ≤ j ≤ R∑R
j=1 πi ,j ≤ 1 , ∀1 ≤ i ≤ N
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First Approach: DNN as a UA
Architectures

The overall system must output feasible solutions π̂. Our architecture
compose two components: (1) a deep neural network (DNN) that outputs
a (generally) unfeasible estimate π̄; (2) an enforcer (P) of the feasibility
conditions that outputs the estimate π̂:

Issues to discuss:
1 DNN architecture: how many layers; how many neurons per layer?
2 P, the feasibility enforcer
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First Approach: DNN as a UA
DNNs

We study three architectures:
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First Approach: DNN as a UA
Feasibility Enforcer P

An ”optimal” feasibility condition enforcer would minimize some
”distance” to the feasibility set. However this may be a very
computationally expensive component. An intermediate solution is to
alternate between different feasibility conditions (equalities and
inequalities) until convergence.
Instead we opt for a simpler and ”greedier” approach:

Repeat R times:
1. Find (i , j) the largest entry in π̄
2. Set π̂i ,j = 1; set to 0 other entries
in row i and column j ;
3. Remove row i and column j from
both π̄ and π̂.
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First Approach: DNN as a UA
Baseline solution: The Greedy Algorithm

The ”greedy” enforcer can be modified into a ”greedy” optimization
algorithm:

1 Initialize E = C and π̂ = 0N×R
2 Repeat R times:

Find (i , j) = argmin(a,b)Ea,b;
Set π̂i,j = 1, π̂i,l = 0 ∀l 6= j , π̂l,j = 0 ∀l 6= i ;
Set Ei,: =∞, E:,j =∞.

Proposition

The greedy algorithm produces the optimal solution if there is a positive
number λ > 0 and two nonnegative vectors u, v such that
C = λ1 · 1T − u · vT .
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Exp.1 : N = 5, R = 4 with ReLU activation
First architecture:

Number of internal layers: 9
Number of hidden units per layer: 250
Batch size: 200; ADAM optimizer
Loss function: cross-entropy:∑

i ,j πi ,j(−log(π̂i ,j)) + (1− πi ,j)(−log(1− π̂i ,j))
Training data set: 1 million random instances U(0, 1) i.i.d.
Validation set: 20,000 random instances.
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Exp.1 : N = 5, R = 4 with ReLU activation
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Exp.1 : N = 5, R = 4 with ReLU activation
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Exp.1 : N = 5, R = 4 with ReLU activation
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Exp.1 : N = 5, R = 4 with ReLU activation
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Exp.2 : N = 10, R = 8 with sigmoid activation
Second architecture:

Number of internal layers: 10
Number of hidden units per layer: 250
No Batch; ADAM optimizer
Loss function: cross-entropy:∑

i ,j πi ,j(−log(π̂i ,j)) + (1− πi ,j)(−log(1− π̂i ,j))
Training data set: 1 million random instances U(0, 1) i.i.d.
Validation set: 20,000 random instances.
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Exp.2 : N = 10, R = 8 with sigmoid activation
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Exp.2 : N = 10, R = 8 with sigmoid activation
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Exp.2 : N = 10, R = 8 with sigmoid activation
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Exp.2 : N = 10, R = 8 with sigmoid activation
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Exp.2 : N = 10, R = 8 with sigmoid activation
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Exp.3 : N = 5, R = 4 with sigmoid activation
Second architecture:

Number of internal layers: 10
Number of hidden units per layer: 250
Batch size 200; ADAM optimizer
Loss function: cross-entropy:∑

i ,j πi ,j(−log(π̂i ,j)) + (1− πi ,j)(−log(1− π̂i ,j))
Training data set: 500,000 random instances U(0, 1) i.i.d.
Validation set: 20,000 random instances.
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Exp.3 : N = 5, R = 4 with sigmoid activation
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Exp.3 : N = 5, R = 4 with sigmoid activation
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Exp.3 : N = 5, R = 4 with sigmoid activation
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Exp.3 : N = 5, R = 4 with sigmoid activation

Radu Balan, Naveed Haghani (UMD) Optimizations with Deep Networks 10/20/2018



Problem Formulation DNN as UA Numerical Results

Exp.3 : N = 5, R = 4 with sigmoid activation
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Exp.4 : N = 10, R = 8 with sigmoid activation
Second architecture:

Number of internal layers: 10
Number of hidden units per layer: 300
Batch size 200; ADAM optimizer
Loss function: cross-entropy:∑

i ,j πi ,j(−log(π̂i ,j)) + (1− πi ,j)(−log(1− π̂i ,j))
Training data set: 500,000 random instances U(0, 1) i.i.d.
Validation set: 20,000 random instances.
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Exp.4 : N = 10, R = 8 with sigmoid activation
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Exp.4 : N = 10, R = 8 with sigmoid activation
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Exp.4 : N = 10, R = 8 with sigmoid activation
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Exp.4 : N = 10, R = 8 with sigmoid activation
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Exp.4 : N = 10, R = 8 with sigmoid activation
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