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Optimization Problems

Consider a general optimization problem:

minimize  J(x; y)
subject to :
xeD
g(xy) <0
h(x;y) =0

where y € E C RY denotes a set of parameters (or input) into the
optimization problem, D denotes the allowable domain for the unknown
variable x, g, h: D x E — R (or R) define the constraints (D can be
define implicit by an indicator function constraint), and J(x;y) is the
objective function.

Purpose of this talk: How can deep learning solve optimization problems?
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Optimization Problems

General Approaches

We plan to discuss three approaches to an optimization problem:
© Deep Neural Network (DNN) as a Universal Approximator (UA)
@ Neural Network as an auxiliary function of an iterative algorithm

© Deep Neural Network as a representation tool
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The Specific Optimization Problem

Consider a N x R cost matrix C = (C;j)i<i<n,1<j<r of non-negative
entries associated to edge connections between two sets of nodes,
{x1,---,xn} and {y1,---,yr} with N > R. The problem is to find the
minimum cost matching/assignment, namely:

minimize vazl JR:;[ mijCij
subject to:
Tij € {0,1} , Vi, j
SN mj=1,V1<j<R
SRy my<1,VI<i<N
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First Approach: DNN as a Universal Approximator

The optimal solution of this (or any optimization problem) is a nonlinear
map m = F(C).

Idea: Generate optimal pairs {(C,7)} and then train a Neural Network to
reproduce these values.

Radu Balan, Naveed Haghani (UMD)

Optimizations with Deep Networks

10/20/2018



Problem Formulation
00000

First Approach: DNN as a Universal Approximator

The optimal solution of this (or any optimization problem) is a nonlinear
map m = F(C).
Idea: Generate optimal pairs {(C,7)} and then train a Neural Network to
reproduce these values.
Issues to be discussed:

@ How to generate optimal pairs?

@ Network architecture: how many layers? how many nodes in each

layer?
© How to enforce feasibility?
@ Primal problem — what about the dual problem?
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Second Approach: Emulate an lterative Descent Algorithm

For the optimization problem min, J(x) use an iterative algorithm:

(1)

—Q¢p
where x() is the current estimate, a is the step size at step t, and p(t) is
the marching direction. Possible choices:

e Gradient Descent: pg) = VJ(x)

o Newton method: pif) = Hess(— J(x(1)V J(x()

o Mixed methods: p(t) = a;pg + bep, + cept=1)

Idea: Implement a descent strategy, but adapt step size and learning rates
using Neural Networks — Recurrent Neural Network.
See also: Google DeepMind group [Andrychowicz et.al. '16];
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Third Approach: Optimization in a Representation Space

Idea: Perform a two-step procedure: (1) perform a nonlinear representation
of the input data; (2) perform optimization in the representation space.

The nonlinear representation map ® : C — I can be learned using a
Variational Auto-Encoder method.

The Optimization map W : I — @ can be implemented using a
neural-network such as in the first approach.
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Third Approach: Optimization in a Representation Space

Idea: Perform a two-step procedure: (1) perform a nonlinear representation
of the input data; (2) perform optimization in the representation space.

The nonlinear representation map ® : C — I can be learned using a
Variational Auto-Encoder method.

The Optimization map W : I — @ can be implemented using a
neural-network such as in the first approach.

Why it makes sense? feasible solutions are graph representable — Use
Graph Convolutive Networks (GCN — KipfWeiling) as a launching pad.
See also: [Nowak et.al.'18]
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First Approach: DNN as a UA

Exact Solutions to Our Problem

minimize vazl JR:;[ mijCij
subject to:
Tij € {0,1} , Vi, j
SN m;j=1,V1<j<R
SRy My <1,VI<i<N

Luckily, this problem admits an exact convex relaxation: the associated
Linear Program produces the same optimal solution:

minimize »N 12 1 mi G
subject to:
0<7T,'j<1 \V/I,_]
N17T,’_,—1 VI<j<R
Zjl-ilﬂ',dgl,v:lglgf\/
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First Approach: DNN as a UA

Architectures

The overall system must output feasible solutions 7. Our architecture
compose two components: (1) a deep neural network (DNN) that outputs
a (generally) unfeasible estimate 7; (2) an enforcer (P) of the feasibility
conditions that outputs the estimate 7:

\m

DNN

Issues to discuss:
© DNN architecture: how many layers; how many neurons per layer?
@ P, the feasibility enforcer
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First Approach: DNN as a UA

DNNs

We study three architectures:
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First Approach: DNN as a UA

Feasibility Enforcer P

An "optimal” feasibility condition enforcer would minimize some
"distance” to the feasibility set. However this may be a very
computationally expensive component. An intermediate solution is to
alternate between different feasibility conditions (equalities and
inequalities) until convergence.

Instead we opt for a simpler and "greedier” approach:

Repeat R times: ﬁ:E.ZSS = ’A’:E'Z;
1. Find (/,j) the largest entry in T : -

2. Set @jj = 1; set to O other entries /

in row i and column j;

3. Remove row i and column j from ﬁ=&
both 7 and 7.

Radu Balan, Naveed Haghani (UMD) Optimizations with Deep Networks 10/20/2018



DNN as UA
ooooe

First Approach: DNN as a UA

Baseline solution: The Greedy Algorithm

The "greedy” enforcer can be modified into a "greedy” optimization
algorithm:

@ Initialize E = C and @ = Onxr

© Repeat R times:
o Find (i,j) = argming, p)Ea b;
o Setftjj =17 =0V #j, %1;,=0VI#1
o Set E;. =00, Ej = o0.

Proposition

The greedy algorithm produces the optimal solution if there is a positive

number A > 0 and two nonnegative vectors u, v such that
C=A1-1T —y.v'.
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Exp.1 : N =5, R =4 with RelLU activation

First architecture:

e C1r
C <
N1 Cnr

Number of internal layers: 9

Number of hidden units per layer: 250

Batch size: 200; ADAM optimizer

Loss function: cross-entropy:

> i mij(—log(7ij)) + (L — mi;)(—log(l — #i;))

e Training data set: 1 million random instances U(0, 1) i.i.d.
@ Validation set: 20,000 random instances.
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Exp.1: N =5, R =4 with RelLU activation

Cross Entropy over Training

» training  * validation

CROSS ENTROPY ERROR (LOG SCALE)
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Exp.1: N =5, R =4 with RelLU activation

MSE over training

» training * validation

MSE (LOG SCALE)
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Exp.1: N =5, R =4 with RelLU activation

Avg Obj Value Diff (Predicted - True)

» training  * validation

OBJ VAL DIFF
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Exp.1: N =5, R =4 with ReLU activation

UNIVE&SIT‘I OF
A 1R

AND

Validation Set Instance #1 alidation Set Instance #1

=Prediction True Solution =Feasible Prediction  True Solution

78 9101 121314151617 18 19 20
DECISION VARIABLES (FLATTENED)

567 8 91011 1213141516 17181920
DECISION VARIABLES (FLATTENED)

DECISION VARIABLE

Validation Set Instance #1

#Greedy Prediction = True Solution

6789 1011211415181
DECISION VARIABLES (FLATTENED)

Optimizations Deep Networks



Numerical Results
00000@0000000000000000000

=5, R = 4 with ReLU activation
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Number of internal layers: 10

Number of hidden units per layer: 250

No Batch; ADAM optimizer

Loss function: cross-entropy:

> Tij(—log(#ij)) + (1 — mij)(—log(1 — #i;))

@ Training data set: 1 million random instances U(0,1) i.i.d.

@ Validation set: 20,000 random instances.
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Exp.2 : N =10, R = 8 with sigmoid activation

Cross Entropy
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Exp.2 : N =10, R = 8 with sigmoid activation

MSE over training
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Exp.2 : N =10, R = 8 with sigmoid activation

Avg Obj Value Diff (Predicted - True)
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Exp.2 : N =10, R = 8 with sigmoid activation
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Exp.2 : N =10, R = 8 with sigmoid activation
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Exp.3: N =5, R =4 with sigmoid activation

Second architecture:

o Yoyeq
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Number of internal layers: 10

Number of hidden units per layer: 250

Batch size 200; ADAM optimizer

Loss function: cross-entropy:

> Tij(—log(#ij)) + (1 — mij)(—log(1 — #i;))

Training data set: 500,000 random instances U(0,1) i.i.d.
@ Validation set: 20,000 random instances.
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Exp.3: N =5, R =4 with sigmoid activation

Cross Entropy
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Exp.3: N =5, R =4 with sigmoid activation

MSE over training
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Exp.3: N =5, R =4 with sigmoid activation

Avg Obj Value Diff (Predicted - True)
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Exp.3: N =5, R =4 with sigmoid activation
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Exp.3: N =5, R =4 with sigmoid activation
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R = 8 with sigmoid activation

Ci1 Cir g E g E g - 11 T1r
B % s ........ @E@ = ;;
@ Number of internal layers: 10
@ Number of hidden units per layer: 300
@ Batch size 200; ADAM optimizer
@ Loss function: cross-entropy:

> Tij(—log(#ij)) + (1 — mij)(—log(1 — #i;))
Training data set: 500,000 random instances U(0,1) i.i.d.
@ Validation set: 20,000 random instances.
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Exp.4 : N =10, R = 8 with sigmoid activation

Cross Entropy
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Exp.4 : N =10, R = 8 with sigmoid activation

MSE over training
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Exp.4 : N =10, R = 8 with sigmoid activation

Avg Obj Value Diff (Predicted - True)
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Exp.4 : N =10, R = 8 with sigmoid activation
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Exp.4 : N =10, R = 8 with sigmoid activation
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