
Optimizations using Deep Learning

Radu Balan, Naveed Haghani

Department of Mathematics, Applied Mathematics Applied Statistics
and Scientific Computing

University of Maryland, College Park, MD

Joint work with Maneesh Singh (Verisk)

October 20, 2018
AMS Regional Meeting, University of Michigan, Ann Arbor, Michigan



Problem Formulation DNN as UA Numerical Results

Acknowledgments

”This material is based upon work partially supported by the National
Science Foundation under grant no. DMS-1413249, ARO under grant
W911NF-16-1-0008, and LTS under grant H9823013D00560049. Any
opinions, findings, and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the views
of the National Science Foundation.”

Radu Balan, Naveed Haghani (UMD) Optimizations with Deep Networks 10/20/2018



Table of Contents:

1 Problem Formulation

2 DNN as UA

3 Numerical Results



Problem Formulation DNN as UA Numerical Results

Optimization Problems

Consider a general optimization problem:

minimize J(x ; y)
subject to :

x ∈ D
g(x ; y) ≤ 0
h(x ; y) = 0

where y ∈ E ⊂ Rd denotes a set of parameters (or input) into the
optimization problem, D denotes the allowable domain for the unknown
variable x , g , h : D × E → R (or R̄) define the constraints (D can be
define implicit by an indicator function constraint), and J(x ; y) is the
objective function.
Purpose of this talk: How can deep learning solve optimization problems?

Radu Balan, Naveed Haghani (UMD) Optimizations with Deep Networks 10/20/2018



Problem Formulation DNN as UA Numerical Results

Optimization Problems
General Approaches

We plan to discuss three approaches to an optimization problem:
1 Deep Neural Network (DNN) as a Universal Approximator (UA)
2 Neural Network as an auxiliary function of an iterative algorithm
3 Deep Neural Network as a representation tool

Radu Balan, Naveed Haghani (UMD) Optimizations with Deep Networks 10/20/2018



Problem Formulation DNN as UA Numerical Results

The Specific Optimization Problem
Consider a N × R cost matrix C = (Ci ,j)1≤i≤N,1≤j≤R of non-negative
entries associated to edge connections between two sets of nodes,
{x1, · · · , xN} and {y1, · · · , yR} with N ≥ R. The problem is to find the
minimum cost matching/assignment, namely:

minimize
∑N

i=1
∑R

j=1 πi ,jCi ,j
subject to:

πi ,j ∈ {0, 1} , ∀i , j∑N
i=1 πi ,j = 1 , ∀1 ≤ j ≤ R∑R
j=1 πi ,j ≤ 1 , ∀1 ≤ i ≤ N

Radu Balan, Naveed Haghani (UMD) Optimizations with Deep Networks 10/20/2018



Problem Formulation DNN as UA Numerical Results

First Approach: DNN as a Universal Approximator

The optimal solution of this (or any optimization problem) is a nonlinear
map π = F (C).
Idea: Generate optimal pairs {(C , π)} and then train a Neural Network to
reproduce these values.

Issues to be discussed:
1 How to generate optimal pairs?
2 Network architecture: how many layers? how many nodes in each

layer?
3 How to enforce feasibility?
4 Primal problem – what about the dual problem?

Radu Balan, Naveed Haghani (UMD) Optimizations with Deep Networks 10/20/2018



Problem Formulation DNN as UA Numerical Results

First Approach: DNN as a Universal Approximator

The optimal solution of this (or any optimization problem) is a nonlinear
map π = F (C).
Idea: Generate optimal pairs {(C , π)} and then train a Neural Network to
reproduce these values.
Issues to be discussed:

1 How to generate optimal pairs?
2 Network architecture: how many layers? how many nodes in each

layer?
3 How to enforce feasibility?
4 Primal problem – what about the dual problem?

Radu Balan, Naveed Haghani (UMD) Optimizations with Deep Networks 10/20/2018



Problem Formulation DNN as UA Numerical Results

Second Approach: Emulate an Iterative Descent Algorithm

For the optimization problem minx J(x) use an iterative algorithm:

x (t+1) = x (t) − αtp(t)

where x (t) is the current estimate, αt is the step size at step t, and p(t) is
the marching direction. Possible choices:

Gradient Descent: p(t)
g = ∇J(x (t))

Newton method: p(t)
n = Hess(−1)J(x (t))∇J(x (t))

Mixed methods: p(t) = atpg + btpn + ctp(t−1)

Idea: Implement a descent strategy, but adapt step size and learning rates
using Neural Networks – Recurrent Neural Network.
See also: Google DeepMind group [Andrychowicz et.al. ’16];

Radu Balan, Naveed Haghani (UMD) Optimizations with Deep Networks 10/20/2018



Problem Formulation DNN as UA Numerical Results

Third Approach: Optimization in a Representation Space
Idea: Perform a two-step procedure: (1) perform a nonlinear representation
of the input data; (2) perform optimization in the representation space.

The nonlinear representation map Φ : C 7→ Γ can be learned using a
Variational Auto-Encoder method.
The Optimization map Ψ : Γ 7→ π̂ can be implemented using a
neural-network such as in the first approach.

Why it makes sense? feasible solutions are graph representable – Use
Graph Convolutive Networks (GCN – KipfWeiling) as a launching pad.
See also: [Nowak et.al.’18]

Radu Balan, Naveed Haghani (UMD) Optimizations with Deep Networks 10/20/2018



Problem Formulation DNN as UA Numerical Results

Third Approach: Optimization in a Representation Space
Idea: Perform a two-step procedure: (1) perform a nonlinear representation
of the input data; (2) perform optimization in the representation space.

The nonlinear representation map Φ : C 7→ Γ can be learned using a
Variational Auto-Encoder method.
The Optimization map Ψ : Γ 7→ π̂ can be implemented using a
neural-network such as in the first approach.
Why it makes sense? feasible solutions are graph representable – Use
Graph Convolutive Networks (GCN – KipfWeiling) as a launching pad.
See also: [Nowak et.al.’18]

Radu Balan, Naveed Haghani (UMD) Optimizations with Deep Networks 10/20/2018



Problem Formulation DNN as UA Numerical Results

First Approach: DNN as a UA
Exact Solutions to Our Problem

minimize
∑N

i=1
∑R

j=1 πi ,jCi ,j
subject to:

πi ,j ∈ {0, 1} , ∀i , j∑N
i=1 πi ,j = 1 , ∀1 ≤ j ≤ R∑R
j=1 πi ,j ≤ 1 , ∀1 ≤ i ≤ N

Luckily, this problem admits an exact convex relaxation: the associated
Linear Program produces the same optimal solution:

minimize
∑N

i=1
∑R

j=1 πi ,jCi ,j
subject to:

0 ≤ πi ,j ≤ 1 , ∀i , j∑N
i=1 πi ,j = 1 , ∀1 ≤ j ≤ R∑R
j=1 πi ,j ≤ 1 , ∀1 ≤ i ≤ N

Radu Balan, Naveed Haghani (UMD) Optimizations with Deep Networks 10/20/2018



Problem Formulation DNN as UA Numerical Results

First Approach: DNN as a UA
Architectures

The overall system must output feasible solutions π̂. Our architecture
compose two components: (1) a deep neural network (DNN) that outputs
a (generally) unfeasible estimate π̄; (2) an enforcer (P) of the feasibility
conditions that outputs the estimate π̂:

Issues to discuss:
1 DNN architecture: how many layers; how many neurons per layer?
2 P, the feasibility enforcer

Radu Balan, Naveed Haghani (UMD) Optimizations with Deep Networks 10/20/2018



Problem Formulation DNN as UA Numerical Results

First Approach: DNN as a UA
DNNs

We study three architectures:

Radu Balan, Naveed Haghani (UMD) Optimizations with Deep Networks 10/20/2018



Problem Formulation DNN as UA Numerical Results

First Approach: DNN as a UA
Feasibility Enforcer P

An ”optimal” feasibility condition enforcer would minimize some
”distance” to the feasibility set. However this may be a very
computationally expensive component. An intermediate solution is to
alternate between different feasibility conditions (equalities and
inequalities) until convergence.
Instead we opt for a simpler and ”greedier” approach:

Repeat R times:
1. Find (i , j) the largest entry in π̄
2. Set π̂i ,j = 1; set to 0 other entries
in row i and column j ;
3. Remove row i and column j from
both π̄ and π̂.

Radu Balan, Naveed Haghani (UMD) Optimizations with Deep Networks 10/20/2018



Problem Formulation DNN as UA Numerical Results

First Approach: DNN as a UA
Baseline solution: The Greedy Algorithm

The ”greedy” enforcer can be modified into a ”greedy” optimization
algorithm:

1 Initialize E = C and π̂ = 0N×R
2 Repeat R times:

Find (i , j) = argmin(a,b)Ea,b;
Set π̂i,j = 1, π̂i,l = 0 ∀l 6= j , π̂l,j = 0 ∀l 6= i ;
Set Ei,: =∞, E:,j =∞.

Proposition

The greedy algorithm produces the optimal solution if there is a positive
number λ > 0 and two nonnegative vectors u, v such that
C = λ1 · 1T − u · vT .

Radu Balan, Naveed Haghani (UMD) Optimizations with Deep Networks 10/20/2018



Problem Formulation DNN as UA Numerical Results

Exp.1 : N = 5, R = 4 with ReLU activation
First architecture:

Number of internal layers: 9
Number of hidden units per layer: 250
Batch size: 200; ADAM optimizer
Loss function: cross-entropy:∑

i ,j πi ,j(−log(π̂i ,j)) + (1− πi ,j)(−log(1− π̂i ,j))
Training data set: 1 million random instances U(0, 1) i.i.d.
Validation set: 20,000 random instances.

Radu Balan, Naveed Haghani (UMD) Optimizations with Deep Networks 10/20/2018



Problem Formulation DNN as UA Numerical Results

Exp.1 : N = 5, R = 4 with ReLU activation

Radu Balan, Naveed Haghani (UMD) Optimizations with Deep Networks 10/20/2018



Problem Formulation DNN as UA Numerical Results

Exp.1 : N = 5, R = 4 with ReLU activation

Radu Balan, Naveed Haghani (UMD) Optimizations with Deep Networks 10/20/2018



Problem Formulation DNN as UA Numerical Results

Exp.1 : N = 5, R = 4 with ReLU activation

Radu Balan, Naveed Haghani (UMD) Optimizations with Deep Networks 10/20/2018



Problem Formulation DNN as UA Numerical Results

Exp.1 : N = 5, R = 4 with ReLU activation

Radu Balan, Naveed Haghani (UMD) Optimizations with Deep Networks 10/20/2018



Problem Formulation DNN as UA Numerical Results

Exp.1 : N = 5, R = 4 with ReLU activation

Radu Balan, Naveed Haghani (UMD) Optimizations with Deep Networks 10/20/2018



Problem Formulation DNN as UA Numerical Results

Exp.2 : N = 10, R = 8 with sigmoid activation
Second architecture:

Number of internal layers: 10
Number of hidden units per layer: 250
No Batch; ADAM optimizer
Loss function: cross-entropy:∑

i ,j πi ,j(−log(π̂i ,j)) + (1− πi ,j)(−log(1− π̂i ,j))
Training data set: 1 million random instances U(0, 1) i.i.d.
Validation set: 20,000 random instances.

Radu Balan, Naveed Haghani (UMD) Optimizations with Deep Networks 10/20/2018



Problem Formulation DNN as UA Numerical Results

Exp.2 : N = 10, R = 8 with sigmoid activation

Radu Balan, Naveed Haghani (UMD) Optimizations with Deep Networks 10/20/2018



Problem Formulation DNN as UA Numerical Results

Exp.2 : N = 10, R = 8 with sigmoid activation

Radu Balan, Naveed Haghani (UMD) Optimizations with Deep Networks 10/20/2018



Problem Formulation DNN as UA Numerical Results

Exp.2 : N = 10, R = 8 with sigmoid activation

Radu Balan, Naveed Haghani (UMD) Optimizations with Deep Networks 10/20/2018



Problem Formulation DNN as UA Numerical Results

Exp.2 : N = 10, R = 8 with sigmoid activation

Radu Balan, Naveed Haghani (UMD) Optimizations with Deep Networks 10/20/2018



Problem Formulation DNN as UA Numerical Results

Exp.2 : N = 10, R = 8 with sigmoid activation

Radu Balan, Naveed Haghani (UMD) Optimizations with Deep Networks 10/20/2018



Problem Formulation DNN as UA Numerical Results

Exp.3 : N = 5, R = 4 with sigmoid activation
Second architecture:

Number of internal layers: 10
Number of hidden units per layer: 250
Batch size 200; ADAM optimizer
Loss function: cross-entropy:∑

i ,j πi ,j(−log(π̂i ,j)) + (1− πi ,j)(−log(1− π̂i ,j))
Training data set: 500,000 random instances U(0, 1) i.i.d.
Validation set: 20,000 random instances.

Radu Balan, Naveed Haghani (UMD) Optimizations with Deep Networks 10/20/2018



Problem Formulation DNN as UA Numerical Results

Exp.3 : N = 5, R = 4 with sigmoid activation

Radu Balan, Naveed Haghani (UMD) Optimizations with Deep Networks 10/20/2018



Problem Formulation DNN as UA Numerical Results

Exp.3 : N = 5, R = 4 with sigmoid activation

Radu Balan, Naveed Haghani (UMD) Optimizations with Deep Networks 10/20/2018



Problem Formulation DNN as UA Numerical Results

Exp.3 : N = 5, R = 4 with sigmoid activation

Radu Balan, Naveed Haghani (UMD) Optimizations with Deep Networks 10/20/2018



Problem Formulation DNN as UA Numerical Results

Exp.3 : N = 5, R = 4 with sigmoid activation

Radu Balan, Naveed Haghani (UMD) Optimizations with Deep Networks 10/20/2018



Problem Formulation DNN as UA Numerical Results

Exp.3 : N = 5, R = 4 with sigmoid activation

Radu Balan, Naveed Haghani (UMD) Optimizations with Deep Networks 10/20/2018



Problem Formulation DNN as UA Numerical Results

Exp.4 : N = 10, R = 8 with sigmoid activation
Second architecture:

Number of internal layers: 10
Number of hidden units per layer: 300
Batch size 200; ADAM optimizer
Loss function: cross-entropy:∑

i ,j πi ,j(−log(π̂i ,j)) + (1− πi ,j)(−log(1− π̂i ,j))
Training data set: 500,000 random instances U(0, 1) i.i.d.
Validation set: 20,000 random instances.

Radu Balan, Naveed Haghani (UMD) Optimizations with Deep Networks 10/20/2018



Problem Formulation DNN as UA Numerical Results

Exp.4 : N = 10, R = 8 with sigmoid activation

Radu Balan, Naveed Haghani (UMD) Optimizations with Deep Networks 10/20/2018



Problem Formulation DNN as UA Numerical Results

Exp.4 : N = 10, R = 8 with sigmoid activation

Radu Balan, Naveed Haghani (UMD) Optimizations with Deep Networks 10/20/2018



Problem Formulation DNN as UA Numerical Results

Exp.4 : N = 10, R = 8 with sigmoid activation

Radu Balan, Naveed Haghani (UMD) Optimizations with Deep Networks 10/20/2018



Problem Formulation DNN as UA Numerical Results

Exp.4 : N = 10, R = 8 with sigmoid activation

Radu Balan, Naveed Haghani (UMD) Optimizations with Deep Networks 10/20/2018



Problem Formulation DNN as UA Numerical Results

Exp.4 : N = 10, R = 8 with sigmoid activation

Radu Balan, Naveed Haghani (UMD) Optimizations with Deep Networks 10/20/2018



Problem Formulation DNN as UA Numerical Results

Bibliography

1. M. Andrychowicz, M. Denil, S.G. Colmenarejo, M.W. Hoffman, D.
Pfau, T. Schaul, B. Shillingford, N.de Freitas, Learning to learn by
gradient descent by gradient descent, arXiv:1606.04474v2 [cs.NE]
2. T.N. Kipf, M. Weiling, Variatioal Graph Auto-Encoder,
arXiv:1611.07308 [stat.ML]
3. A. Nowak, S. Villar, A. Bandeira, J. Bruna, Revised Note on Learning
Quadratic Assignment with Graph Neural Network, arXiv: 1706.07450
[stat.ML]

Radu Balan, Naveed Haghani (UMD) Optimizations with Deep Networks 10/20/2018


	Problem Formulation
	

	DNN as UA
	

	Numerical Results
	


