Optimizations using Deep Learning

Radu Balan, Naveed Haghani
Department of Mathematics, Applied Mathematics Applied Statistics

and Scientific Computing
University of Maryland, College Park, MD

Joint work with Maneesh Singh (Verisk)

October 20, 2018
AMS Regional Meeting, University of Michigan, Ann Arbor, Michigan

Acknowledgments

\L/

"This material is based upon work partially supported by the National
Science Foundation under grant no. DMS-1413249, ARO under grant
WO911NF-16-1-0008, and LTS under grant H9823013D00560049. Any
opinions, findings, and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the views
of the National Science Foundation.”

Radu Balan, Naveed Haghani (UMD) Optimizations with Deep Networks 10/20/2018

Table of Contents:

0 Problem Formulation
© DNN as UA

© Numerical Results

Problem Formulation
©00000

Optimization Problems

Consider a general optimization problem:

minimize J(x; y)
subject to :
xeD
g(xy) <0
h(x;y) =0

where y € E C RY denotes a set of parameters (or input) into the
optimization problem, D denotes the allowable domain for the unknown
variable x, g, h: D x E — R (or R) define the constraints (D can be
define implicit by an indicator function constraint), and J(x;y) is the
objective function.

Purpose of this talk: How can deep learning solve optimization problems?

Radu Balan, Naveed Haghani (UMD) Optimizations with Deep Networks

10/20/2018

Problem Formulation
000000

Optimization Problems

General Approaches

We plan to discuss three approaches to an optimization problem:
© Deep Neural Network (DNN) as a Universal Approximator (UA)
@ Neural Network as an auxiliary function of an iterative algorithm

© Deep Neural Network as a representation tool

Radu Balan, Naveed Haghani (UMD) Optimizations with Deep Networks 10/20/2018

Problem Formulation
00000

The Specific Optimization Problem

Consider a N x R cost matrix C = (C;j)i<i<n,1<j<r of non-negative
entries associated to edge connections between two sets of nodes,
{x1,---,xn} and {y1,---,yr} with N > R. The problem is to find the
minimum cost matching/assignment, namely:

minimize vazl JR:;[mijCij
subject to:
Tij € {0,1} , Vi, j
SN mj=1,V1<j<R
SRy my<1,VI<i<N

Radu Balan, Naveed Haghani (UMD) Optimizations with Deep Networks 10/20/2018

Problem Formulation
00000

First Approach: DNN as a Universal Approximator

The optimal solution of this (or any optimization problem) is a nonlinear
map m = F(C).

Idea: Generate optimal pairs {(C,7)} and then train a Neural Network to
reproduce these values.

Radu Balan, Naveed Haghani (UMD)

Optimizations with Deep Networks

10/20/2018

Problem Formulation
00000

First Approach: DNN as a Universal Approximator

The optimal solution of this (or any optimization problem) is a nonlinear
map m = F(C).
Idea: Generate optimal pairs {(C,7)} and then train a Neural Network to
reproduce these values.
Issues to be discussed:

@ How to generate optimal pairs?

@ Network architecture: how many layers? how many nodes in each

layer?
© How to enforce feasibility?
@ Primal problem — what about the dual problem?

Radu Balan, Naveed Haghani (UMD) Optimizations with Deep Networks 10/20/2018

Problem Formulation
000000

Second Approach: Emulate an lterative Descent Algorithm

For the optimization problem min, J(x) use an iterative algorithm:

(1)

—Q¢p
where x() is the current estimate, a is the step size at step t, and p(t) is
the marching direction. Possible choices:

e Gradient Descent: pg) = VJ(x)

o Newton method: pif) = Hess(— J(x(1)V J(x()

o Mixed methods: p(t) = a;pg + bep, + cept=1)

Idea: Implement a descent strategy, but adapt step size and learning rates
using Neural Networks — Recurrent Neural Network.
See also: Google DeepMind group [Andrychowicz et.al. '16];

Radu Balan, Naveed Haghani (UMD) Optimizations with Deep Networks 10/20/2018

Problem Formulation
0o0000e

Third Approach: Optimization in a Representation Space

Idea: Perform a two-step procedure: (1) perform a nonlinear representation
of the input data; (2) perform optimization in the representation space.

The nonlinear representation map ® : C — I can be learned using a
Variational Auto-Encoder method.

The Optimization map W : I — @ can be implemented using a
neural-network such as in the first approach.

Radu Balan, Naveed Haghani (UMD) Optimizations with Deep Networks 10/20/2018

Problem Formulation
0o0000e

Third Approach: Optimization in a Representation Space

Idea: Perform a two-step procedure: (1) perform a nonlinear representation
of the input data; (2) perform optimization in the representation space.

The nonlinear representation map ® : C — I can be learned using a
Variational Auto-Encoder method.

The Optimization map W : I — @ can be implemented using a
neural-network such as in the first approach.

Why it makes sense? feasible solutions are graph representable — Use
Graph Convolutive Networks (GCN — KipfWeiling) as a launching pad.
See also: [Nowak et.al.'18]

Radu Balan, Naveed Haghani (UMD) Optimizations with Deep Networks 10/20/2018

DNN as UA
©0000

First Approach: DNN as a UA

Exact Solutions to Our Problem

minimize vazl JR:;[mijCij
subject to:
Tij € {0,1} , Vi, j
SN m;j=1,V1<j<R
SRy My <1,VI<i<N

Luckily, this problem admits an exact convex relaxation: the associated
Linear Program produces the same optimal solution:

minimize »N 12 1 mi G
subject to:
0<7T,'j<1 \V/I,_]
N17T,’_,—1 VI<j<R
Zjl-ilﬂ',dgl,v:lglgf\/

Radu Balan, Naveed Haghani (UMD) Optimizations with Deep Networks 10/20/2018

DNN as UA
0000

First Approach: DNN as a UA

Architectures

The overall system must output feasible solutions 7. Our architecture
compose two components: (1) a deep neural network (DNN) that outputs
a (generally) unfeasible estimate 7; (2) an enforcer (P) of the feasibility
conditions that outputs the estimate 7:

\m

DNN

Issues to discuss:
© DNN architecture: how many layers; how many neurons per layer?
@ P, the feasibility enforcer

Radu Balan, Naveed Haghani (UMD) Optimizations with Deep Networks 10/20/2018

DNN as UA

[e]e] le]e}

First Approach: DNN as a UA

DNNs

We study three architectures:

(¢}
1]
wou Goyee]
sppun uappry
wou e
.
H
H
H
H
H
H
suum uappry
w0 YN
EN
I

10/20/2018

Optimizations with Deep Networks

Radu Balan, Naveed Haghani (UMD)

DNN as UA
[eleTe] Yol

First Approach: DNN as a UA

Feasibility Enforcer P

An "optimal” feasibility condition enforcer would minimize some
"distance” to the feasibility set. However this may be a very
computationally expensive component. An intermediate solution is to
alternate between different feasibility conditions (equalities and
inequalities) until convergence.

Instead we opt for a simpler and "greedier” approach:

Repeat R times: ﬁ:E.ZSS = ’A’:E'Z;
1. Find (/,j) the largest entry in T : -

2. Set @jj = 1; set to O other entries /

in row i and column j;

3. Remove row i and column j from ﬁ=&
both 7 and 7.

Radu Balan, Naveed Haghani (UMD) Optimizations with Deep Networks 10/20/2018

DNN as UA
ooooe

First Approach: DNN as a UA

Baseline solution: The Greedy Algorithm

The "greedy” enforcer can be modified into a "greedy” optimization
algorithm:

@ Initialize E = C and @ = Onxr

© Repeat R times:
o Find (i,j) = argming, p)Ea b;
o Setftjj =17 =0V #j, %1;,=0VI#1
o Set E;. =00, Ej = o0.

Proposition

The greedy algorithm produces the optimal solution if there is a positive

number A > 0 and two nonnegative vectors u, v such that
C=A1-1T —y.v'.

Radu Balan, Naveed Haghani (UMD) Optimizations with Deep Networks 10/20/2018

Numerical Results
©000000000000000000000000

Exp.1 : N =5, R =4 with RelLU activation

First architecture:

e C1r
C <
N1 Cnr

Number of internal layers: 9

Number of hidden units per layer: 250

Batch size: 200; ADAM optimizer

Loss function: cross-entropy:

> i mij(—log(7ij)) + (L — mi;)(—log(l — #i;))

e Training data set: 1 million random instances U(0, 1) i.i.d.
@ Validation set: 20,000 random instances.

Radu Balan, Naveed Haghani (UMD) Optimizations with Deep Networks 10/20/2018

Numerical Results
0®00000000000000000000000

Exp.1: N =5, R =4 with RelLU activation

Cross Entropy over Training

» training * validation

CROSS ENTROPY ERROR (LOG SCALE)

Radu Balan, Naveed Haghani (UMD) Optimizations with Deep Networks 10/20/2018

Numerical Results
00®0000000000000000000000

Exp.1: N =5, R =4 with RelLU activation

MSE over training

» training * validation

MSE (LOG SCALE)

Optimizations with Deep Networks 10/20/2018

Radu Balan, Naveed Haghani (UMD)

Numerical Results
000@000000000000000000000

Exp.1: N =5, R =4 with RelLU activation

Avg Obj Value Diff (Predicted - True)

» training * validation

OBJ VAL DIFF

Radu Balan, Naveed Haghani (UMD) Optimizations with Deep Networks 10/20/2018

Numerical Results
0000@00000000000000000000

Exp.1: N =5, R =4 with ReLU activation

UNIVE&SIT‘I OF
A 1R

AND

Validation Set Instance #1 alidation Set Instance #1

=Prediction True Solution =Feasible Prediction True Solution

78 9101 121314151617 18 19 20
DECISION VARIABLES (FLATTENED)

567 8 91011 1213141516 17181920
DECISION VARIABLES (FLATTENED)

DECISION VARIABLE

Validation Set Instance #1

#Greedy Prediction = True Solution

6789 1011211415181
DECISION VARIABLES (FLATTENED)

Optimizations Deep Networks

Numerical Results
00000@0000000000000000000

=5, R = 4 with ReLU activation

fﬁl UNIVERSITY OF
MAR) \

YLAND

Validation Set Instance #2 Validation Set Instance #2

wPrediction # True Solution =Feasible Prediction = Trus Solution

567 80 10NNDBUISIENILLN
DECISION VARIAELES (FLATTENED)

6 78 91011 213 141516171819 20
3 NED)

Validation Set Instance #2

#GreedyPrediction = Trve Solution

S 6789 101 121314151617181920
DECISION VARIABLES (FLATTENED)

Optimizations Deep Networks

Numerical Results
000000®000000000000000000

Number of internal layers: 10

Number of hidden units per layer: 250

No Batch; ADAM optimizer

Loss function: cross-entropy:

> Tij(—log(#ij)) + (1 — mij)(—log(1 — #i;))

@ Training data set: 1 million random instances U(0,1) i.i.d.

@ Validation set: 20,000 random instances.

Radu Balan, Naveed Haghani (UMD) Optimizations with Deep Networks 10/20/2018

Numerical Results
0000000@00000000000000000

Exp.2 : N =10, R = 8 with sigmoid activation

Cross Entropy

Radu Balan, Naveed Haghani (UMD) Optimizations with Deep Networks 10/20/2018

Numerical Results
0000000080000000000000000

Exp.2 : N =10, R = 8 with sigmoid activation

MSE over training

Radu Balan, Naveed Haghani (UMD) Optimizations with Deep Networks 10/20/2018

Numerical Results
0000000008000000000000000

Exp.2 : N =10, R = 8 with sigmoid activation

Avg Obj Value Diff (Predicted - True)

Radu Balan, Naveed Haghani (UMD) Optimizations with Deep Networks 10/20/2018

Numerical Results
0000000000800000000000000

Exp.2 : N =10, R = 8 with sigmoid activation

ITY OF

fﬁl uvas{;i

Validation Set Instance alidation Set Instance #1

wPrediction #True Solution # Feasible Prediction = True Solution

0
0 : 14 71013161922252831 343740 4346 49 61646770
ION VARIBLES (FLATTENED) DECISION VARIABLES (FLATTENED)

Validation Set Instance #1

= Gresdy Prediction = True Solution

0
14710 13161922252831 3437 40 43 4649 5:
DECISION VARIABLES (FLATTENED)

Optimizations Deep Networks

Numerical Results
0000000000080000000000000

Exp.2 : N =10, R = 8 with sigmoid activation

i UNIVERSITY OF

Y LAND

Validation Set Instance #2

#Feasible Prediction = True Solution

Validation Set Instance #2

=Prsgiction = True Solution

-BR288.

14710131619 3134374043 4649 61 6467707376 79
NVARIABLES (FLATTENED)

14710131619 313437404346 495255 5
DECISION VARIABLES (FLATTENED)

DECISIONVARIABLE

Validation Set Instance #2

= Greedy Prediction = True Solution

0
147101316192
DEC

Optimizations Deep Networks

Numerical Results
0000000000008000000000000

Exp.3: N =5, R =4 with sigmoid activation

Second architecture:

o Yoyeq
n1un uappny
o e

un uppry
LIOU 1Y
D
1}

Number of internal layers: 10

Number of hidden units per layer: 250

Batch size 200; ADAM optimizer

Loss function: cross-entropy:

> Tij(—log(#ij)) + (1 — mij)(—log(1 — #i;))

Training data set: 500,000 random instances U(0,1) i.i.d.
@ Validation set: 20,000 random instances.

Radu Balan, Naveed Haghani (UMD) Optimizations with Deep Networks 10/20/2018

Numerical Results
0000000000000e00000000000

Exp.3: N =5, R =4 with sigmoid activation

Cross Entropy

Radu Balan, Naveed Haghani (UMD) Optimizations with Deep Networks 10/20/2018

Numerical Results
0000000000000080000000000

Exp.3: N =5, R =4 with sigmoid activation

MSE over training

Radu Balan, Naveed Haghani (UMD) Optimizations with Deep Networks 10/20/2018

Numerical Results
0000000000000008000000000

Exp.3: N =5, R =4 with sigmoid activation

Avg Obj Value Diff (Predicted - True)

Radu Balan, Naveed Haghani (UMD) Optimizations with Deep Networks 10/20/2018

Numerical Results
0000000000000000800000000

Exp.3: N =5, R =4 with sigmoid activation

5 UNIVERSITY OF
5 RIARYLAND

Validation Set Instance Validation Set Instance #1

wPrediction wTrue Solution #Feasible Prediction # True Salution
89 1010 2131415161718 1920 g 3 6 7 8 9 1011121314 15161718 19 20
N VARIABLES (FLATTENED) DECISION VARIABLES (FLATTENED)

Validation Set Instance #1

=GreedyPrediction = True Solution

ARIABLE VALUE

678 91011 2131415161718 1920
DECISION VARIABLES (FLATTENED)

DECISION

Optimizations Deep Networks

Numerical Results
0000000000000000080000000

Exp.3: N =5, R =4 with sigmoid activation

ITY OF

AND
alidation Set Instance #2 Validation Set Instance

Prediction = Tiue Solution = Feasible Prediction = Trus Solution

78 91011 121314151617 18 1920 £ 4567891001213 KISI617181920
DECISION VARIABLES (FLATTENED) : DECISION VARIABLES (FLATTENED)

DECISIONVARIABLE VALUE

Validation Set Instance #2

" Greedy Prediction = Trve Solufion

6789 101 1R114I5SI6171819
DECISION VARIABLES (FLATTENED)

Optimizations Deep Networks

Numerical Results
0000000000000000008000000

R = 8 with sigmoid activation

Ci1 Cir g E g E g - 11 T1r
B % s @E@ = ;;
@ Number of internal layers: 10
@ Number of hidden units per layer: 300
@ Batch size 200; ADAM optimizer
@ Loss function: cross-entropy:

> Tij(—log(#ij)) + (1 — mij)(—log(1 — #i;))
Training data set: 500,000 random instances U(0,1) i.i.d.
@ Validation set: 20,000 random instances.

Radu Balan, Naveed Haghani (UMD) Optimizations with Deep Networks 10/20/2018

Numerical Results
0000000000000000000e00000

Exp.4 : N =10, R = 8 with sigmoid activation

Cross Entropy

Radu Balan, Naveed Haghani (UMD) Optimizations with Deep Networks 10/20/2018

Numerical Results
0000000000000000000080000

Exp.4 : N =10, R = 8 with sigmoid activation

MSE over training

Radu Balan, Naveed Haghani (UMD) Optimizations with Deep Networks 10/20/2018

Numerical Results
000000000000000000000e000

Exp.4 : N =10, R = 8 with sigmoid activation

Avg Obj Value Diff (Predicted - True)

Radu Balan, Naveed Haghani (UMD) Optimizations with Deep Networks 10/20/2018

Numerical Results
0000000000000000000000e800

Exp.4 : N =10, R = 8 with sigmoid activation

ITY OF
AND
Validation Set Instance #1 lidation Set Instance #1

Prediction = True Sofution #Feasible Prediction = True Solution

0
1471013161922 25283134 374043 46 & 6164677073767 i 8616467 7
DECISION VARIABLES (FLATTENED) ARIABLES (FLATTENED)

Validation Set Instance #1

GreedyPrediction = True Sofution

0
14 7101316192225 2831 3437 4043 46495
DECISION VARIABLES (FLATTENED)

DECISION VARIA

Optimizations Deep Networks

Numerical Results
00000000000000000000000e

Exp.4 : N =10, R = 8 with sigmoid activation

5 UNIVERSITY OF
M RYTAND

Validation Set Instance #2

wFeasible Prediction = True Solufion

Validation Set Instance #2

Prediction = True Solution

147101316192 46495255 58 6164
DECISIONVARIABLES (FLATTENED)

14 7101316192225 2831 34 37 4043 4649 52 55 538 6164 6
DECISION VARIARLES (FLATTENED)

Validation Set Instance #2

wGresdyPrediction = Trus Solution

14 71013161922252831343740 434649 52 55
DECISION VARIABLES (FLATTENED)

du Balan, Naveed Hagh Deep Networks

Numerical Results
000000000000000000000000e

Bibliography

1. M. Andrychowicz, M. Denil, S.G. Colmenarejo, M.W. Hoffman, D.
Pfau, T. Schaul, B. Shillingford, N.de Freitas, Learning to learn by
gradient descent by gradient descent, arXiv:1606.04474v2 [cs.NE]

2. T.N. Kipf, M. Weiling, Variatioal Graph Auto-Encoder,
arXiv:1611.07308 [stat.ML]

3. A. Nowak, S. Villar, A. Bandeira, J. Bruna, Revised Note on Learning
Quadratic Assignment with Graph Neural Network, arXiv: 1706.07450
[stat.ML]

Radu Balan, Naveed Haghani (UMD) Optimizations with Deep Networks 10/20/2018

	Problem Formulation
	

	DNN as UA
	

	Numerical Results
	

