An L1 Matrix Factorization

Radu Balan

Department of Mathematics, CSCAMM and NWC University of Maryland, College Park, MD

AMS Fall Southeastern Sectional Meeting Special Session "Trends in Applications of Functional Analysis in

Computational and Applied Mathematics, I" University of Central Florida, Orlando, FL

September 23, 2017, 9:30am-9:50am

"This material is based upon work supported by the National Science Foundation under Grant No. DMS-1413249. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation." The author has been partially supported by ARO under grant W911NF1610008, and by LTS under grant H9823013D00560049. Joint work with: Kasso Okoudjou (UMD), Joey Iverson (UMD), Anirudha Poria (UMD/IIT Guwahati).

Table of Contents：

（1）Problem Formulation

（2）Decompositions
（3）The（Counter）Example

Problem Formulation

Function Space Formulation

Let $T: L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})$ be a positive semi-definite trace-class compact operator written in integral form

$$
T f(x)=\int_{-\infty}^{\infty} K(x, y) f(y) d y
$$

Assume $K \in M^{1}\left(\mathbb{R}^{2}\right)$ belongs to the modulation space M^{1} (a.k.a. the Feichtinger algebra, or the Segal algebra for TF ops).
Let $\left(f_{k}\right)_{k \geq 0}$ be a set of eigenvectors, $T f_{k}=\left\|f_{k}\right\|_{2}^{2} f_{k}$. Thus $T=\sum_{k} f_{k} f_{k}^{*}$ and $\sum_{k}\left\|f_{k}\right\|_{2}^{2}=\operatorname{tr}(T)<\infty$.
Fact: It is known [HeilLars04/08] that $f_{k} \in M^{1}$ for each k.

Problem Formulation

Function Space Formulation

Let $T: L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})$ be a positive semi-definite trace-class compact operator written in integral form

$$
T f(x)=\int_{-\infty}^{\infty} K(x, y) f(y) d y
$$

Assume $K \in M^{1}\left(\mathbb{R}^{2}\right)$ belongs to the modulation space M^{1} (a.k.a. the Feichtinger algebra, or the Segal algebra for TF ops).
Let $\left(f_{k}\right)_{k \geq 0}$ be a set of eigenvectors, $T f_{k}=\left\|f_{k}\right\|_{2}^{2} f_{k}$. Thus $T=\sum_{k} f_{k} f_{k}^{*}$ and $\sum_{k}\left\|f_{k}\right\|_{2}^{2}=\operatorname{tr}(T)<\infty$.
Fact: It is known [HeilLars04/08] that $f_{k} \in M^{1}$ for each k. Problem 1 [Feichtinger2004]: Does $\sum_{k \geq 0}\left\|f_{k}\right\|_{M^{1}}^{2}<\infty$?

Problem Formulation

Function Space Formulation

Let $T: L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})$ be a positive semi-definite trace-class compact operator written in integral form

$$
T f(x)=\int_{-\infty}^{\infty} K(x, y) f(y) d y
$$

Assume $K \in M^{1}\left(\mathbb{R}^{2}\right)$ belongs to the modulation space M^{1} (a.k.a. the Feichtinger algebra, or the Segal algebra for TF ops).
Let $\left(f_{k}\right)_{k \geq 0}$ be a set of eigenvectors, $T f_{k}=\left\|f_{k}\right\|_{2}^{2} f_{k}$. Thus $T=\sum_{k} f_{k} f_{k}^{*}$ and $\sum_{k}\left\|f_{k}\right\|_{2}^{2}=\operatorname{tr}(T)<\infty$.
Fact: It is known [HeilLars04/08] that $f_{k} \in M^{1}$ for each k.
Problem 1 [Feichtinger2004]: Does $\sum_{k \geq 0}\left\|f_{k}\right\|_{M^{1}}^{2}<\infty$?
Problem 2 [HeilLars04]: If the answer is negative to Problem 1, is there a decomposition $T=\sum_{k} g_{k} g_{k}^{*}$, not necessarily spectral, so that $\sum_{k \geq 0}\left\|g_{k}\right\|_{M^{1}}^{2}<\infty$?

Problem Formulation

Interlude: Modulation space M^{1}

The Feichtinger space M^{1} is defined as follows. Let $g: \mathbb{R} \rightarrow \mathbb{R}$, $g(x)=e^{-\pi x^{2}}$ be the Gaussian window. Let

$$
f \in \mathbb{S}^{\prime} \mapsto V_{g} f(t, w)=\int_{-\infty}^{\infty} e^{-2 \pi i w x} f(x) g(x-t) d x
$$

be the windowed Fourier transform of f with respect to g. Then

$$
M^{1}(\mathbb{R})=\left\{f \in L^{2}(\mathbb{R}),\|f\|_{M^{1}}:=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left|V_{g} f(t, w)\right| d t d w<\infty\right\}
$$

Problem Formulation

Interlude: Modulation space M^{1}

The Feichtinger space M^{1} is defined as follows. Let $g: \mathbb{R} \rightarrow \mathbb{R}$, $g(x)=e^{-\pi x^{2}}$ be the Gaussian window. Let

$$
f \in \mathbb{S}^{\prime} \mapsto V_{g} f(t, w)=\int_{-\infty}^{\infty} e^{-2 \pi i w x} f(x) g(x-t) d x
$$

be the windowed Fourier transform of f with respect to g. Then

$$
M^{1}(\mathbb{R})=\left\{f \in L^{2}(\mathbb{R}),\|f\|_{M^{1}}:=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left|V_{g} f(t, w)\right| d t d w<\infty\right\}
$$

Fact: [FeichtGrochWaln92] The Wilson ONB is an unconditional basis in M^{1}. Let $\left(w_{n}\right)_{n \geq 0}$ denote this Wilson basis. Then we can identify M^{1} with $I^{1}(\mathbb{N})$ space, with equivalent norms:

$$
M^{1}(\mathbb{R})=\left\{f=\sum_{n \geq 0} c_{n} w_{n},\|f\|_{M^{1}} \sim \sum_{n \geq 0}\left|c_{n}\right|\right\}
$$

Problem Formulation

Matrix Reformulation

Consider an infinite matrix $A=\left(A_{m, n}\right)_{m, n \geq 0}$ so that

$$
\|A\|_{\wedge}:=\sum_{m, n \geq 0}\left|A_{m, n}\right|<\infty
$$

This implies that A acts on $I^{2}(\mathbb{N})$ as a trace-class compact operator. Assume additionally $A=A^{*} \geq 0$.
Let $\left(e_{k}\right)_{k \geq 0}$ denote an orthogonal set of eigenvectors normalized so that $A=\sum_{k \geq 0} e_{k} e_{k}^{*}$. It is easy to check that $e_{k} \in I^{1}(\mathbb{N})$, for each k.
Equivalent problems reformulation ([HeilLars04]):

Problem Formulation

Matrix Reformulation

Consider an infinite matrix $A=\left(A_{m, n}\right)_{m, n \geq 0}$ so that

$$
\|A\|_{\wedge}:=\sum_{m, n \geq 0}\left|A_{m, n}\right|<\infty
$$

This implies that A acts on $I^{2}(\mathbb{N})$ as a trace-class compact operator. Assume additionally $A=A^{*} \geq 0$.
Let $\left(e_{k}\right)_{k \geq 0}$ denote an orthogonal set of eigenvectors normalized so that $A=\sum_{k \geq 0} e_{k} e_{k}^{*}$. It is easy to check that $e_{k} \in I^{1}(\mathbb{N})$, for each k.
Equivalent problems reformulation ([HeilLars04]):
Problem 1: Does it hold $\sum_{k \geq 0}\left\|e_{k}\right\|_{1}^{2}<\infty$?

Problem Formulation

Matrix Reformulation

Consider an infinite matrix $A=\left(A_{m, n}\right)_{m, n \geq 0}$ so that

$$
\|A\|_{\wedge}:=\sum_{m, n \geq 0}\left|A_{m, n}\right|<\infty
$$

This implies that A acts on $I^{2}(\mathbb{N})$ as a trace-class compact operator. Assume additionally $A=A^{*} \geq 0$.
Let $\left(e_{k}\right)_{k \geq 0}$ denote an orthogonal set of eigenvectors normalized so that $A=\sum_{k \geq 0} e_{k} e_{k}^{*}$. It is easy to check that $e_{k} \in I^{1}(\mathbb{N})$, for each k.
Equivalent problems reformulation ([HeilLars04]):
Problem 1: Does it hold $\sum_{k \geq 0}\left\|e_{k}\right\|_{1}^{2}<\infty$?
Problem 2: If negative to problem 1, is there a factorization $A=\sum_{k \geq 0} f_{k} f_{k}^{*}$ so that $\sum_{k \geq 0}\left\|f_{k}\right\|_{1}^{2}<\infty ?$

Tensor Products

Consider $A \in \mathbb{C}^{n \times n}$. We seek "optimal" decompositions of A into a sum of rank-1 operators: $A=\sum_{k} u_{k} v_{k}^{*}$.
In this talk we assume A to be positive semi-definite: $A=A^{*} \geq 0$. Criterion 1:

$$
J(A)=\inf _{A=\sum_{k=1}^{m} f_{k} f_{k}^{*}} \sum_{k=1}^{m}\left\|f_{k}\right\|_{1}^{2}
$$

Tensor Products

Consider $A \in \mathbb{C}^{n \times n}$. We seek "optimal" decompositions of A into a sum of rank-1 operators: $A=\sum_{k} u_{k} v_{k}^{*}$.
In this talk we assume A to be positive semi-definite: $A=A^{*} \geq 0$. Criterion 1:

$$
J(A)=\inf _{A=\sum_{k=1}^{m} f_{k} f_{k}^{*}} \sum_{k=1}^{m}\left\|f_{k}\right\|_{1}^{2}
$$

Criterion 2:

$$
J_{0}(A)=\inf _{A=\sum_{k=1}^{m} \epsilon_{k} f_{k} f_{k}^{*}} \sum_{k=1}^{m}\left\|f_{k}\right\|_{1}^{2}
$$

where $\epsilon_{k} \in\{+1,-1\}$.

Tensor Products

Consider $A \in \mathbb{C}^{n \times n}$. We seek "optimal" decompositions of A into a sum of rank-1 operators: $A=\sum_{k} u_{k} v_{k}^{*}$.
In this talk we assume A to be positive semi-definite: $A=A^{*} \geq 0$.
Criterion 1:

$$
J(A)=\inf _{A=\sum_{k=1}^{m} f_{k} f_{k}^{*}} \sum_{k=1}^{m}\left\|f_{k}\right\|_{1}^{2} .
$$

Criterion 2:

$$
J_{0}(A)=\inf _{A=\sum_{k=1}^{m} \epsilon_{k} f_{k} f_{k}^{*}} \sum_{k=1}^{m}\left\|f_{k}\right\|_{1}^{2}
$$

where $\epsilon_{k} \in\{+1,-1\}$.
Criterion 3:

$$
J_{\wedge}(A)=\inf _{A=\sum_{k=1}^{m} f_{k} g_{k}^{*}} \sum_{k=1}^{m}\left\|f_{k}\right\|_{1}\left\|g_{k}\right\|_{1}
$$

What we know

$$
\begin{aligned}
J_{\wedge}(A) & =\min _{A}=\sum_{k=1}^{m} f_{k} g_{k}^{*} \\
J_{0}(A) & =\min _{A=\sum_{k=1}^{m}}^{m}\left\|f_{k}\right\|_{1}\left\|g_{k}\right\|_{1} \\
\epsilon_{k} f_{k} f_{k}^{*} & \sum_{k=1}^{m}\left\|f_{k}\right\|_{1}^{2} \\
J(A) & =\min _{A=\sum_{k=1}^{m} f_{k} f_{k}^{*}} \sum_{k=1}^{m}\left\|f_{k}\right\|_{1}^{2} .
\end{aligned}
$$

What we know

$$
\begin{aligned}
J_{\wedge}(A) & =\min _{A=\sum_{k=1}^{m} f_{k} g_{k}^{*}} \sum_{k=1}^{m}\left\|f_{k}\right\|_{1}\left\|g_{k}\right\|_{1} \\
J_{0}(A) & =\min _{A=\sum_{k=1}^{m} \epsilon_{k} f_{k} f_{k}^{*}} \sum_{k=1}^{m}\left\|f_{k}\right\|_{1}^{2} \\
J(A) & =\min _{A=\sum_{k=1}^{m} f_{k} f_{k}^{*}} \sum_{k=1}^{m}\left\|f_{k}\right\|_{1}^{2}
\end{aligned}
$$

1. J_{\wedge}, J_{0}, J are positive, homogeneous, and convex on $\operatorname{Sym}^{+}\left(\mathbb{C}^{n}\right)$.

What we know

$$
\begin{gathered}
J_{\wedge}(A)=\min _{A=\sum_{k=1}^{m} f_{k} g_{k}^{*}} \sum_{k=1}^{m}\left\|f_{k}\right\|_{1}\left\|g_{k}\right\|_{1} \\
J_{0}(A)=\min _{A=\sum_{k=1}^{m} \epsilon_{k} f_{k} f_{k}^{*}} \sum_{k=1}^{m}\left\|f_{k}\right\|_{1}^{2} \\
J(A)=\min _{A=\sum_{k=1}^{m} f_{k} f_{k}^{*}} \sum_{k=1}^{m}\left\|f_{k}\right\|_{1}^{2}
\end{gathered}
$$

1. J_{\wedge}, J_{0}, J are positive, homogeneous, and convex on $\operatorname{Sym}^{+}\left(\mathbb{C}^{n}\right)$.
2. J_{\wedge}, J_{0} extend to norms on $\operatorname{Sym}\left(\mathbb{C}^{n}\right)$.

What we know

$$
\begin{gathered}
J_{\wedge}(A)=\min _{A=\sum_{k=1}^{m} f_{k} g_{k}^{*}} \sum_{k=1}^{m}\left\|f_{k}\right\|_{1}\left\|g_{k}\right\|_{1} \\
J_{0}(A)=\min _{A=\sum_{k=1}^{m} \epsilon_{k} f_{k} f_{k}^{*}} \sum_{k=1}^{m}\left\|f_{k}\right\|_{1}^{2} \\
J(A)=\min _{A=\sum_{k=1}^{m} f_{k} f_{k}^{*}} \sum_{k=1}^{m}\left\|f_{k}\right\|_{1}^{2}
\end{gathered}
$$

1. J_{\wedge}, J_{0}, J are positive, homogeneous, and convex on $\operatorname{Sym}^{+}\left(\mathbb{C}^{n}\right)$.
2. J_{\wedge}, J_{0} extend to norms on $\operatorname{Sym}\left(\mathbb{C}^{n}\right)$.
3. The following hold true:

$$
\begin{gathered}
\sum_{i, j}\left|A_{i, j}\right|=:\|A\|_{\wedge}=J_{\wedge}(A) \leq J_{0}(A) \leq 2\|A\|_{\wedge} \quad, \quad \forall A \in \operatorname{Sym}\left(\mathbb{C}^{n}\right) \\
\|A\|_{\wedge}=J_{\wedge}(A) \leq J_{0}(A) \leq J(A) \leq n\|A\|_{\wedge}, \quad \forall A \in \operatorname{Sym}^{+}\left(\mathbb{C}^{n}\right)
\end{gathered}
$$

Central Example

Consider the identity matrix I_{n} and two possible decompositions:

$$
I_{n}=\sum_{k=1}^{n} \delta_{k} \delta_{k}^{*}=\sum_{k=0}^{n-1} e_{n, k} e_{n, k}^{*}
$$

where $\left\{\delta_{k}\right\}_{k}$ is the canonical ONB, and $\left\{e_{n, k}\right\}_{k}$ is the Fourier ONB:

$$
e_{n, k}=\frac{1}{\sqrt{n}}\left[\begin{array}{llll}
1 & e^{-2 \pi i k / n} & \cdots & e^{-2 \pi i k(n-1) / n}
\end{array}\right]^{T} .
$$

Central Example

Consider the identity matrix I_{n} and two possible decompositions:

$$
I_{n}=\sum_{k=1}^{n} \delta_{k} \delta_{k}^{*}=\sum_{k=0}^{n-1} e_{n, k} e_{n, k}^{*}
$$

where $\left\{\delta_{k}\right\}_{k}$ is the canonical ONB, and $\left\{e_{n, k}\right\}_{k}$ is the Fourier ONB:

$$
e_{n, k}=\frac{1}{\sqrt{n}}\left[\begin{array}{llll}
1 & e^{-2 \pi i k / n} & \cdots & e^{-2 \pi i k(n-1) / n}
\end{array}\right]^{T} .
$$

Note:

$$
\begin{gathered}
\sum_{k=1}^{n}\left\|\delta_{k}\right\|_{1}^{2}=n=\left\|I_{n}\right\|_{\wedge}=J\left(I_{n}\right) \rightarrow \text { "good decomposition" } \\
\sum_{k=0}^{n-1}\left\|e_{n, k}\right\|_{1}^{2}=n^{2}=n J\left(I_{n}\right) \rightarrow \text { "bad decomposition" }
\end{gathered}
$$

The CounterExample Block Diagonal Form

We construct an example that answers negatively problem 1, but positively problem 2.
The form: $T=T_{1} \oplus T_{2} \oplus \cdots \oplus T_{n} \oplus \cdots$,

$$
T=\left[\begin{array}{lllll}
T_{1} & & & & \\
& T_{2} & & & \\
& & \ddots & & \\
& & & T_{n} & \\
& & & & \ddots
\end{array}\right]
$$

The CounterExample

Each block T_{n} is diagonalized by the Fourier ONB, and has positive simple eigenvalues:

$$
T_{n}=\frac{1}{n^{3}} \sum_{k=0}^{n-1}\left(1+\frac{k}{n^{p}}\right) e_{n, k} e_{n, k}^{*} .
$$

The CounterExample

Each block T_{n} is diagonalized by the Fourier ONB, and has positive simple eigenvalues:

$$
T_{n}=\frac{1}{n^{3}} \sum_{k=0}^{n-1}\left(1+\frac{k}{n^{p}}\right) e_{n, k} e_{n, k}^{*}
$$

Thus:

$$
T=\bigoplus_{n \geq 1} \sum_{k=0}^{n-1} \frac{1}{n^{3}}\left(1+\frac{k}{n^{p}}\right) e_{n, k} e_{n, k}^{*}
$$

Problem 1

Negative Answer

The eigendecomposition of T is

$$
T=\sum_{n \geq 1} \sum_{k=0}^{n-1} f_{n, k} f_{n, k}^{*} \quad, \quad f_{n, k}=\frac{1}{\sqrt{n^{3}}} \sqrt{1+\frac{k}{n^{p}}} e_{n, k} .
$$

Then

$$
\sum_{n \geq 1} \sum_{k=0}^{n-1}\left\|f_{n, k}\right\|_{1}^{2}=\sum_{n \geq 1} \sum_{k=0}^{n-1} \frac{1}{n^{3}}\left(1+\frac{k}{n^{p}}\right) n \geq \sum_{n \geq 1} \frac{1}{n}=\infty
$$

Hence the answer to problem 1 is negative: There is an operator $S: f \mapsto S f(x)=\int K(x, y) f(y) d y$ with $K \in M^{1}\left(\mathbb{R}^{2}\right)$ and $S=S^{*} \geq 0$, so that its spectral decomposition $S=\sum_{k \geq 1}\left\langle\cdot, f_{k}\right\rangle f_{k}$ satisfies $\sum_{k}\left\|f_{k}\right\|_{M^{1}}^{2}=\infty$.

Problem 2

Positive Answer

We show now that same operator T we constructed earlier admits a decomposition $T=\sum_{m} g_{m} g_{m}^{*}$ so that $\sum_{m}\left\|g_{m}\right\|_{1}^{2}<\infty$.
Notice:

$$
T_{n}=\frac{1}{n^{3}} \sum_{k=0}^{n-1}\left(1+\frac{k}{n^{p}}\right) e_{n, k} e_{n, k}^{*}=\frac{1}{n^{3}} \sum_{k=0}^{n-1} \delta_{k} \delta_{k}^{*}+\frac{1}{n^{3+p}} \sum_{k=0}^{n-1} k e_{n, k} e_{n, k}^{*}
$$

Thus the induced decomposition

$$
T_{n}=\sum_{k=0}^{n-1} g_{1, n, k} g_{1, n, k}^{*}+\sum_{k=0}^{n-1} g_{2, n, k} g_{2, n, k}^{*}
$$

satisfies

$$
\sum_{k=0}^{n-1}\left\|g_{1, n, k}\right\|_{1}^{2}+\left\|g_{2, n, k}\right\|_{1}^{2}=\frac{1}{n^{2}}+\frac{1}{n^{2+p}} \frac{n(n-1)}{2} \leq \frac{1}{n^{2}}+\frac{1}{n^{p}}
$$

Problem 2

Positive Answer - cont'd

Thus:

$$
T=\bigoplus_{n \geq 1} \sum_{k=0}^{n-1} g_{1, n, k} g_{1, n, k}^{*}+g_{2, n, k} g_{2, n, k}^{*}
$$

satisfies

$$
\sum_{n \geq 1} \sum_{k=0}^{n-1}\left\|g_{1, n, k}\right\|_{1}^{2}+\left\|g_{2, n, k}\right\|_{1}^{2} \leq \sum_{n \geq 1} \frac{1}{n^{2}}+\frac{1}{n^{p}}<\infty
$$

Problem 2

Positive Answer - cont'd

Thus:

$$
T=\bigoplus_{n \geq 1} \sum_{k=0}^{n-1} g_{1, n, k} g_{1, n, k}^{*}+g_{2, n, k} g_{2, n, k}^{*}
$$

satisfies

$$
\sum_{n \geq 1} \sum_{k=0}^{n-1}\left\|g_{1, n, k}\right\|_{1}^{2}+\left\|g_{2, n, k}\right\|_{1}^{2} \leq \sum_{n \geq 1} \frac{1}{n^{2}}+\frac{1}{n^{p}}<\infty
$$

Hence the answer to the second problem is affirmative: There is an operator $S=S^{*} \geq 0, f \mapsto S f(x)=\int K(x, y) f(y) d y$ with $K \in M^{1}\left(\mathbb{R}^{2}\right)$ that admits a decomposition $S=\sum_{k \geq 1}\left\langle\cdot, g_{k}\right\rangle g_{k}$ that satisfies $\sum_{k}\left\|g_{k}\right\|_{M^{1}}^{2}<\infty$, but whose spectral decomposition does not satisfy the same localization condition.

Open Problem

A remaining open problem:Is there a universal constant $C_{0}>1$ so that for any $n \geq 1$ and every positive semidefinite $A \in \mathbb{C}^{n \times n}$,

$$
J(A)=\min _{A=\sum_{k=1}^{m} f_{k} f_{k}^{*}}\left\|f_{k}\right\|_{1}^{2} \leq C_{0} \sum_{i, j=1}^{n}\left|A_{i, j}\right| ?
$$

Open Problem

A remaining open problem:Is there a universal constant $C_{0}>1$ so that for any $n \geq 1$ and every positive semidefinite $A \in \mathbb{C}^{n \times n}$,

$$
J(A)=\min _{A=\sum_{k=1}^{m} f_{k} f_{k}^{*}}\left\|f_{k}\right\|_{1}^{2} \leq C_{0} \sum_{i, j=1}^{n}\left|A_{i, j}\right| ?
$$

Why we care?
If the answer is positive, it follows that, given a trace-class positive semidefinite operator $T: f \mapsto T f(x)=\int K(x, y) f(y) d y$ the following two statements are equivalent:
(1) $K \in M^{1}\left(\mathbb{R}^{2}\right)$.
(2) There are functions $g_{k} \in M^{1}(\mathbb{R})$ so that

$$
T=\sum_{k \geq 0}\left\langle\cdot, g_{k}\right\rangle g_{k}
$$

and $\sum_{k \geq 0}\left\|g_{k}\right\|_{M^{1}}^{2}<\infty$.

References

(in R. Balan, K. Okoudjou, A. Poria, On a Feichtinger Problem, available online at arXiv:1705.06392 [math.CA].
R. Daubechies, S. Jaffard, and J.-L. Journé, A simple Wilson orthonormal basis with exponential decay, SIAM J. Math. Anal., 22 (1991), 554-573.
N. Dunford and J. T. Schwartz, "Linear operators, Part II", Wiley, New York, 1988.

雷 H. Feichtinger, P. Jorgensen, D. Larson and G. Ólafsson, Mini-Workshop: Wavelets and Frames, Abstracts from the mini-workshop held February 15-21, 2004, Oberwolfach Rep. 1 (2004), no. 1, 479-543.
R. H. Feichtinger, Modulation spaces on locally compact Abelian groups, in: Wavelets and their Applications (Chennai, January 2002),

M．Krishna，R．Radha and S．Thangavelu，eds．，Allied Publishers，New Delhi（2003），pp．1－56．

雷 H．G．Feichtinger，K．Gröchenig，and D．Walnut，Wilson bases and modulation spaces，Math．Nachr．， 155 （1992），7－17．

居 K．Gröchenig，＂Foundations of time－frequency analysis＂，Birkhäuser， Boston， 2001.

雷 K．Gröchenig and C．Heil，Modulation spaces and pseudodifferential operators，Integr．Equ．Oper．Theory， 34 （1999），439－457．

R C．Heil and D．Larson，Operator theory and modulation spaces， Contemp．Math．， 451 （2008），137－150．

B．Simon，＂Trace ideals and their applications＂，Cambridge University Press，Cambridge， 1979.

R K．G．Wilson，Generalized Wannier functions，preprint（1987）．

