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Quantum Tomography
Notations

Let H = Cn. The quotient space of unnormalized rays Ĥ = Cn/T 1, with
classes induced by x ∼ y if there is real ϕ with x = eiϕy . The projective
space P(H) = {x̂ , ‖x‖ = 1}. The set of (lowe rank) quantum states

St(H) = {T = T ∗ ≥ 0 , tr(T ) = 1}.

Str (H) = {T = T ∗ ≥ 0 , tr(T ) = 1 , rank(T ) ≤ r}.
P(H)⇔ St1(H) represent the pure states. Ĥ ⇔ S1,0 := {xx∗, x ∈ H}.
Given a set of p.s.d. operators F = {F1, · · · ,Fm} on H, consider two maps

α : Sym(H)→ Rm , α(T ) =
(√

tr(TFk)
)

1≤k≤m

β : Sym(H)→ Rm , β(T ) = (tr(TFk))1≤k≤m

Quantum Tomography: reconstruct T ∈ St(H) from β(T ).
Phase Retrieval: estimate x ∈ Ĥ from α(xx∗) when Fk = fk f ∗k .
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Phase Retrieval: estimate x ∈ Ĥ from α(xx∗) when Fk = fk f ∗k .

Radu Balan (UMD) Quantum Norms 23 September 2017



QTvPR Metric Structures Bi-Lipschitz Stability

Problem Statement

Today we shall discuss the following problem. Assume the maps

α : Sr ,0 → Rm , α(T ) =
(√
〈T ,Fk〉

)
1≤k≤m

β : Sr ,0 → Rm , β(T ) = (〈T ,Fk〉)1≤k≤m

are injective. Here

Str (H) ⊂ Sr ,0 := {T = T ∗ ≥ 0 , rank(T ) ≤ r}

We want to find bi-Lipschitz properties of these maps and understand if
their left inverses can be extended to entire Rm are Lipschitz maps.
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Metric Structures on Ĥ and Sym(H)
Norm Induced Metric

Fix 1 ≤ p ≤ ∞. The matrix-norm induced distance on Sym(H):

dp : Sym(H)× Sym(H)→ R , dp(X ,Y ) = ‖X − Y ‖p,

the p-norm of the singular values.
On Ĥ it induces the metric

dp : Ĥ × Ĥ → R , dp(x̂ , ŷ) = ‖xx∗ − yy∗‖p

In the case p = 2 we obtain

d2(X ,Y ) = ‖X − Y ‖2F , d2(x , y) =
√
‖x‖4 + ‖y‖4 − 2|〈x , y〉|2
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Metric Structures on Ĥ and Sym(H)
Natural Metric

The natural metric

Dp : Ĥ × Ĥ → R , Dp(x̂ , ŷ) = min
ϕ
‖x − eiϕy‖p

with the usual p-norm on Cn. In the case p = 2 we obtain

D2(x̂ , ŷ) =
√
‖x‖2 + ‖y‖2 − 2|〈x , y〉|

On Sym+(H), the ”natural” metric lifts to

Dp : Sym+(H)× Sym+(H)→ R , Dp(X ,Y ) = min
VV ∗ = X

WW ∗ = Y

‖V −WU‖p.
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Metric Structures on Sym(H)
Natural metric vs. Bures/Helinger

Let X ,Y ∈ Sym+(H). For the natural distance we choose p = 2:

Dnatural (X ,Y ) = min
VV ∗ = X

WW ∗ = Y

‖V −W ‖F

Fact:

Dnatural (X ,Y ) = min
U∈U(n)

‖X 1/2 − Y 1/2U‖F =
√

tr(X ) + tr(Y )− 2‖X 1/2Y 1/2‖1

Another distance: Bures/Helinger distance:

DBures(X ,Y ) = ‖X 1/2 − Y 1/2‖F = d2(X 1/2,Y 1/2)

A consequence of the Arithmetic-Geometric Mean Inequality [BK00]:
1
2D2

Bures(X ,Y ) ≤ D2
natural (X ,Y ) ≤ D2

Bures(X ,Y ).
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Metric Structures
p-dependency

Lemma (BZ16)
1 (dp)1≤p≤∞ are equivalent metrics and the identity map

i : (Ĥ, dp)→ (Ĥ, dq), i(x) = x has Lipschitz constant
Lipd

p,q,n = max(1, 2
1
q−

1
p ).

2 The metric space (Ĥ, dp) is isometrically isomorphic to S1,0 endowed
with the p-norm via κβ : Ĥ → S1,0 , x 7→ κβ(x) = xx∗.

Lemma (BZ16)
1 (Dp)1≤p≤∞ are equivalent metrics and the identity map

i : (Ĥ,Dp)→ (Ĥ,Dq), i(x) = x has Lipschitz constant
LipD

p,q,n = max(1, n
1
q−

1
p ).

2 The metric space (Ĥ,D2) is Lipschitz isomorphic to S1,0 endowed
with the 2-norm via κα : Ĥ → S1,0 , x 7→ κα(x) = 1

‖x‖xx∗.
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Metric Structures
Distinct Structures

Two different structures: topologically equivalent, BUT the metrics are
NOT equivalent:

Lemma (BZ16)
The identity map i : (Ĥ,Dp)→ (Ĥ, dp), i(x) = x is continuous but it is
not Lipschitz continuous. Likewise, the identity map
i : (Ĥ, dp)→ (Ĥ,Dp), i(x) = x is continuous but it is not Lipschitz
continuous. Hence the induced topologies on (Ĥ,Dp) and (Ĥ, dp) are the
same, but the corresponding metrics are not Lipschitz equivalent.

Obviously, the same result holds for (Sym+(H),Dnatural ) and
(Sym+(H), d2).
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Lipschitz Stability in Phase Retrieval
Lipschitz inversion: α

Theorem (BZ16)

Assume F is a phase retrievable frame for H. Then:
1 The map α : (Ĥ,D2)→ (Rm, ‖ · ‖2) is bi-Lipschitz. Let

√
A0,
√

B0
denote its Lipschitz constants: for every x , y ∈ H:

A0 min
ϕ
‖x − eiϕy‖22 ≤

m∑
k=1
||〈x , fk〉| − |〈y , fk〉||2 ≤ B0 min

ϕ
‖x − eiϕy‖22.

2 There is a Lipschitz map ω : (Rm, ‖ · ‖2)→ (Ĥ,D2) so that: (i)
ω(α(x)) = x for every x ∈ Ĥ, and (ii) its Lipschitz constant is
Lip(ω) ≤ 4+3

√
2√

A0
= 8.24√

A0
.
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Lipschitz Stability in Phase Retrieval
Lipschitz inversion: β

Theorem (BZ16)

Assume F is a phase retrievable frame for H. Then:
1 The map β : (Ĥ, d1)→ (Rm, ‖ · ‖2) is bi-Lipschitz. Let √a0,

√
b0

denote its Lipschitz constants: for every x , y ∈ H:

a0‖xx∗ − yy∗‖21 ≤
m∑

k=1

∣∣∣|〈x , fk〉|2 − |〈y , fk〉|2∣∣∣2 ≤ b0‖xx∗ − yy∗‖21.

2 There is a Lipschitz map ψ : (Rm, ‖ · ‖2)→ (Ĥ, d1) so that: (i)
ψ(β(x)) = x for every x ∈ Ĥ, and (ii) its Lipschitz constant is
Lip(ψ) ≤ 4+3

√
2√a0

= 8.24√a0
.
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Stability Results in Quantum Tomography
Bi-Lipschitz properties of α and β on Quantum States

Fix a closed subset S ⊂ Sym+(H). For instance S = St(H), or Str (H), or
Sr ,0.

Theorem
Assume F = {F1, · · · ,Fm} ⊂ Sym+(H) so that α|S and β|S are injective.
Then there are constants a0,A0, b0,B0 > 0 so that for every X ,Y ∈ S,

A0D2
natural (X ,Y ) ≤

m∑
k=1

∣∣∣∣√〈X ,Fk〉 −
√
〈Y ,Fk〉

∣∣∣∣2 ≤ B0D2
natural (X ,Y )

a0‖X − Y ‖2F ≤
m∑

k=1
|〈X ,Fk〉 − 〈Y ,Fk〉|2 ≤ b0‖X − Y ‖2F .
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Next Results
Lipschitz inversion of α and β on Quantum States

Consider the measurement map

β : (Str (H), d1)→ (Rm, ‖ · ‖2) , β(T ) = (tr(TFk))1≤k≤m

where Str (H) = {T = T ∗ ≥ 0 , tr(T ) = 1 , rank(T ) ≤ r}.
If r = n := dim(H) then Stn(H) = St(H) is a compact convex set, hence
a Lipschitz retract.
Conjecture: If r < n then Str (H) is not contractible hence not a Lipschitz
retract.

If conjecture is true, it follows that even if β is injective on rank r
quantum states, it cannot admit a Lipschitz (or even continuous) left
inverse defined globally on Rm.
A similar result should hold true for

α : (Str (H),D2)→ (Rm, ‖ · ‖2) , α(T ) = (
√

tr(TFk))1≤k≤m.
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