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Overview
In this talk, we discuss Euclidean embeddings of metric spaces induced by
actions of the permutation group Sn on a linear space V .
Let Π ∈ Sn, X ∈ Rn×d and A = AT ∈ Rn×n. Family of actions:

1 V = Rn×d , X 7→ ΠX
2 V = Sym(n), A 7→ ΠAΠT

3 V = Sym(n)× Rn×d , (A,X ) 7→ (ΠAΠT ,ΠX )
Problem: Construct (bi)Lipschitz embeddings of the metric space
V̂ = V / ∼ of co-orbits, α : V̂ → Rm.
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Similarity of Matrices

Consider two symmetric matrices A,B ∈ Sym(n). When are they
equivalent modulo an orthonormal change of coordinates?
Specificaly, is there an orthogonal matrix U ∈ O(n) so that B = UAUT ?

An elementary derivation in linear algebra shows that A O(n)∼ B if and only
if A and B have the same set of eigenvalues with exactly same
multiplicities.

But what about other groups G? For instance what about the group of
permutation matrices Sn?
Find necessary and sufficient conditions so that A Sn∼ B.
Recall:

Sn = {P ∈ O(n) : Pi ,j ∈ {0, 1}} = O(n)∩{W ∈ [0, 1]n×n : W 1 = 1,W T 1 = 1}
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The Graph Isomorphism Problem

Consider two graphs G = (V, E) and G̃ = (Ṽ, Ẽ) with n nodes. The graph
isomorphism problem is the computational problem of determining
whether these graphs are identical after a relabeling of nodes.

If A and Ã denote their adjacency matrices, these graphs are isomorphic if
and only if Ã = ΠAΠT for some permutation matrix Π ∈ Sn.

Current state-of-the-art (Wikipedia): Babai (2015,2017) presented a
quasi-polynomial algorithm with running time 2O((log n)c ), for some fixed
c > 0. Helfgott (2017) claims that one can take c = 3.

Similar problem can be stated for weighted graphs: A, Ã ∈ Sym(n) with
nonnegative entries, isomorphic if and only if Ã = ΠAΠT for some Π ∈ Sn.
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Graph Alignment Problems

Consider two n× n symmetric matrices A,B. In the alignment problem for
quadratic forms one seeks an orthogonal matrix U ∈ O(n) that minimizes

‖UAUT −B‖2
F := trace((UAUT −B)2) = ‖A‖2

F +‖B‖2
F −2trace(UAUT B).

The solution is well-known and depends on the eigendecomposition of
matrices A,B: if A = U1D1UT

1 , B = U2D2UT
2 then

Uopt = U2UT
1 , ‖UoptAUT

opt − B‖2
F =

n∑
k=1
|λk − µk |2,

where D1 = diag(λk) and D2 = diag(µk) are diagonal matrices with
eigenvalues ordered monotonically.
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Quadratic Assignment Problem

The challenging case is when U is constrained to the permutation group as
is the case in the graph matching problem. In this case, the optimization
problem becomes

min
U∈Sn

‖UAUT − B‖F

turns into a QAP:
max
U∈Sn

trace(UAUT B).

This is equivalent to computing the natural distance
d(Â, B̂) = minP,Q∈Sn ‖PAPT − QBQT‖F between the equivalence classes
Â, B̂ ∈ Ŝym(n) induced by the group action Sn × Sym(n)→ Sym(n),
(Π,A) 7→ ΠAΠT .
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Graph Learning Problems

Given a data graph (e.g., social network, transportation network, citation
network, chemical network, protein network, biological networks):

Graph adjacency or weight matrix, A ∈ Rn×n;
Data matrix, X ∈ Rn×d , where each row corresponds to a feature
vector per node.

Contruct a map f : (A,X )→ f (A,X ) that performs:
1 classification: f (A,X ) ∈ {1, 2, · · · , c}
2 regression/prediction: f (A,X ) ∈ R.

Key observation: The outcome should be invariant to vertex permutation:
f (PAPT ,PX ) = f (A,X ), for every P ∈ Sn.
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Graph Convolutive Networks (GCN), Graph Neural
Networks (GNN)

General architecture of a GCN/GNN

GCN (Kipf and Welling (’16)) choses Ã = I + A; GNN (Scarselli et.al.
(’08), Bronstein et.al. (’16)) choses Ã = pl (A), a polynomial in adjacency
matrix. L-layer GNN has parameters (p1,W1,B1, · · · , pL,WL,BL).

Note the covariance (or, equivariance) property: for any P ∈ O(n)
(including Sn), if (A,X ) 7→ (PAPT ,PX ) and Bi 7→ PBi then Y 7→ PY .
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Deep Learning with GCN
The approach for the two learning tasks (classification or regression) is
based on the following scheme (see also Maron et.al. (‘19)):

where α is a permutation invariant map (extractor), and SVM/NN is a
single-layer or a deep neural network (Support Vector Machine or a Fully
Connected Neural Network) trained on invariant representations.
The purpose of this talk is to analyze the α component.
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The metric space V̂ when V = Rn×d

Recall the equivalence relation ∼ on V = Rn×d induced by the group of
permutation matrices Sn acting on V by left multiplication: for any
X ,X ′ ∈ Rn×d ,

X ∼ X ′ ⇔ X ′ = PX , for some P ∈ Sn

Let R̂n×d = Rn×d/ ∼ be the quotient space endowed with the natural
distance induced by Frobenius norm ‖ · ‖F

d(X̂1, X̂2) = min
P∈Sn

‖X1 − PX2‖F , X̂1, X̂2 ∈ R̂n×d .

The computation of the minimum distance is performed by solving the
Linear Assignment Problem (LAP) whose convex relaxation is exact:

max
P∈Sn

trace(PX2X T
1 ) = max

W∈DS(n)
trace(WX2X T

1 )

where DS(n) = {W ∈ [0, 1]n×n : W 1 = 1,W T 1 = 1} is the convex set of
doubly stochastic matrices.
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The embedding problem

Problem 1: Construct a Lipschitz embedding α̂ : R̂n×d → Rm, i.e., an
integer m = m(n, d), a map α : Rn×d → Rm and a constant L = L(α) > 0
so that for any X ,X ′ ∈ Rn×d ,

1 If X ∼ X ′ then α(X ) = α(X ′).
2 If α(X ) = α(X ′) then X ∼ X ′.
3 ‖α(X )− α(X ′)‖2 ≤ L · d(X̂ , X̂ ′) = L minP∈Sn ‖X − PX ′‖F .

Problem 2: Construct a bi-Lipschitz embedding, i.e., in addition to
conditions 1-3 α should satisfy also

4 ∃a > 0 ∀X ,X ′ ∈ Rn×d , a · d(X̂ , X̂ ′) ≤ ‖α(X )− α(X ′)‖2.
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The Universal Embedding

Consider the map

µ : R̂n×d → P(Rd ) , µ(X )(x) = 1
n

n∑
k=1

δ(x − xk)

where P(Rd ) denotes the convex set of probability measures over Rd , and
δ denotes the Dirac measure.
Clearly µ(X ′) = µ(X ) iff X ′ = PX for some P ∈ Sn.

Main drawback: P(Rd ) is infinite dimensional!
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Finite Dimensional Embeddings
Architectures

Two classes of extractors [Zaheer et.al.17’ -’Deep Sets’]:
1 Pooling Map – based on Max pooling
2 Readout Map – based on Sum pooling

Intuition in the case d = 1:
Max pooling:

↓: Rn → Rn , ↓ (x) = x↓ := (xπ(k))n
k=1 , xπ(1) ≥ xπ(2) ≥ · · · ≥ xπ(n)

Sum pooling:
σ : Rn → Rn , σ(x) = (yk)n

k=1 , yk =
n∑

j=1
ν(ak , xj)

where kernel ν : R× R→ R, e.g. ν(a, t) = e−(a−t)2 , or ν(a = k, t) = tk .
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Pooling Mapping Approach
Fix a matrix R ∈ Rd×D. Consider the map:

Λ : Rn×d → Rn×D ≡ RnD , Λ(X ) =↓ (XR)

where ↓ acts columnwise (reorders monotonically decreasing each column).
Since Λ(ΠX ) = Λ(X ), then Λ : R̂n×d → Rn×D. Let R = [r1, · · · , rD].

Theorem
The map Λ is Lipschitz with Lipschitz constant L =

∑d
k=1 ‖rk‖2, i.e.

‖ ↓ (XR)− ↓ (YR)‖2 ≤ L min
Π∈Sn

‖X − ΠY ‖2

Proof For any Π ∈ Sn,

‖↓(XR)−↓(YR)‖≤
d∑

k=1
‖↓(Xrk )−↓(Yrk )‖≤

d∑
k=1

‖Xrk−ΠYrk‖≤
d∑

k=1
‖rk‖2‖X−ΠY ‖

Take the minimum over Π and the result follows.
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Readout Mapping Approach
Kernel Sampling

Consider:

Φ : Rn×d → Rm , (Φ(X ))j =
n∑

k=1
ν(aj , xk) or (Φ(X ))j =

n∏
k=1

ν(aj , xk)

where ν : Rd × Rd → R is a kernel, and x1, · · · , xn denote the rows of
matrix X .
Known solutions: For m =∞, the measure-valued representation is
globally injective and stable. For m <∞, one can construct Lipschitz
embeddings of compacts.
The challenge is to construct ν so that: (1) the map is defined over entire
metric space; (2) the map is bi-Lipschitz.
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Readout Mapping Approach
The RKHS Point of View

Remark: If the kernel ν defines a Reproducing Kernel Hilberts Spaces
(RKHSs), and a spectral theorem is applicable (e.g., Mercer’s theorem)
then:

(Φ(X ))j =
∑
p≥1

σpfp(aj)gp(X )

This result suggests a tow-stage embedding:

X 7→ ξ = (gp(X ))p≥1 7→ Φ(X ) = Aξ.

Special case: when gp(X ) are monomials, then Φ(X ) is a family of
polynomials.
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Polynomial Expansions - Quadratics
In the case d = 1 recall Vieta’s formulas, Newton-Girard identities

P(X ) =
N∏

k=1
(X − xk)↔ (

∑
k

xk ,
∑

k
x2

k , ...,
∑

k
xn

k )

For d > 1, consider the quadratic d-variate polynomial:

P(Z1, · · · ,Zd ) =
n∏

k=1

(
(Z1 − xk,1)2 + · · ·+ (Zd − xk,d )2

)

=
2n∑

p1,...,pd =0
ap1,...,pd Z p1

1 · · ·Z
pd
d

Encoding complexity:

m =
(

2n + d
d

)
∼ (2n)d .
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Polynomial Expansions - Quadratics (2)

A more careful analysis of P(Z1, ...,Zd ) reveals a form:

P(Z1, ...,Zd ) = tn+Q1(Z1, ...,Zd )tn−1+· · ·+Qn−1(Z1, ...,Zd )t+Qn(Z1, ...,Zd )

where t = Z 2
1 + · · ·+ Z 2

d and each Qk(Z1, ...,Zd ) ∈ Rk [Z1, ...,Zd ] is a
(non-homogeneous) polynomial of degree k. Hence one needs to encode:

m =
(

d + 1
1

)
+
(

d + 2
2

)
+ · · ·+

(
d + n

n

)
=
(

d + n + 1
n

)
− 1

number of coefficients.
A significant drawback: Inversion is numerically unstable and embedding is
not Lipschitz.
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Readout Mapping Approach
Polynomial Expansion - Linear Forms

A stable embedding can be constructed as follows (see also Gobels’
algorithm (1996) or [Derksen, Kemper ’02]).
Consider the n linear forms λk(Z1, ...,Zd ) = xk,1Z1 + · · · xk,d Zd . Construct
the polynomial in variable t with coefficients in R[Z1, ...,Zd ]:

P(t) =
n∏

k=1
(t−λk(Z1, ...,Zd )) = tn−e1(Z1, ..,Zd )tn−1+· · · (−1)nen(Z1, ...,Zd )

= tn +
∑

p0, p1, · · · , pd ≥ 0
p0 + p1 + · · ·+ pd = n , p0 < n

cp0,p1,···,pd tp0Z p1
1 · · ·Z

pd
d

The elementary symmetric polynomials (e1, ..., en) are in 1-1
correspondence (Newton-Girard theorem) with the moments:
µp =

∑n
k=1 λ

p
k(Z1, ...,Zd ), 1 ≤ p ≤ n.
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Polynomial Expansions - Linear Forms (2)

Each µp is a homogeneous polynomial of degree p in d variables. Hence to

encode each of them one needs
(

d + p − 1
p

)
coefficients. Hence the

embedding dimension is

m0 =
(

d
1

)
+
(

d + 1
2

)
+ · · ·+

(
d + n − 1

n

)
=
(

d + n
n

)
− 1

The map α0 : Rn×d → Rm0 , X 7→ (cp0,p1,···,pd )p0,p1,···,pd is injective modulo
Sn but it is not Lipschitz. However a simple modification as suggested by
Cahill et.al. (‘19) makes it Lipschitz.
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Polynomial Lipschitz embedding
Denote by L0 the Lipschitz constant of α0 when restricted to the closed
unit ball B1(Rn×d ) : {X ∈ Rn×d , ‖X‖ ≤ 1} of Rn×d , i.e.
‖α0(X )−α0(Y )‖ ≤ L0‖X −Y ‖ for any X ,Y ∈ Rn×d with ‖X‖, ‖Y ‖ ≤ 1.
Let ϕ0 : R→ [0, 1], ϕ0(x) = min(1, 1

x ) be a Lipschitz monotone
decreasing function with Lipschitz constant 1.

Theorem
The map:

α1 : Rn×d → Rm , α1(X ) =
(

α0

(
ϕ0(‖X‖)X

)
‖X‖

)
,

with m =
(

n + d
d

)
= m0 + 1 lifts to an injective and globally Lipschitz

map α̂1 : R̂n×d → Rm with Lipschitz constant Lip(α̂1) ≤
√

1 + L2
0.
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Minimality

For d = 1, m = n which is minimal.

For d = 2, m = n2+3n
2 . Is this minimal?

Radu Balan (UMD) Permutation Invariant Embeddings 05/18/2021



Motivation V = Rn×d Polynomials Sorting V = Sym(n) Numerics

Algebraic Embedding
Encoding using Complex Roots

Idea: Consider the case d = 2. Then each x1, · · · , xn ∈ R2 can be replaced
by n complex numbers z1, · · · , zn ∈ C, zk = xk,1 + ixk,2.
Consider the complex polynomial:

Q(z) =
n∏

k=1
(z − zk) = zn +

n∑
k=1

σkzn−k

which requires n complex numbers, or 2n real numbers.

Open problem: Can this construction be extended to d ≥ 3?
Remark: A drawback of polynomial (algebraic) embeddings: [Cahill’19]
showed that polynomial embeddings of translation invariant spaces cannot
be bi-Lipschitz.

Radu Balan (UMD) Permutation Invariant Embeddings 05/18/2021



Motivation V = Rn×d Polynomials Sorting V = Sym(n) Numerics

Algebraic Embedding
Encoding using Complex Roots

Idea: Consider the case d = 2. Then each x1, · · · , xn ∈ R2 can be replaced
by n complex numbers z1, · · · , zn ∈ C, zk = xk,1 + ixk,2.
Consider the complex polynomial:

Q(z) =
n∏

k=1
(z − zk) = zn +

n∑
k=1

σkzn−k

which requires n complex numbers, or 2n real numbers.

Open problem: Can this construction be extended to d ≥ 3?
Remark: A drawback of polynomial (algebraic) embeddings: [Cahill’19]
showed that polynomial embeddings of translation invariant spaces cannot
be bi-Lipschitz.

Radu Balan (UMD) Permutation Invariant Embeddings 05/18/2021



Motivation V = Rn×d Polynomials Sorting V = Sym(n) Numerics

Table of Contents

1 Motivation

2 Embeddings of V̂ for V = Rn×d

3 Polynomial Embeddings

4 Sorting based Embeddings

5 Towards Embeddings of V̂ for V = Sym(n)

6 Numerical Examples

Radu Balan (UMD) Permutation Invariant Embeddings 05/18/2021



Motivation V = Rn×d Polynomials Sorting V = Sym(n) Numerics

The Embedding Problem
Notations

Recall the equivalence relation, for X ,Y ∈ Rn×d ,

X ∼ Y ⇔ ∃Π ∈ Sn , Y = ΠX

that induces a quotient space R̂n×d = Rn×d/ ∼ and the natural distance

d : R̂n×d × R̂n×d → R , d(X ,Y ) = min
Π∈Sn

‖X − ΠY ‖F

In the following we look for an Euclidean embedding of the form

α : R̂n×d → Rn×D , α(X ) =
[
↓ (X ) , ↓ (XA)

]
where ↓ (·) sorts decreasingly each column of ·, independently.
The matrix R = [Id A] ∈ Rd×D is called the key of encoder α.
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The Embedding Problem
Notations (2)

Definition
Fix X ∈ Rn×d . A matrix A ∈ Rd×D is called admissible for X if
α−1(α(X )) = X̂ . In other words, if Y ∈ Rn×d so that ↓ (XA) =↓ (YA)
then there is Π ∈ Sn sot that Y = ΠX.

We denote by Ad ,D(X ) (or A(X )) the set of admissible keys for X .

Definition
Fix A ∈ Rd×D. A data matrix X ∈ Rn×d is said separated by A if
A ∈ A(X ).

We let S(A) denote the set of data matrices separated by A.
A key A is said universal if S(A) = Rn×d .
The Problem: Design universal keys.
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Max pooling is isometric embedding when d = 1

Proposition
In the case d = 1, ↓: R̂n → Rn, x̂ 7→↓ (x) is an isometric embedding:

‖ ↓ (x)− ↓ (y)‖ = min
Π∈Sn

‖x − Πy‖ , for all x , y ∈ Rn.

Proof
Claim is equivalent to: minΠ∈Sn ‖x − Πy‖ = ‖x↓ − y↓‖.
First note:

min
Π∈Sn

‖x − Πy‖ = min
Π∈Sn

‖x↓ − Πy↓‖ ≤ ‖x↓ − y↓‖

Hence ↓ is Lipschitz with constant 1.

WLOG: Assume x = x↓, y = y↓. Then
argminΠ∈Sn‖x − Πy‖ = argminΠ∈Sn‖x − xn · 1− Π(y − yn · 1)‖

Therefore assume xn = yn = 0 and x , y ≥ 0. The conclusion follows by
induction over n.
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Genericity Results for d ≥ 2
Admissible keys

Theorem
Let X ∈ Rn×d . For any D ≥ d + 1 the set Ad ,D(X ) of admissible keys for
X is dense in Rd×D with respect to Euclidean topology, and it is generic
with respect to Zariski topology. In particular, Rd×D \ Ad ,D(X ) has
Lebesgue measure 0, i.e., almost every key is admissible for X.

Proof
It is sufficient to consider the case D = d + 1. Also, it is sufficient to
analyze the case A = [Id b] and to show that a generic b ∈ Rd defines an
admissible key. The vector b ∈ Rd does not define an admissible key if
there are Ξ,Π1, · · · ,Πd ∈ Sn so that for Y = [Π1x1, · · · ,Πd xd ],

Yb = ΞXb but Y − ΠX 6= 0 , ∀Π ∈ Sn

Define the linear operator
B(Ξ; Π1, · · · ,Πd ) : Rd → Rn , B(Ξ; Π1, · · · ,Πd )b = ΞXb−[Π1x1, · · · ,Πd xd ]bRadu Balan (UMD) Permutation Invariant Embeddings 05/18/2021
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Genericity Results for d ≥ 2
Admissible keys

Proof - cont’d
Let

P =
{

(Π1, · · · ,Πd ) ∈ (Sn)d ∀Π ∈ Sn, ∃k ∈ [d ] s.t. (Π− Πk)xk 6= 0
}

Then

{b ∈ Rd : [Id b] not admissible for X} =
⋃

(Ξ;Π1,···,Πd )∈Sn×P
ker(B(Ξ; Π1, · · · ,Πd ))

It is now sufficient to show that each null space has dimension less than d .
Indeed, the alternative would mean B(Ξ; Π1, · · · ,Πd ) = 0 but this would
imply (Π1, · · · ,Πd ) 6∈ P. �
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Non-Universality of vector keys
Insufficiency of a single vector key

The following is a no-go result, which shows that there is no universal
single vector key for data matrices tall enough.

Proposition
If d ≥ 2 and n ≥ 3,⋃

X∈Rn×d

{b ∈ Rd : A = [Id b] not admissible forX} = Rd .

Consequently, ⋂
X∈Rn×d

Ad ,d+1(X ) = ∅.

On the other hand, for n = 2, d = 2, any vector b ∈ R2 with b1b2 6= 0
defines a universal key A = [I2 b].
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Non-Universality of vector keys
Insufficiency of a single vector key - cont’d

Proof
To show the result, it is sufficient to consider a counterexample for n = 3,
d = 2, with key b = [1, 1]T .

X =

 1 −1
−1 0
0 1

 , Y =

 1 0
−1 1
0 −1


Then Xb = [0,−1, 1]T and Yb = [1, 0,−1]T , yet X 6∼ Y . Thus [I2 b] is
not admissible for X .
Then note if a ∈ Rd so that [Id a] is admissible for X then for any P ∈ Sd
and L an invertible d × d diagonal matrix, L−1PT A ∈ Ad ,1(XPL). This
shows how for any b ∈ R2, one can construct X ∈ R3×2 so that
b 6∈ A2,1(X ).
For n > 3 or d > 2, proof follows by embedding this example.
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Genericity Results for d ≥ 2
Admissible Data Matrices

Theorem
Assume a ∈ Rd is a vector with non-vanishing entries, i.e., a1a2 · · · ad 6= 0.
Then for any n ≥ 1, S([Id a]) is dense in Rn×d and includes an open dense
set with respect to Zariski topology. In particular, Rn×d \ S([Id a]) has
Lebesgue measure 0, i.e., almost every data matrix X is separated by the
vector key a.

Corollary
Assume A ∈ Rd×(D−d) is a matrix such that at least one column has
non-vanishing entries. Then for any n ≥ 1, S([Id A]) is dense in Rn×d and
is generic with respect to Zariski topology. In particular, Rn×d \ S([Id A])
has Lebesgue measure 0, i.e., almost every data matrix X is separated by
the matrix key [Id A].
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Proof that S([Id A]) is generic
The case D > d

Assume A ∈ Rd×(D−d) satisfies A1,kA2,k · · ·Ad ,k 6= 0 for some
k ∈ [D − d ]. The set of non-separated data matrices X ∈ Rn×d (i.e., the
complement of S([Id A])) factors as follows:

Rn×d\S([Id A]) =
⋃

(Ξ1,···,ΞD−d ;Π1,···,Πd )∈(Sn)D

(ker L(Ξ1, · · · ,ΞD−d ; Π1, · · · ,Πd ; A)\

\
⋃

Π∈Sn

ker M(Π,Π1, · · · ,Πd )

 (∗)

where, with A = [a1, · · · , aD−d ], X = [x1, · · · , xd ]:

L(Ξ1,···,ΞD−d ;Π1,···,Πd ;A):Rn×d→Rn×D−d , (L((...)X)k =[(Ξk−Π1)x1,···,(Ξk−Πd )xd ]ak , k∈[D−d]

M(Π,Π1,···,Πd ):Rn×d→Rn×d , M(Π,Π1,···,Πd )X=[(Π−Π1)x1,···,(Π−Πd )xd ]
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Proof that S(A) is generic
cont’d

1. The outer union can be reduced by noting that on the ”diagonal” ∆,

∆ = {(Ξ1, · · · ,ΞD−d ; Π1, · · · ,Πd ) ∈ (Sn)D , Π1 = Π2 = · · · = Πd}

M(Π1,Π1, · · · ,Πd ) = 0→
⋃

Π∈Sn

ker M(Π,Π1, · · · ,Πd ) = Rn×d

2. If (Ξ1, · · · ,ΞD−d ; Π1, · · · ,Πd ) ∈ (Sn)D \∆ then for every k ∈ [D − d ]
there is j ∈ [d ] such that Ξk − Πj 6= 0. In particular choose the k column
of A that is non-vanishing. Let xj ∈ Rn so that (Ξk − Πj)xj 6= 0. Consider
the matrix X = [0, · · · , 0, xj , 0, · · · , 0] where xj is the only non identically 0
column. Claim: X 6∈ ker L(Ξ1, ...,Πd ; A). Indeed, the resulting k column
of L()X is Aj,k(Ξk − Πj)xj 6= 0. It follows that

dim ker L(Ξ1, · · · ,ΞD−d ; Π1, · · · ,Πd ; A) < nd

Hence Rn×d \ S([Id A]) is a finite union of subsets of closed linear spaces
properly included in Rn×d . This proves the theorem. �
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Additional Relations

Note the following relationship and matrix representation of X when
matrices are column-stacked:

M(Π,Π1, · · · ,Πd ) = L(Π, · · · ,Π; Π1, · · · ,Πd ; I)

L ≡


A1,1(Ξ1 − Π1) A2,1(Ξ1 − Π2) · · · Ad ,1(Ξ1 − Πd )
A1,2(Ξ2 − Π1) A2,2(Ξ2 − Π2) · · · Ad ,2(Ξ2 − Πd )

...
... . . . ...

A1,D−d (ΞD−d − Π1) A2,D−d (ΞD−d − Π2) · · · Ad ,D−d (ΞD−d − Πd )


a n(D − d)× nd matrix.
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Universal keys

Theorem

Consider the metric space (R̂n×d , d).
There exists a bi-Lipschitz map

β̂ : R̂n×d → Rn×D ∼ Rm

with D = 1 + (d − 1)n! and m = (1 + (d − 1)n!)n. This map is given
explicitly by β̂(X̂ ) =↓ (XA) for any A ∈ Rd×(1+(d−1)n!) whose columns
form a full spark frame, and where ↓ acts column-wise.
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Towards universal keys

Relation (*) from the proof of previous theorem provides an algorithm to
check if a matrix A is a universal key. It is likely that if a universal key
exists for a triple (n, d ,D) then universal keys are generic in Rd×(D−d).
Open Problem: Given (n, d) find the smallest dimension D (or D − d) so
that there exists a universal key A ∈ Rd×(D−d) for Rn×d .
So far we obtained:

n d D-d
2 2 1
3 2 2
4 2 2
5 2 ?
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The metric space Ŝym(n)
The real vector space V = Sym(n) = {A = AT ∈ Rn×n} is of dimension
N = n(n+1)

2 . The permutation group Sn acts on V by the similarity
transformation (P,A) ∈ Sn × Sym(n) 7→ PAPT . The metric space
Ŝym(n) = Sym(n)/ ∼ of equivalence classes admits the natural metric:

d(Â, B̂) = min
P∈Sn

‖A− PBPT‖F

induuced by the Frobenius norm ‖ · ‖F .
Problem: Construct a (bi)Lipschitz map β̂ : (Ŝym(n), d)→ Rm.
Specifically, construct β : Sym(n)→ Rm, a0, b0 > 0 so that for any
A,B ∈ Sym(n):

1 Â = B̂ if and only if β(A) = β(B);
2 a0d(Â, B̂) ≤ ‖β(A)− β(B)‖2 ≤ b0d(Â, B̂)

Then β̂(Â) = β(A) and β̂ lifts β to Ŝym(n).
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The group representation point of view

The same action can be viewed as a representation of a subgroup of SN
acting on RN where N = n(n + 1)/2. Specifically, let i : Sym(n)→ RN

and j : Sym(n)→ Rn2 be the linear maps:

i(A) = (A1,1, · · · ,An,n,A1,2, · · · ,A1,n,A2,3, · · · ,A2,n, · · · ,An−1,n)T

j(A) = vect(A) = (A1,1, · · · ,An,1,A1,2, · · · ,An,2, · · · ,A1,n, · · · ,An,n)T

Note i is an isomorphism, whereas j is injective but not surjective. Let
E = Ran(j) ⊂ Rn2 ∼ RN .
The action A 7→ PAPT is implemented by the linear map LP : Rn2 → Rn2 ,
LP(ξ) = (P ⊗ P)ξ. Each subspace E is invariant to the action of LP . This
invariance induces a pull-back TP : RN → RN which remains a
permutation matrix on RN . Thus we obtain a linear representation of Sn
seen as a subgroup of SN acting on RN , via (Π, v) 7→ TPv .
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Polynomial Invariants

Based on joint work with Efstratios Tsukanis.

The main task is to find a characterization of the algebra of invariant
symmetric polynomials in n2 variables A = R[X1,1, · · · ,Xn,n]Sn . For
easiness of notation, we shall collect into a matrix denoted by A the n2

variables of these polynomials. Thus we are interested in finding
polynomials Q(A) in entries of A that satisfy:

1 Q(A) = Q(AT ) for all A ∈ Rn×n;
2 Q(ΠAΠT ) = Q(A) for all Π ∈ Sn.

The algebra A is graded: A = ⊕d≥0Hd , where each Hd denotes the vector
space of homogeneous polynomials of degree d in A.

Radu Balan (UMD) Permutation Invariant Embeddings 05/18/2021



Motivation V = Rn×d Polynomials Sorting V = Sym(n) Numerics

Polynomial Invariants (2)
An homogeneous polynomial of degree d in entries of A can be compactly
written as Q(A) = trace(W · (A⊗ A⊗ · · · ⊗ A)) for some W ∈ Rnd×nd .
Each invariant symmetric polynomial Q ∈ Hd should satisfy:

W T = W , W (Π⊗ · · · ⊗ Π) = (Π⊗ · · · ⊗ Π)W , ∀Π ∈ Sn

Thus Hd can be identified with the self-adjoint elements of the commutant
of the algebra generated by {Π⊗d , Π ∈ Sn}. Let Cd = {Π⊗d , Π ∈ Sn}′
denote this commutant.
Proposition (see also Schneider et.al (‘17))
For d = 1, dim C1 = 2 with a basis provided by W1 = In and W2 = 11T .
Thus dim H1 = 2 and a basis is provided by:

Q1(A) = trace(A) =
∑

i
Ai ,i , Q2(A) = 1T A1 =

∑
i ,j

Ai ,j
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Polynomial Invariants (3)

Let D = diag(A · 1) be the diagonal matrix that collects the row-sums of
A. Note the graph Laplacian is defined as ∆ = D − A, and, if A′ = ΠAΠT

then D′ = ΠDΠT . This covariance property provides us with a large class
of invariant symmetric polynomials:

Qp1,q1,p2,q2,···,pL,qL(A) = trace (Ap1Dq1Ap2Dq2 · · ·ApLDqL) .

With this notation, the previous basis for H1 is provided by {Q1,0,Q0,1}.

A plausible conjecture: The system Qp1,q1,p2,q2,···,pL,qL defines a complete
system of invariant polynomials.

However this is not true: for d = 2 we obtained dim H2 = 7, whereas only
3 generators are of this form {Q2,0,Q1,1,Q0,2}.
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The Protein Dataset

This section is based on joint work with Naveed Haghani and Maneesh
Singh.

Protein Dataset: selection of 450 enzymes and 450 non-enzymes out of
1113 proteins. Each graph associated to one protein: nodes represent
amino acids and edges represent the bonds between them. Number of
nodes: varying between 10 and capped at 50.
Task: the task is classification of each protein into enzyme or non-enzyme.
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The Deep Network Architecture
Architecture: ReLU activation and

GCN with L = 3 layers and 29 input feature vectors, and 50 hidden
nodes in each layer; no dropouts, no batch normalization. output of
GCN: d = 1, 10, 100.
Mid-layer component: α
Fully connected NN with dense 3-layers and 150 internal units; no
dropouts, with batch normalization.
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The Network

Training has been done over 3000 epochs with a batch size of 100. Loss
function: cross-entropy.
The following 5 α blocks have been tested:

1 Identity: α(X ) = X ; no permutation invariance.
2 Identity × 5: α(X ) = X BUT the training data set has been

augmented with 4 random permutatons of each graph.
3 ordering: α(X ) =↓ (XA), A = [I 1]
4 kernels: α(X ) = (

∑n
k=1 exp(−‖xk − aj‖2/σ2

j ))1≤j≤m=nd

5 sumpooling: α(X ) = 1T X
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Enzyme Classification Example
Training Loss: X Entropy
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Enzyme Classification Example
Training Accuracy
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Enzyme Classification Example
Validation Accuracy
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Enzyme Classification Example
Validation Accuracy with Random Permutations
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The QM9 Dataset

Dataset: Consists of 134,000 isomers of organic molecules made up of
CHONF, each containing 10-29 atoms. see
http://quantum-machine.org/datasets/ Nodes corresponds to atoms; each
feature vector containins geometry (x,y,z coordinates), partial charge per
atom (Mulliken charge), and atom type.
Task: the task is regression: predict a physical feature (electron energy
gap) computed for each molecule.
Architecture: ReLU activation and

GCN with L = 3 layers and 50 hidden nodes in each layer; no
dropouts, no batch normalization; zero padding to m = 29 number of
rows. output of GCN: d = 1, 10, 100.
Mid-layer component: α
Fully connected NN with dense 3-layers and 150 internal units in each
of the two hidden layers; no dropouts, with batch normalization.
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The Network

Training has been done over 3000 epochs with a batch size of 100. Loss
function: Mean-Square Error (MSE).
The following 5 α blocks have been tested:

1 Identity: α(X ) = X ; no permutation invariance.
2 Identity × 5: α(X ) = X BUT the training data set has been

augmented with 4 random permutatons of each graph.
3 ordering: α(X ) =↓ (XA), A = [I 1]
4 kernels: α(X ) = (

∑n
k=1 exp(−‖xk − aj‖2/σ2

j ))1≤j≤m=nd

5 sumpooling: α(X ) = 1T X
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QM9 Regression Example
Training MSE
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QM9 Regression Example
Validation MSE
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QM9 Regression Example
Validation MSE with Random Permutations
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Thank you!
Questions?
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