Neural Network Inspired Data Feature Extraction (DO-14)

Wojciech Czaja, Radu Balan, Pierre-Emmanuel Jabin

Department of Mathematics, CSCAMM and NWC University of Maryland, College Park, MD

LTSPoC: Steve Boerner

January 7, 2020 LTS Annual Review Meeting

Collaborators:

Naveed Haghani (UMD) Maneesh Singh (Versik) Dongmian Zou (UMD, IMA)

▲口> ▲圖> ▲理> ▲理> 三理

Problem

Outcome of this project: D.Zou, R. Balan, M. Singh, *On Lipschitz Bounds of General Convolutional Neural Networks*, IEEE Trans. Info. Theory, to appear in 2020.

Problem: Estimate the Lipschitz constant of a Deep Convolutive Network.

Types of Lipschitz Constants (LC) for a M-layer Deep Network Φ , $y = \Phi(x)$:

$$L^{2} = \sup_{x_{1} \neq x_{2}} \frac{\|y_{2} - y_{1}\|_{2}^{2}}{\|x_{2} - x_{1}\|_{2}^{2}}$$

Analytical estimate using a Linear Program:

$$L_c^2 \approx \prod_{k=1}^M \sigma_{max}^2(A_k)$$

3 Local LC:

$$Lip(x)^{2} = \lim_{r \to 0} \sup_{x_{2}: ||x_{2}-x||_{2} < r} \frac{||y_{2}-y||_{2}^{2}}{||x_{2}-x||_{2}^{2}}$$

Impirical LC:

$$L_{emp} = \sup_{x_1 \neq x_2; \ x_1, x_2 \in DataBase} \frac{\|y_2 - y_1\|_2^2}{\|x_2 - x_1\|_2^2}$$

Lipschitz Analysis of Deep Networks

Results Findings - 1

• Computation of Local Lipschitz bound and relationship with the global bound, for DNN with ReLU activation map:

$$Lip(x) = \sigma_{max} \left(\prod_{k=1}^{M} D_k(x) T_k \right) \quad L = \max_{\|x\| \le R} Lip(x)$$

Q Numerical values for AlexNet on ImageNet database:

Method	Lip const
Analytical estimate <i>L_c</i> : compute Bessel bounds and solve a linear program	$2.51 imes 10^3$
Empirical bound <i>L_{emp}</i> : take quotient from pairs of samples	7.32×10^{-3}
Numerical approximation <i>L</i> : compute local Lipschitz constants and take the maximum	1.44

Lipschitz Analysis of Deep Networks

Results Findings - 2

Obscrepancy between L and L_{emp} We introduce and compute an effective Jacobian J_{eff} that accounts for mid-range interactions:

$$J(x) = P_M D_M T_M \cdots P_2 D_2 T_2 P_1 D_1 T_1$$
$$J_{eff} = \mathbb{E}[P_M] \mathbb{E}[D_M] T_M \cdots \mathbb{E}[P_1] \mathbb{E}[D_1] T_1 = \frac{p_1 \cdots p_M}{\tau^m} A_M \cdots A_1$$
Then: $L_{eff} = \sigma_{max}(J_{eff})$. For AlexNet, the number of layers $M = 5$, the Pool Tile Size $\tau = 9$ and the number of Pooling Layers $m = 3$.
Experimentally over 10,000 pairs we obtained:

 $p_1 = 0.4115$, $p_2 = 0.3184$, $p_3 = 0.3587$, $p_4 = 0.2733$, $p_5 = 0.1943$ The estimated effective Lipschitz constant:

$$L_{eff} = 1.78 \cdot 10^{-2}$$

which is about twice the emprirical constant $7.32 \cdot 10^{-3}$.

Next Steps

Open questions and future steps:

- How to speed up the computation of the effective Jacobian?
- 2 Adaptive/On-line algorithm for tunable deep networks
- Observation How to use this estimate as a constraint or a penalty in learning deep networks?
- Onnections with the Fisher Information Matrix and the mean-field theory.