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Permutation Invariant Representations Optimizations using Deep Learning

Theory

Permutation Invariant induced Representations
Consider the equivalence relation ∼ on Rn×d indiced by the group of
permutation Sn: for any X ,X ′ ∈ Rn×d ,

X ∼ X ′ ⇔ X ′ = PX , for some P ∈ Sn

Let M = Rn×d/ ∼ be the quotient space endowed with the natural
distance induced by Frobenius norm ‖ · ‖F

d(X̂1, X̂2) = min
P∈Sn

‖X1 − PX2‖F , X̂1, X̂2 ∈M.

The Problem: Construct a Lipschitz embedding α̂ : M→ Rm, i.e., an
integer m = m(n, d), a map α : Rn×d → Rm and a constant L = L(α) > 0
so that for any X ,X ′ ∈ Rn×d ,

1 If X ∼ X ′ then α(X ) = α(X ′)
2 If α(X ) = α(X ′) then X ∼ X ′
3 ‖α(X )− α(X ′)‖2 ≤ L d(X̂ , X̂ ′)
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Theory

Motivation (1)
Graph Learning Problems

Consider data graphs such as: social networks, transportation networks,
citation networks, chemical networks, protein networks, biological
networks, etc. Each such network is modeled as a (weighted) graph
(V, E ,A) of n nodes, and a set of feature vectors {xT

1 , · · · , xT
n } ⊂ Rd that

form the matrix X =

 xT
1
...

xT
n

 ∈ Rn×d .

Two important problems involving a map f : (A,X )→ f (A,X ):
1 classification: f (A,X ) ∈ {1, 2, · · · , c}
2 regression/prediction: f (A,X ) ∈ R.

In each case we expect the task to be invariant to vertices permutation:
f (PAPT ,PX ) = f (A,X ), for every P ∈ Sn.
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Theory

Motivation (2)
Graph Convolutive Networks (GCN)

Kipf and Welling (’16) introduced a network structure that performs local
processing according to a modified adjacency matrix:

Ã = D−1/2(I + A)D−1/2, where A is the adjacency matrix, or the graph
weight matrix, D is the diagonal with vertex degrees; σ is the activation
map. An L-layer GCN has parameters (W1,B1, · · · ,WL,BL).

Assume Bi = PBi . Note the covariance property: for any P ∈ Sn,
(A,X ) 7→ (PAPT ,PX ) and Y 7→ PY .
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Theory

Motivation (3)
Deep Learning with GCN

The two learning tasks (classification or regression) can be solved by the
following scheme:

where Ext is a permutation invariant feature EXTractor, and SVM/NN is
a single-layer or a deep neural network (Support Vector Machine or a Fully
Connected Neural Network).
The purpose of this (part of the) talk is to analyze the Ext component.
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Theory

Motivation (4)
Enzyme Classification Example

Protein Dataset where task is classification into enzyme vs. non-enzyme.
Dataset: 450 enzymes and 450 non-enzymes.
Architecture (ReLU activation):

GCN with L = 3 layers and d = 25 feature vectors in each layer;
No Permutation Invariant Component: Ext = Identity
Fully connected NN with dense 3-layers and 120 internal units.
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Theory

The Measure Theoretic Embedding

First approach: Consider the map

µ : M→ P(Rd ) , µ(X )(x) = 1
n

n∑
k=1

δ(x − xk)

where P(Rd ) denotes the convex set of probability measures over Rd , and
δ denotes the Dirac measure.
Clearly µ(X ′) = µ(X ) iff X ′ = PX for some P ∈ Sn.

Main drawback: P(Rd ) is infinite dimensional!
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Theory

Finite Dimensional Embeddings
Architectures

Two classes of extractors:
1 Pooling Map – based on Max pooling
2 Readout Map – based on Sum pooling

Intuition in the case d = 1:
Max pooling:

λ : Rn → Rn , λ(x) = (xπ(k))n
k=1 , xπ(1) ≥ xπ(2) ≥ · · · ≥ xπ(n)

Sum pooling:
σ : Rn → Rn , σ(x) = (yk)n

k=1 , yk =
n∑

j=1
ν(ak , xj)

where kernel ν : R× R→ R, e.g. ν(a, t) = e−(a−t)2 , or ν(a = k, t) = tk .

Radu Balan (UMD) Rep and Opt 04/02/2019



Permutation Invariant Representations Optimizations using Deep Learning

Theory

Finite Dimensional Embeddings
Architectures

Two classes of extractors:
1 Pooling Map – based on Max pooling
2 Readout Map – based on Sum pooling

Intuition in the case d = 1:
Max pooling:

λ : Rn → Rn , λ(x) = (xπ(k))n
k=1 , xπ(1) ≥ xπ(2) ≥ · · · ≥ xπ(n)

Sum pooling:
σ : Rn → Rn , σ(x) = (yk)n

k=1 , yk =
n∑

j=1
ν(ak , xj)

where kernel ν : R× R→ R, e.g. ν(a, t) = e−(a−t)2 , or ν(a = k, t) = tk .

Radu Balan (UMD) Rep and Opt 04/02/2019



Permutation Invariant Representations Optimizations using Deep Learning

Theory

Finite Dimensional Embeddings
Architectures

Two classes of extractors:
1 Pooling Map – based on Max pooling
2 Readout Map – based on Sum pooling

Intuition in the case d = 1:
Max pooling:

λ : Rn → Rn , λ(x) = (xπ(k))n
k=1 , xπ(1) ≥ xπ(2) ≥ · · · ≥ xπ(n)

Sum pooling:
σ : Rn → Rn , σ(x) = (yk)n

k=1 , yk =
n∑

j=1
ν(ak , xj)

where kernel ν : R× R→ R, e.g. ν(a, t) = e−(a−t)2 , or ν(a = k, t) = tk .

Radu Balan (UMD) Rep and Opt 04/02/2019



Permutation Invariant Representations Optimizations using Deep Learning

Theory

Pooling Mapping Approach

Fix a matrix R ∈ Rd×D. Consider the map:

Λ : Rn×d → Rn×D ≡ RnD , Λ(X ) = λ(XR)

where λ acts columnwise (reorders monotonically decreasing each
column). Since Λ(ΠX ) = Λ(X ), then Λ : R̂n×d → Rn×D.

Theorem
For any matrix R ∈ Rd×(d+1) so that any d × d submatrix is invertible,
there is a subset Z ⊂ R̂n×d of zero measure so that
Λ : R̂n×d \ Z → Rn×(d+1) is faithful (i.e., injective).

No known tight bound yet as to the minimum D = D(n, d) so that there
is a matrix R so that Λ is faithful (injective).
However, due to local linearity, if Λ is faithful (injective), then it is stable.
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Numerical Results

Enzyme Classification Example
Extraction with the Hadamard Matrix

Protein Dataset where task is classification into enzyme vs. non-enzyme.
Dataset: 450 enzymes and 450 non-enzymes.
Architecture (ReLU activation):

GCN with L = 3 layers and d = 25 feature vectors in each layer;
Ext = Λ, Z = λ(YR) with R = [I Hadamard ]. D = 50, m = 50.
Fully connected NN with dense 3-layers and 120 internal units.
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Numerical Results

Readout Mapping Approach
Kernel Sampling

Consider:

Φ : Rn×d → Rm , (Φ(X ))j =
n∑

k=1
ν(aj , xk) or (Φ(X ))j =

n∏
k=1

ν(aj , xk)

where ν : Rd × Rd → R is a kernel, and x1, · · · , xn denote the rows of
matrix X .
Known solutions: If m =∞, then there exists a Φ that is globally faithful
(injective) and stable on compacts.
Interesting mathematical connexion: On compacts, some kernels ν define
Repreducing Kernel Hilberts Spaces (RKHSs) and yield a decomposition

(Φ(X ))j =
∑
p≥1

σpfp(aj)gp(X )
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Numerical Results

Enzyme Classification Example
Feature Extraction with Exponential Kernel Sampling

Protein Dataset where task is classification into enzyme vs. non-enzyme.
Dataset: 450 enzymes and 450 non-enzymes.
Architecture (ReLU activation):

GCN with L = 3 layers and d = 25 feature vectors in each layer;
Ext : Zj =

∑n
k=1 exp(−π‖yk − zj‖) with m = 120 and zj random.

Fully connected NN with dense 3-layers and 120 internal units.
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Numerical Results

Enzyme Classification Example
No Permutation Invariance, but Data Augmentation

Protein Dataset where task is classification into enzyme vs. non-enzyme.
Dataset: 450 enzymes and 450 non-enzymes. Data was augmented using
10 random permutation for each training dataset.
Architecture (ReLU activation):

GCN with L = 3 layers and d = 25 feature vectors in each layer;
No Permutation Invariant Component: Ext = Identity
Fully connected NN with dense 3-layers and 120 internal units.
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Numerical Results

Readout Mapping Approach
Polynomial Expansion - Quadratics

Another interpretation of the moments for d = 1: coefficients of linear
expansion

P(X ) = 1
n

n∑
k=1

(X − xk)n = Xn +
n∑

k=1
akXn−k

For d > 1, consider the quadratic d-variate polynomial:

P(Z1, · · · ,Zd ) =
n∏

k=1

(
(Z1 − xk(1))2 + · · ·+ (Zd − xk(d))2

)

=
2n∑

p1,...,pd =0
ap1,...,pd Zp1

1 · · ·Z
pd
d

Encoding complexity:

m = O
(

2n + d
d

)
∼ (2n)d .
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Numerical Results

Algebraic Embedding
Encoding using Complex Roots

Idea: Consider the case d = 2. Then each x1, · · · , xn ∈ R2 can be replaced
by n complex numbers z1, · · · , zn ∈ C, zk = xk(1) + ixk(2). Then consider
the complex polynomial:

Q(z) =
n∏

k=1
(z − zk) = zn +

n∑
k=1

σkzn−k

which requires n complex numbers, or 2n real numbers.

For d > 3 encode each combination of two columns of X ∈ Rn×d : Total
of d(d − 1)/2 combinations, each using 2n real numbers.

Encoding complexity: m = nd(d − 1)
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Constructions

Combinatorial Optimization Problems
Approach

Consider the class of combinatorial problems,
maximize J(Π; Input)
subject to:

Π ∈ Sn

where Input stands for a given set input data, and Sn denotes the
symmetric group of permutation matrices.
We analyze two specific objective functions:

1 Linear Assignment, J(Π; C) = trace(ΠCT )
2 Quadratic Assignment, J(Π; A,B) = trace(ΠAΠT B)

Idea: Use a two-step procedure:
1 Perform a latent representation of the Input Data using a Graph

Convolutive Network;
2 Apply a direct algorithm (e.g., a greedy-type algorithm) or solve a

convex optimization problem to obtain an estimate of the optimal Π.
Radu Balan (UMD) Rep and Opt 04/02/2019
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Constructions

The Linear Assignment Problem
Consider a N × R cost/reward matrix C = (Ci ,j)1≤i≤N,1≤j≤R of
non-negative entries associated to edge connections between two sets of
nodes, {x1, · · · , xN} and {y1, · · · , yR} with N ≥ R. The problem is to find
the minimum cost/maximum reward matching/assignment, namely:

minimize/maximize
∑N

i=1
∑R

j=1 πi ,jCi ,j = trace(ΠC̃T )
subject to:

πi ,j ∈ {0, 1} , ∀i , j∑N
i=1 πi ,j = 1 , ∀1 ≤ j ≤ R∑R
j=1 πi ,j ≤ 1 , ∀1 ≤ i ≤ N
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Constructions

Quadratic Assignment Problem

Consider two symmetric (and positive semidefinite) matrices A,B ∈ Rn×n.
The quadratic assignment problem asks for the solution of

maximize trace(ΠAΠT B)
subject to:

Π ∈ Sn

In turns this is equivalent to the minimization problem:

minimize ‖ΠA− BΠ‖2F
subject to:

Π ∈ Sn

In the case A,B are graph Laplacian, an efficient solution to this
optimization problem would solve the millenium problem of whether two
graphs are isomorphic.
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Constructions

Novel Approach: Optimization in a Latent Representation
Domain

Idea: Perform a two-step procedure: (1) perform a nonlinear representation
of the input data; (2) perform optimization in the representation space.

The nonlinear representation map Φ : Input Data 7→ Y is implemented
using a GCN.
The Optimization map Ψ : Y 7→ π̂ can be implemented using a specific
nonlinear map (e.g., greedy algorithm, or turning into stochastic matrix) or
by solving a convex optimization problem.
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Constructions

Graph Convolutive Networks (GCN)

Kipf and Welling introduced a network structure that performs local
processing according to a modified adjacency matrix:

Here Ã = I + A, where A is an input adjacency matrix, or graph weight
matrix. The L-layer GCN has parameters (W1,B1,W2,B2, · · · ,WL,BL).
As activation map σ we choose the ReLU (Rectified Linear Unit).
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Constructions

Linear Assignment Problems using GCN

The GCN design: Consider the GCN with N + R nodes, adjacency/weight

matrix A =
[

0 C
CT 0

]
and data matrix X =

[
ν(C(i , :))
ν(CT (j , :))

]
.

Key observation: When C = uvT , that is, when the cost matrix is rank
one then:

1 Objective Function: J(Π; C) = uT Πv = 〈Πv , u〉

2 GCN output when no bias (Bj = 0): Γ =
[

Γ1
Γ2

]
satisfies Γ1ΓT

2 = αC .

Consequence: the ”greedy” algorithm produces the optimal solution.

Network Objective: Once trained, the GCN produces a latent
representation Z = Γ1ΓT

2 close to the input cost matrix C so that the
greedy algorithm applied on Z produces the optimal solution.
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Constructions

Quadratic Assignment Problem using GCN
Preliminary result

The GCN Design: Consider the GCN with n nodes, adjacency/weight

matrix A =
[

0 AB
BA 0

]
and data matrix X =

[
A
B

]
.

Key observation: When A = uuT and B = vvT , that is, when the matrices
are rank one then:

1 Objective function: J(Π; A,B) = (uT Πv)2 = (〈Πv , u〉)2

2 GCN output when no bias ((Bj = 0): Γ =
[

Γ1
Γ2

]
satisfies

Γ1ΓT
2 ∼ uvT .

Consequence: the ”greedy” algorithm or the solution to the linear
assignment problem associated to uvT produces the optimal solution.
Network Objective: Once trained, the GCN produces a latent
representation Z = Γ1ΓT

2 so that the linear assignment problem associated
to Z produces the same optimal permutation.
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DNN as UA

Deep Neural Networks as Universal Approximators

minimize/maximize
∑N

i=1
∑R

j=1 πi ,jCi ,j
subject to:

πi ,j ∈ {0, 1} , ∀i , j∑N
i=1 πi ,j = 1 , ∀1 ≤ j ≤ R∑R
j=1 πi ,j ≤ 1 , ∀1 ≤ i ≤ N

Luckily, the convex relaxation (Linear Program) produces the same
optimal solution:

minimize
∑N

i=1
∑R

j=1 πi ,jCi ,j
subject to:

0 ≤ πi ,j ≤ 1 , ∀i , j∑N
i=1 πi ,j = 1 , ∀1 ≤ j ≤ R∑R
j=1 πi ,j ≤ 1 , ∀1 ≤ i ≤ N
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DNN as UA

Deep Neural Networks as Universal Approximators
Architectures

The overall system must output feasible solutions π̂. Our architecture
compose two components: (1) a deep neural network (DNN) that outputs
a (generally) unfeasible estimate π̄; (2) an enforcer (P) of the feasibility
conditions that outputs the estimate π̂:

Issues:
1 DNN architecture: how many layers; how many neurons per layer?
2 P, the feasibility enforcer
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DNN as UA

Deep Neural Networks as Universal Approximators
DNNs

We studied three architectures:
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DNN as UA

Deep Neural Networks as Universal Approximators
Feasibility Enforcer P

An ”optimal” feasibility condition enforcer would minimize some
”distance” to the feasibility set. However this may be a very
computationally expensive component. An intermediate solution is to
alternate between different feasibility conditions (equalities and
inequalities) until convergence.
Instead we opt for a simpler and ”greedier” approach:

Repeat R times:
1. Find (i , j) the largest entry in π̄
2. Set π̂i ,j = 1; set to 0 other entries
in row i and column j ;
3. Remove row i and column j from
both π̄ and π̂.
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DNN as UA

Deep Neural Networks as Universal Approximators
Baseline solution: The Greedy Algorithm

The ”greedy” enforcer can be modified into a ”greedy” optimization
algorithm:

1 Initialize E = C and π̂ = 0N×R
2 Repeat R times:

Find (i , j) = argmin(a,b)Ea,b;
Set π̂i,j = 1, π̂i,l = 0 ∀l 6= j , π̂l,j = 0 ∀l 6= i ;
Set Ei,: =∞, E:,j =∞.

Proposition

The greedy algorithm produces the optimal solution if there is a positive
number λ > 0 and two nonnegative vectors u, v such that
C = λ1 · 1T − u · vT .

Radu Balan (UMD) Rep and Opt 04/02/2019



Permutation Invariant Representations Optimizations using Deep Learning

Numerical Results

Exp.1 : N = 5, R = 4 with ReLU activation
First architecture:

Number of internal layers: 9
Number of hidden units per layer: 250
Batch size: 200; ADAM optimizer
Loss function: cross-entropy:∑

i ,j πi ,j(−log(π̂i ,j)) + (1− πi ,j)(−log(1− π̂i ,j))
Training data set: 1 million random instances U(0, 1) i.i.d.
Validation set: 20,000 random instances.
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Numerical Results

Exp.1 : N = 5, R = 4 with ReLU activation
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Numerical Results

Exp.1 : N = 5, R = 4 with ReLU activation
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Numerical Results

Exp.2 : N = 10, R = 8 with sigmoid activation
Second architecture:

Number of internal layers: 10
Number of hidden units per layer: 250
No Batch; ADAM optimizer
Loss function: cross-entropy:∑

i ,j πi ,j(−log(π̂i ,j)) + (1− πi ,j)(−log(1− π̂i ,j))
Training data set: 1 million random instances U(0, 1) i.i.d.
Validation set: 20,000 random instances.
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Numerical Results

Exp.2 : N = 10, R = 8 with sigmoid activation
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Numerical Results

Exp.2 : N = 10, R = 8 with sigmoid activation
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Numerical Results
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Numerical Results

Exp.2 : N = 10, R = 8 with sigmoid activation
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Numerical Results

Exp.2 : N = 10, R = 8 with sigmoid activation

Radu Balan (UMD) Rep and Opt 04/02/2019



Permutation Invariant Representations Optimizations using Deep Learning

Numerical Results

Exp.3 : N = 5, R = 4 with sigmoid activation
Second architecture:

Number of internal layers: 10
Number of hidden units per layer: 250
Batch size 200; ADAM optimizer
Loss function: cross-entropy:∑

i ,j πi ,j(−log(π̂i ,j)) + (1− πi ,j)(−log(1− π̂i ,j))
Training data set: 500,000 random instances U(0, 1) i.i.d.
Validation set: 20,000 random instances.
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Numerical Results

Exp.3 : N = 5, R = 4 with sigmoid activation
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Numerical Results

Exp.3 : N = 5, R = 4 with sigmoid activation
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Numerical Results

Exp.4 : N = 10, R = 8 with sigmoid activation
Second architecture:

Number of internal layers: 10
Number of hidden units per layer: 300
Batch size 200; ADAM optimizer
Loss function: cross-entropy:∑

i ,j πi ,j(−log(π̂i ,j)) + (1− πi ,j)(−log(1− π̂i ,j))
Training data set: 500,000 random instances U(0, 1) i.i.d.
Validation set: 20,000 random instances.
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Numerical Results

Exp.4 : N = 10, R = 8 with sigmoid activation
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