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Problem Formulation: IVP

Problem Formulation

A fundamental problem in machine learning: predict future states using current
conditions, x0 ∈ Rs 7→ xT = Φ(x0) ∈ Rs .

Examples: Solutions of PDEs , Epidemic Forcasting (COVID19)

Our problem: How to implement Φ using a Deep Network and a Training data set?
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Problem Formulation: IVP

Existing Approaches

UAP based NN: Use of (Conv.) N.N. (Guo, 2016), (Grohs,2019);

UAP with Reduced Basis/PCA: Galerkin-like schemes (Santo,2019), sparse
networks (Boelcskei,Kutyniok, 2019);

IVP defined NN: Physics-inspired neural networks (PINNs): (Raissi,
Karniadakis, 2019), (Wang, PErdikaris, 2021);

Reservoir Computing: (Schrauwen, 2007), (Girvan, Hunt, 2020);

Neural Operators: Data-driven and input-resolution independent: Fourier
Neural Op. (FNO) (Li,2020), Graph Nystrom sampling (Li, 2020), Multi
Wavelet Transform (MWT) (Gupta, 2021);

...
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Architecture

Architecture

As special type of Neural Operator, is the exponential operator seen as the
evolution operator of a linear (time-invariant) differential equation:

Approach: Learn operator L while implementing a (nonlinear) version of eL.

Performance metrics:

1 Approximation error MSE (for training), MAE (for testing);

2 Model complexity, expressed by number of parameters to be learned;
Important especially when the training data set is relatively small.
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Architecture

Architecture (2)

The exponential operator L 7→ eL has been used in deep learning:

1 exponential function used to model NN non-linearity (Andoni, 2014);

2 Taylor polynomial as a truncation of the Taylor series (Hoogeboom, 2020) -
particularly in the context of convolutive operators, and (Sylvester)
normalizing flow;

3 Our first contribution: Use Padé approximation as a more compact
polynomial form than the Taylor polynomial. Padé Neural Operator.

Padé Approximation of the exponential function, x 7→ ex is denoted by

[p/q] =
Apq(x)
Bpq(x) , with p, q ≥ 0 integers and:

ex ≈ [p/q] :=

∑p
j=0 ajx

j∑q
j=0 bjx

j
, aj =

(p + q − j)!p!

(p + q)!j!(p − j)!
, bj = (−1)j

(p + q − j)!q!

(p + q)!j!(q − j)!
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Architecture

Architecture (3)

• Padé Neural Operator [p/q]eL with a single layer nonlinear block:

• ”Our” second contribution: Decompose L using a Multi-Wavelet basis (Gupta,

2021), eL =
∑L

i=1

(
Qie
LQi + Qie

LPi + Pie
LQi

)
+ PLe

LPL. Then apply the
Padé Neural Operator for each term of this decomposition:

Φ(x0) =
∑L

i=1

(
Qi [p/q]eAiQi + Qi [p/q]eBiPi + Pi [p/q]eCiQi

)
+ PL[p/q]eLLPL

Overall we obtain: the Multiwavelet Padé Exponential Model.
Radu Balan (UMD) Modeling with Deep Networks June 7, 2022
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Lipschitz Analysis

Lipschitz Analysis of the Padé Neural Operator

Theorem

Given a linear operator L = L(θL) (or, a Lipschitz operator with Lipschitz
constant ‖L‖ and L(0) = 0), a non-linearity layer v = σ(Wu + b), and p, q ∈ N,
at points of differentiability, the gradients of the operation
x 7→ y = F (x ; θL,W , b) := [p/q]eL(x) using the [p/q] Padé neural operator are
bounded in operator norm by

∥∥∥∥ ∂y∂θL
∥∥∥∥ ≤ exp(‖L‖) (‖b‖2 + ‖W ‖‖x‖2)

 nθ∑
j=1

∥∥∥∥ ∂L∂θj
∥∥∥∥2
1/2

, (1)

∥∥∥∥ ∂y∂W
∥∥∥∥ ≤ exp(‖L‖)‖x‖2, (2)∥∥∥∥∂y∂b
∥∥∥∥ ≤ exp

(
p

p + q
‖L‖

)
. (3)

Remarks: The polynomials Apq(L) and Bpq(L) are implemented as recurrent
networks. This theorem guarantees the gradienets do not explode with p, q →∞.
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Experiments

Testing on PDEs
Data Efficiency

How fast the training error decays (“data efficiency”) w.r.t. number N of training
samples, for Korteweg - de Vries (KdV, left), and Kuramoto-Shivashinski (SV,
right):
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Number of training samples N vs performance (relative L2 error) for neural
operators evaluated on the KdV equation with s=1024. For N < 1000, each
smaller dataset is sampled uniformly randomly 5 times from the complete dataset
(N = 1000) and mean ± std.dev (shaded region) results are shown across the
sampling experiments. (Right) Same analysis for KS equation with s=1024.
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Experiments

Testing on PDEs
Sensitivity to Input Resolution

Korteweg-de Vries (KdV) equation benchmarks for different input resolution s.
The relative L2 errors are shown for each model.

Networks s = 64 s = 128 s = 256 s = 512 s = 1024
Padé Exp 0.00301 0.00308 0.00311 0.00298 0.00295
MWT Leg 0.00372 0.00369 0.00391 0.00408 0.00392
FNO 0.00663 0.00676 0.00657 0.00649 0.00672
MGNO 0.12507 0.13610 0.13664 0.15042 0.13666
LNO 0.04234 0.04764 0.04303 0.04465 0.04549
GNO 0.13826 0.12768 0.13570 0.13616 0.12521

GNO: Graph Neural Operator (Li, 2020); MGNO: Multi-level version of GNO (Li,
2020); LNO: low-rank representation of the integral operator kernel, à la
DeepONet (Lu,2020); FNO: Fourier Neural Operator (Li, 2020); MWT Leg:
MWT with Legendre OPs;
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Experiments

Epidemic Forecasting (COVID19)
Problem Specifications

Epidemic Forecasting is an example where the dynamical system is unknown (or it
may not be deterministic). Neural operators provide an entirely data-driven
approach and are capable to learn PDE agnostic maps.
Dataset COVID-19 from April 12, 2020 to August 28,2021 provided by JHU.
Data from 50 US states, and for each state, total counts of daily reported
confirmed (C), recovered (R), and deaths (D). Data in each state is normalized by
the respectie state total population. Total data: array of 50× 3× 484 numbers.
Task: The forecasting problem is to learn the map between 14 consecutive counts
(C,R,D) to next 7 days data for each of the 50 US state. Let dt denote the 50× 3
array on day t. Then the operator map can be written as:

T (d−14, d−13, . . . , d−1︸ ︷︷ ︸
u0(x)

) = (d0, d1, . . . , d6︸ ︷︷ ︸
u(τ,x)

).

Challenge: Due to data scarcity, we do a 10-fold resampling of the dataset for
additional training/testing samples.
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Experiments

Epidemic Forecasting (COVID19)
Prediction Benchmarks

COVID-19 prediction benchmarks for different networks using 10-fold resampling
with mean ± std. dev. across folds. The Mean Average Error (MAE) is presented
for Confirmed (C), Recovered (R), and Deaths (D) counts averaged across 7 days
of prediction for 50 US states. The relative L2 error is the test error for each
model. The last column compares each network vs FC (auto-regressive fully
connected network) in terms of the total MAE improvement and total model
parameters difference.

Networks
MAE

Relative L2 error Net. vs FC
C R D

Padé Exp 1219 ± 130 1752 ± 666 211 ± 31 0.0155 ± 0.0034 82.14% (+652K)
MWT Leg 3554 ± 1157 2928 ± 1338 284 ± 209 0.0245 ± 0.0043 62.0% (+18M)
FNO 3D 4213 ± 391 3391 ± 1233 592 ± 157 0.0301 ± 0.0045 54.0% (+1.02M)
LNO 3D 28502 ± 12698 6586 ± 3442 1465 ± 965 0.1056 ± 0.0394 -105.0% (+238K)
Neural ODE 4339 ± 1174 3443 ± 1408 443 ± 192 0.0310 ± 0.0069 53.8% (+172K)
Seq2Seq 2798 ± 456 3317 ± 1690 346 ± 83 0.0273 ± 0.0058 63.7%(+1.8M)
Transformer 7087 ± 972 6613 ± 2853 1722 ± 320 0.0501 ± 0.0094 13.4% (+15.2K)
FC 10305 ± 2818 5885 ± 1609 1634 ± 686 0.0609 ± 0.0111 (37.2K)

seq2seq , transforms, FC are non-neural operators.
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Experiments

Epidemic Forecasting (COVID19)
A Tale of Two States

COVID19 Forecasting. Confirmed, Recovered, and Deaths count forecasting
results for the 07/07/20 – 07/13/20 (chosen arbitrarily) using previous 2 weeks as
the input. The Padé Exp prediction and the best non-neural operator scheme
from previous table (seq2seq) is shown.

California:
39.77M population.

Massachusetts:
6.89M population.
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MRI and NN

MRI Model

Figure: Credits: hopkinsmedicine.org

The measurement model. For coil k ∈
[Nc ],

xk = F(Skz) + νk

where F is the Fourier acquisition matrix,
Sk is the diagonal matrix with the coil k
sensitivity map, νk is measurement noise,
and z is the brain signal.

Knowns: F , x1, ..., xNc . Unknowns: S1, ...,SNc , ν1, ..., νNc , z . Target: z.

Lots of research, lots of Nobel prizes, lots of companies (Siemens, GE, Philips),
lots of techniques (compressive sampling, GRAPPA, SENSE, ...) to solve the
inverse problem: z = G (measurements).
More recent: Use of Deep Neural Networks.
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MRI and NN

The MRI Inverse Problem

At an abstract level, the forward model, z 7→ x and the reconstruction (inverse)
model, x 7→ ẑ are:

x = F (z) + ν , ẑ = G (x).

To fix notations: the target (brain) signal z ∈ Rd , the measured (acquired) signal
x ∈ Rn.
The DNN approach proposes to implement G using certain Neural Network
architectures. Out of many architectures out there, we focused on a specific
network, namely the end-to-end variational neural network (E2E-VarNet)
introduced by Sriram,et al, at MICCAI 2020.

Our problem: Given a trained network that implements a reconstruction algorithm
G , quantify the level of uncertainty per reconstructed pixel.

Assumption: We assume the network has been trained well enough so that
G (F (z)) = z , i.e., perfect reconstruction in the absence of noise.

Radu Balan (UMD) Modeling with Deep Networks June 7, 2022
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Uncertainty Propagation through NN

Uncertainty Propagation through NN
CRLB and FIM

The standard way of quantifying uncertainty is through the Cramer-Rao Lower
Bound (CRLB). The CRLB has been used many times for experimental design in
Medical Imaging and elsewhere. Fisher Information Matrix I (z) and CRLB:

I (z) = E
[
(∇z log(p(x ; z))) (∇z log(p(x ; z)))T

]
, CRLB = (I (z))−1

Interpretation: Covariance of any unbiased estimator of z is lower bounded CRLB.
Assume further, the noise is AWGN with variance σ2. A simple computation yields:

CRLB = σ2
(
JTF JF

)−1
, JF =

[
∂Fk

∂zj

]
(j,k)∈[n]×[d ]

∈ Rn×d

where JF denotes the Jacobian matrix of the forward model.

Goal: Determine CRLB and use it to measure the confidence in the reconstructed
image ẑ .

Challenge: The exact form of F is unknown!
Radu Balan (UMD) Modeling with Deep Networks June 7, 2022
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Uncertainty Propagation through NN

The CRLB and the Jacobian of the NN

Our main theoretical result is to connect CRLB = (I (z))−1 and the Jacobian of
G , JG .
A simple lemma:

Lemma

Assume A ∈ Rn×d is full rank with n ≥ d.

1 For any B ∈ Rd×n such that BA = Id (i.e., a left inverse), BBT ≥ (ATA)−1.

2 If B0 = (ATA)−1AT is the pseudo-inverse of A then, B0B
T
0 = (ATA)−1.

Consequence:

CRLB = σ2JG0J
T
G0

, G0 = argminG :G(F (z))=z trace(JGJ
T
G )

Remarks:
1. The objective function above can provide an additional regularization term in
the loss function used by the neural network training.
2. The importance of Jacobians has been shown by (Antun et al, 2020), “On
instabilities of deep learning in image reconstruction ...”.
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Experimental Results

Architecture
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Experimental Results

Results (1)

Radu Balan (UMD) Modeling with Deep Networks June 7, 2022



Evolution Operators with Deep Networks Uncertainty Quantification in NN Normalizing Flows

Experimental Results

Results (2)
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Experimental Results

Results (3)
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Experimental Results

Results (4)
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Global normalizing flows

Deep latent variable models (DLVMs)

Given samples X = (xn)Nn=1 ∈ X drawn from an unknown distribution p(x), the
goal of generative machine learning is to obtain new and “realistic” samples also
drawn from p(x). One way to do this is to assume that most of the variation in
the unknown distribution arises from a latent variable z that is simply distributed
according to q(z) (usually Gaussian), in which case Bayes gives

p(x) =

∫
Z
p(x |z)q(z)dz

Once p(x |z) is known, new samples can be generated by first sampling z0 from
z ∼ q(z) and then sampling x ∼ p(x |z = z0). LVM’s are useful for

Data Augmentation (by generating new samples that follow the same
distribution as the data)

Domain Adaptation (the latent space provides a common representation
between domains)

Outlier Detection

Generating realistic samples

Radu Balan (UMD) Modeling with Deep Networks June 7, 2022
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Global normalizing flows

Deep latent variable models (DLVMs)

When p(x |z) := pθ(x |z) are parameterized as DNNs, such models are termed
DLVMs. Maximum likelihood estimation for θ gives:

argmaxθ log pθ(X ) = argmaxθ

N∑
n=1

log

∫
Z
pθ(xn|z)q(z)dz

When pθ(x |z) is given by a DNN, this objective is intractable to evaluate, let
alone optimize.

VAEs instead optimize the following variational lower bound for log pθ(X )
that holds for any distribution qφ(z |x), with equality when qφ(z |x) = p(z |x):

log pθ(X ) ≥
N∑

n=1

Ez∼qφ(·|xn)[log pθ(xn|z)]− DKL(qφ(·|xn)||q(z))

GANs do not directly model p(x |z), instead they sample Z = (zn)Nn=1 from
z ∼ q(z) and seek to learn a generator function Gθ : Z → X that minimizes
an adversarial objective L(X ,Gθ(Z )). For example Goodfellow et al. take

L(X ,Y ) = max
φ

N∑
n=1

1

2
logDφ(yn) +

1

2
log(1− Dφ(xn))

Radu Balan (UMD) Modeling with Deep Networks June 7, 2022
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Global normalizing flows

Global normalizing flows

Neither VAEs or GANs can provide exact densities p(x), as VAEs replace log p(x)
by a lower bound and GANs do not have an explicit probability model. NFs,
however, make the assumption that pθ(x |z) is of the form

pθ(x |z) = δ(x − gθ(z))

Where gθ : Z → X is a diffeomorphism with inverse fθ : X → Z . In other words,
at the level of the random variables x and z it is assumed that

x = gθ(z) z = fθ(x)

Note further that NFs are the σ → 0 limit of the VAE given by
pθ(x |z) = N (gθ(z), σ2I) and qθ(z |x) = N (fθ(z), σ2I).
Change of variables gives

log pθ(X ) =
n∑

n=1

log

∫
Z
pθ(x |z)q(z)dz

=
n∑

n=1

log |Det[Jfθ(xn)]|+ log q(fθ(xn))

Radu Balan (UMD) Modeling with Deep Networks June 7, 2022
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Global normalizing flows

Global normalizing flows

To compute θ for a NF one would like to maximize

log pθ(X ) =
n∑

n=1

log |Det[Jfθ(z)]|+ log q(fθ(z))

Because computing Det[Jfθ] is intractable for an arbitrary deep neural network,
one builds f out of compositions fθ = f θLL ◦ · · · ◦ f

θ1
1 where Det[Jf θkk (z)] and

gθkk = (f θkk )−1 are simple to compute and θ = vec(θ1, . . . , θL).

In this case the log-likelihood breaks apart to produce a tractable objective:

log pθ(X ) =
N∑

n=1

{
log q(fθ(xn)) +

L∑
j=1

log |DetJf
θj
j (xn)|

}
Radu Balan (UMD) Modeling with Deep Networks June 7, 2022
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Global normalizing flows

Global normalizing flows

The ability to exactly compute p(x) makes NFs a powerful generative method, but
they have an Achilles heel: they are diffeomorphisms. This means that the data
manifold must be topologically equivalent to the latent space in order for NFs to
get good results. In particular, the data manifold must have the same dimension
as the latent space. The manifold hypothesis, however, suggests that often real
data (like images) lies on a much lower dimensional submanifold M⊂ X .

Figure: Topological constraints on an NF. Anything with ”non-trivial topology” will
cause an NF to struggle.
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Conformal embedding flows

Conformal embedding flows

One way to do dimensionality change using a NF gθ : Z → U is to post-compose
it with a dimension raising embedding h : U → X to form h ◦ gθ. Unfortunately
the resulting measure change factor

|Det[(JhJgθ)T (JhJgθ)]|− 1
2 = |Det[JgT

θ JhT JhJgθ]|− 1
2

does not separate into a product. A solution is to restrict h to be conformal [?]:

C(Rd → RD) := {c ∈ C 1(Rd → RD) | ∃λ ∈ C 0(R) : Jc(u)T Jc(u) = λ(u)2Id×d}
If gθ : Z → U is a NF and c ∈ C(U → X ) then the measure change factor is:

|Det[(JcJgθ)T (JcJgθ)]|− 1
2 = |λ(u)|−1|DetJfθ| = |λ(u)|−1

L∏
j=1

|DetJf
θj
j |

In this case the log-likelihood separates nicely as:

log pθ(X ) =
N∑

n=1

{
log q(fθ(xn)) +

L∑
j=1

log |DetJf
θj
j (xn)| − log |λ(c†(xn))|

}
Where c† is a pseudo-inverse of c (exactly which pseudo inverse depends on how
the conformal embedding is parameterized).Radu Balan (UMD) Modeling with Deep Networks June 7, 2022
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Conformal embedding flows

Conformal embedding flows

C(Rd → RD) is quite rich, but hard to parameterize. In [?] the authors restrict to
embeddings of the form:

c = cJ ◦ · · · ◦ c1

where each cj is either a trivially conformal zero padding or a dimension preserving
conformal map, which for d > 2 are Möbius transformations (by Liouville):

M(A, a, b, α, ε)(x) = b + α(Ax − a)/||Ax − a||ε

where A ∈ O(d) is an orthogonal matrix, α ∈ R, a, b ∈ Rd , and ε is either 0 or 2.
Unfortunately if ps : Rd → Rd+s is the zero padding operation,
m1 = M(A1, a1, b1, α1, ε1) is a d dimensional Möbius transformation and m2 is a
d + s dimensional Möbius transformation then for x ∈ Rd :

m2 ◦ ps ◦m1(x) = (m2 · m̃1)(ps(x))

Where m̃1 is the d + s dimensional Möbius transformation:

m̃1 = (

[
A1 0
0 Is×s

]
, ps(a1), ps(b1), α1, ε1)

Thus, the above yields c as a Möbius transformation of RD composed with pD−d .
Radu Balan (UMD) Modeling with Deep Networks June 7, 2022
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Chart based flows - motivation

Vanilla NFs don’t perform well for data on a low dimensional manifold M⊂ X .
Current extensions of NFs to allow for dimensionality change restrict expressivity.
Idea:

M diffeomorphic to Z ' Rd is too restrictive. Impediment to performance is
topological, suggesting a few “cuts” of the data would greatly improve NFs.

Use a VQAE (E ,D, {vk}Kk=1) to learn (Uk)Kk=1, a collection of open sets in X
with X ∈

⋃K
k=1 Uk . With Vk = Uk ∩M, (Vk , fk,θ|Vk

) provides an atlas of
charts on M. Model p(x) as a mixture of normalizing flows

p(x |z) =
K∑

k=1

pkδ(x − gk,θ(z))

Where gk,θ : Z → Uk is a conformal NF and

pk = p(x ∈ Uk)/
∑K

j=1 p(x ∈ Uj). Note p(x ∈ Vk) = p(x ∈ Uk) since p(x) is

supported on M. Abusing terminology, we also refer to (Uk)Kk=1 as charts.

Assume that M is locally conformally flat, and specifically that there exist
Dk ⊂ U and ck : U → X conformal such that Vk = ck(Dk).
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Chart based flows - motivation

Since ck are Möbius transformations composed with zero paddings, the Riemann
measure on Vk is simply a re-scaling of the pullback to the Lebesgue measure on
U . Thus in this sense the invertible normalizing flows fθ(·, vk) are responsible for
learning the probability measure p(x)dMx and the conformal embeddings are
responsible for learning the manifold M.
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Chart based flows - probability model

Assume (Uk)Kk=1 are known. Let z be a r.v. taking values in Z and let k be a r.v.
taking values in {1, . . . ,K}. Then assume x , z , k are jointly distributed as:

p(x , z , k) = δ(x − gk,θ(z))q(z)pk

Where gk,θ : Z → Uk has (pseudo) inverse fk,θ : Uk → Z. Suppressing θ,

p(x , k) = pk

∫
Z
δ(x − gk(z))q(z)dz

= pk1Uk
(x)

∫
Z
δ(z − fk(x))| det[Jgk(z)]|−1q(z)dz

= pk1Uk
(x)| det[Jgk(fk(x))]|−1q(fk(x))

= pk1Uk
(x)| det[Jfk(x)]|q(fk(x))

Thus we obtain the density p(x) as

p(x) =
∑

k:x∈Uk

pk | det[Jfk(x)]|q(fk(x))

=
∑

k:x∈Uk

p(k)q(fk(x))|λk(c†k (x))|−1
L∏

l=1

|Det[Jf lk (f l+1
k ◦ · · · ◦ f Lk (x))]|
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Chart based flows - VQAEs

Given data {x}Nn=1 ∈ X and a latent space V with dimV << dimX a VQAE
seeks to learn an encoder E : X → V, a decoder D : V → X , and a collection of
encoded centers {vk}Kk=1 ⊂ V so that the following loss is minimized:

Ex∼p(x)[L(D(arg minvk ||v − E (x)||2), x)]

The number of centers is increased until the reconstruction error is below a
threshold.Radu Balan (UMD) Modeling with Deep Networks June 7, 2022
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Chart based flows - chart design

We would like charts (Uk)Kk=1 that cover X , that overlap, and that are sparse in
the sense that no single x ∈ X is contained in too many charts.

Definition

Given v1, . . . , vK ∈ V ' Rd the (m, ε)-Voronoi cell of vk is

Vk = {v ∈ V | ∃J ⊂ [K ] |J| > K −m and ||v − vk || ≤ (1 + ε)||v − vj ||2∀j ∈ J}

Once a VQAE (E ,D, {vk}Kk=1) is trained, we can use the pullback through E of
(m, ε)-Voronoi cells as charts:

Uk := {x ∈ X | E (x) ∈ Vk}

Note that checking whether x ∈ Uk amounts to computing d1 := ||E (x)− v1||2
through dk := ||E (x)− vk ||2 and checking whether dk ≤ (1 + ε)d̃m where
d̃1 ≤ · · · ≤ d̃K . Here ε and m are hyper-parameters of the model. Note that if
m(x) := |{k : x ∈ Uk}| then m(x) ≥ m and limε→0 m(x) = m almost everywhere.
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Chart based flows - implementation

Each conformal normalizing flow g1,θ, . . . , gK ,θ is trained on only data lying in Uk .
Even so, training K separate flows g1,θ, . . . , gK ,θ becomes infeasibly time
consuming as K increases (VQAE produces ∼ 120 charts for the MNIST dataset),
so instead let gθ : Z × V → X be such that g(z , vk) ∈ Uk for all z . Then assume

gk,θ(z) = gθ(z , vk)
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Chart based flows - training

During training the objective function is

ln pθ(X ) =
N∑

n=1

ln pθ(xn) =
N∑

n=1

ln
∑

k:xn∈Uk

pkp(xn|k)

=
N∑

n=1

ln
∑

k:xn∈Uk

pkq(fk(xn))|λk(c†k (xn))|−1
L∏

l=1

| det[Jf lk (f l+1
k ◦ · · · ◦ f Lk (xn))]|

Noting that p(x |k) is zero unless x ∈ Uk . The density p(x) can also be written

p(x) = Ek∼p̃x (k)[p(x |k)]
∑

j :x∈Uj

p(j)

︸ ︷︷ ︸
piecewise constant

Where p̃x(k) = p(k|p(x |k) > 0) = pk/
∑

j :x∈Uj
pj . During training we replace the

expectation Ek∼p̃(k)[p(x |k)] with the stochastic quantity p(x |k), k ∼ p̃(k),
performing only a single gradient descent pass per data-point as opposed to m(x)
passes.
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Chart based flows - sampling, inference, and density

Sampling: Since z and k are independent sample z from z ∼ q(z) and
k ∼ pk and then compute x = gθ(z , vk).

Inference: Since z is no longer wholly determined by x , but instead takes
values (f (x , vk))k:x∈Uk

with corresponding probabilities (p(k|x))k:x∈Uk
. One

could perform a stochastic inference via sampling k ∼ p(k|x) and computing
z = f (x , vk). If deterministic inference is preferred then one may use the
expected value of z as z = Ek∼p(k|x)[fk(x)] =

∑
k:x∈Uk

p(k|x)fk(x) or the
most probable value of z as z = fs(x) where s = argmaxk:x∈Uk

p(k|x).

Density Evaluation: If the exact density p(x) is needed for x ∈
⋃K

k=1 Uk it
can be computed at the cost of m(x) evaluations of a normalizing flow:

p(x) =
∑

k:xn∈Uk

pkq(fk(xn))|λk(c†k (xn))|−1
L∏

l=1

| det[Jf lk (f l+1
k ◦ · · · ◦ f Lk (xn))]|
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Figure: Toy datasets with various topological features.
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Figure: Qualitative visualization of the samples generated by a classical flow (Middle
Row) and its VQ-counterpart (Bottom Row) trained on Toy 3D data distributions (Top
Row).
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Figure: Qualitative visualization of the samples generated by a classical flow (Middle
Row) and its VQ-counterpart (Bottom Row) trained on Toy 3D data distributions (Top
Row).
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Model Spherical Helix Lissajous Twisted-Eight Knotted Interlocked-Circles

Real NVP 0.50 ± 0.07 -57.46 ± 2.11 0.18 ± 0.14 -2.72 ± 0.90 -8.65 ± 0.87 -2.18 ± 0.37
VQ-RealNVP 0.99 ± 0.14 -3.85 ± 0.98 0.59 ± 0.08 0.18 ± 0.17 -1.44 ± 0.37 -0.11 ± 0.12

MAF 0.65 ± 0.26 -92.83 ± 5.69 0.12 ± 0.16 -2.77 ± 0.81 -7.04 ± 0.49 -2.49 ± 0.14
VQ-MAF 1.01 ± 0.07 -4.62 ± 0.37 0.59 ± 0.07 -0.32± 0.13 -2.44 ± 0.11 -0.15 ± 0.08

CEF -1.17 ± 0.06 -29.90 ± 2.12 0.38 ± 0.14 -4.03 ± 0.38 -19.40 ± 1.80 -3.42 ± 0.49
VQ-CEF 0.80 ± 3.42 -20.75 ± 2.22 0.49 ± 0.03 -3.51 ± 0.73 -14.44 ± 1.57 -3.23 ± 0.19

Model Non-Knotted Bent-Lissajous Disjoint-Circles Star

Real NVP 0.53 ± 0.18 1.04 ± 0.22 1.71 ± 0.12 3.33 ± 0.18
VQ-RealNVP 2.39 ± 0.24 2.62 ± 0.13 2.71 ± 0.19 4.23 ± 0.06

MAF 0.73 ± 0.18 1.48 ± 0.11 1.95 ± 0.12 3.53 ± 0.03
VQ-MAF 2.41 ± 0.19 2.06 ± 0.12 2.87 ± 0.07 3.59 ± 0.12

CEF -0.46 ± 0.13 -0.51 ± 0.16 -0.71 ± 0.21 1.26 ± 0.11
VQ-CEF -0.15 ± 0.09 -0.54 ± 0.22 0.24 ± 0.15 1.32 ± 0.02

Table: Quantitative evaluation of Sample Generation in terms of the log-likelihood of
generated samples in nats (higher the better) on the 3D datasets. The values are
averaged across 5 independent trials, ± represents the 95% confidence interval.
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Chart based flows - Higher Dimensional Data

Figure: Seen here are the results of recent experiments on the MNIST dataset. FID is
Fréchet Inception Distance (lower is better).
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Thank you!

Thank you for listening!
QUESTIONS?
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