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Policy Learning

Policy - Set of rules to choose an action from a set based on the state.

Finite (Actions and States):

Infinite (Actions and States):
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Active Signal Reconstruction. Reinforcement learning

State Machines have states S and transitions/actions A which take the
system from state to state.

Reconstruct signal (reward) R : S × A → R where S are states and A are
actions.
The optimal policy, starting at state s1, is

π∗ = argmax
π

M∑
i=1

R(γi−1
π (s1), π(γ

i−1
π (s1)))

where γtπ(s) gives the state that follows from action π(s) (policy π and
state s) at time t, written γ i−1

π (s) = s ′ and γ0 is identity. If signal Rω is a
random variable on Ω,

π∗ = argmax
π

M∑
i=1

EΩ[Rω(γ
i−1
π (s1), π(γ

i−1
π (s1)))].

Michael Rawson Policy Learning 4 / 24



Active Signal Reconstruction. Reinforcement learning

State Machines have states S and transitions/actions A which take the
system from state to state.
Reconstruct signal (reward) R : S × A → R where S are states and A are
actions.

The optimal policy, starting at state s1, is

π∗ = argmax
π

M∑
i=1

R(γi−1
π (s1), π(γ

i−1
π (s1)))

where γtπ(s) gives the state that follows from action π(s) (policy π and
state s) at time t, written γ i−1

π (s) = s ′ and γ0 is identity. If signal Rω is a
random variable on Ω,

π∗ = argmax
π

M∑
i=1

EΩ[Rω(γ
i−1
π (s1), π(γ

i−1
π (s1)))].

Michael Rawson Policy Learning 4 / 24



Active Signal Reconstruction. Reinforcement learning

State Machines have states S and transitions/actions A which take the
system from state to state.
Reconstruct signal (reward) R : S × A → R where S are states and A are
actions.
The optimal policy, starting at state s1, is

π∗ = argmax
π

M∑
i=1

R(γ i−1
π (s1), π(γ

i−1
π (s1)))

where γtπ(s) gives the state that follows from action π(s) (policy π and
state s) at time t, written γ i−1

π (s) = s ′ and γ0 is identity. If signal Rω is a
random variable on Ω,

π∗ = argmax
π

M∑
i=1

EΩ[Rω(γ
i−1
π (s1), π(γ

i−1
π (s1)))].

Michael Rawson Policy Learning 4 / 24



Active Signal Reconstruction. Reinforcement learning

State Machines have states S and transitions/actions A which take the
system from state to state.
Reconstruct signal (reward) R : S × A → R where S are states and A are
actions.
The optimal policy, starting at state s1, is

π∗ = argmax
π

M∑
i=1

R(γ i−1
π (s1), π(γ

i−1
π (s1)))

where γtπ(s) gives the state that follows from action π(s) (policy π and
state s) at time t, written γ i−1

π (s) = s ′ and γ0 is identity.

If signal Rω is a
random variable on Ω,

π∗ = argmax
π

M∑
i=1

EΩ[Rω(γ
i−1
π (s1), π(γ

i−1
π (s1)))].

Michael Rawson Policy Learning 4 / 24



Active Signal Reconstruction. Reinforcement learning

State Machines have states S and transitions/actions A which take the
system from state to state.
Reconstruct signal (reward) R : S × A → R where S are states and A are
actions.
The optimal policy, starting at state s1, is

π∗ = argmax
π

M∑
i=1

R(γ i−1
π (s1), π(γ

i−1
π (s1)))

where γtπ(s) gives the state that follows from action π(s) (policy π and
state s) at time t, written γ i−1

π (s) = s ′ and γ0 is identity. If signal Rω is a
random variable on Ω,

π∗ = argmax
π

M∑
i=1

EΩ[Rω(γ
i−1
π (s1), π(γ

i−1
π (s1)))].

Michael Rawson Policy Learning 4 / 24



Active Signal Reconstruction

Common assumption which we use: γπ(s) ∼ distribution(S) independent
of policy π and state s (a.k.a. ‘contextual bandit’ or ‘unconfoundedness’)
[Chen et al., 2020].

Now, for state set S = {s} (a.k.a. ‘bandit’),

Algorithm 1: Epsilon Greedy Method [Sutton and Barto, 1998]

Parameters: K > 1, c > 0, 0 < d < 1.
Initialization: ϵn := min{1, cK

d2n
} for n = 1, 2, ...

for n = 1, 2, ... do
in = the action with the highest current average reward
if η > ϵn : η ∼ Uniform([0, 1]) then

play in
else

play a uniform random action
end

end
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Related Methods

We fix dimension size and take limit in time, T .

[Abbasi-yadkori et al., 2011] - Mean Regret: Õ(1/
√
T )

Pros: Fast convergence rate, Simple Algorithm
Cons: Linear reward function of context

[Zhou et al., 2020] - Mean Regret: Õ(1/
√
T ) Pros: Fast convergence

rate, General reward function
Cons: Expensive, Not almost surely (high probability)

Rawson, Balan 2022 - Mean Regret: Õ(1/
√
logT )

Pros: General reward function, Almost surely, Simple algorithm, Fast
computation
Cons: Slower convergence rate!
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√
T ) Pros: Fast convergence

rate, General reward function
Cons: Expensive, Not almost surely (high probability)

Rawson, Balan 2022 - Mean Regret: Õ(1/
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Active Signal Reconstruction

Input: M ∈ N : total time steps, m ∈ N : context dimension, X ∈ RM×m where state Xt ∈ Rm

for time step t, A = {a1, ..., aK} : available actions, Φ : Rm → R : untrained neural network,
function Reward : N[1,K ] → R.

Output: D ∈ NM : decision record, R ∈ RM where Rt stores the
reward from time step t.

Algorithm 4: Deep Epsilon Greedy
for t = 1, 2, ..., M do

for j = 1 ... K do
µ̂aj = Φj,t(Xt) (predict reward)

end
η ∼ Uniform(0,1)
ϵt = 1/t
if η > ϵt then

Dt = argmax1≤j≤K µ̂aj

else
ρ ∼ Uniform({1,...,K})
Dt = Aρ

end
Rt = Reward(Dt)
for j = 1 ... K do

Sj = {l : 1 ≤ l ≤ t, Dl = j}
TrainNNet(Φj,t−1, input = XSj , output = RSj )

end

end
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The Collection of Neural Networks
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Active Signal Reconstruction

Theorem ([Györfi et al., 2002] Theorem 16.3)

Let Φn be a neural network with some number of parameters p and the
parameters are optimized to minimize the penalized empirical risk of the
training data, S = {(Xi ,Yi )}ni=1 where Xi ∈ Spherem and Yi almost surely
bounded. Let the training data be of size n, and random variable
Yi = R(xi ) depend on xi ∈ Spherem. Then for n large enough,

ES

∫
x∈Sphere |Φn(x)− E(R(x))|2dP(x) ≤ c

√
log(n)

n for some c > 0.

Assume there are K actions to play. Let random variable X be the state
vector at some time step t and Y j be the reward of action j at time step t
both almost surely bounded. Let µj(X ) := E(Y j |X ).
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Active Signal Reconstruction

We will use ∗ for an optimal action index, for example let µ∗(X ) be the
expectation of all optimal actions at X . Let
∆j(X ) := max{0, µ∗(X )− µj(X )}. Let ϵt = 1/t. Let It be the action
chosen at time t. Assume state X is sampled from an unknown
distribution i.i.d. at each time step t.

Theorem ([Rawson and Balan, 2022])

Assume there is optimality gap δ with 0 < δ ≤ ∆j(X ) for all j and X
where j is suboptimal. Let Ci be the constant from above for neural
network i and let ni be the minimal value of the training data size such
that neural net bounded. Then for every t > t0 with probability at least
1− K exp(−3 log(t)/(28K )),

δ/(tK ) ≤ EXtEItER [R∗(Xt)− R(Xt)]

≤ maxi EXt∆i (Xt)

t
+ K 3/2C0

δ

√
log(log(t))− log(2K )

log(t)
.
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Active Signal Reconstruction

Generalize ϵt by raising to the p power.

Theorem ([Rawson and Balan, 2022])

Let ϵt = 1/tp where 0 < p < 1. With the above assumptions, set
C ′
0 = 8

√
2(1− p)maxi Ci and t0 > (2(1− p)K max{e,maxi ni})1/(1−p).

Then for every t > t0 with probability at least
1− K exp

(
−(3 t−p+1)/(28(−p + 1)K )

)
,

δ/(Ktp) ≤ EXtEItER [R∗(Xt)− R(Xt)]

≤ maxi EXt∆i (Xt)

tp
+ K 3/2C

′
0

δ

√
log(t−p+1)− log(2(−p + 1)K )

t−p+1
.

The expectations in above equations refer to the specific time step t. The
probability refers to the stochastic policy’s choices at previous time steps,
1 to t − 1.
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Active Signal Reconstruction [Rawson and Balan, 2022]

Corollary

The Epsilon Greedy method with any predictor, neural network or

otherwise, with convergence of c
√

log(n)
n , or better, will have regret

converging to 0 almost surely.

Remark

With ϵt = 1/tp with p ≤ 1, enough samples will be taken to train an
approximation to convergence. When p > 1, The number of samples is
finite and the approximation will not converge in general. This is called a
starvation scenario since the optimal action is not sampled sufficiently.

Corollary

The optimal p for ϵt = 1/tp with the fastest converging upper bound of
above theorem for Deep Epsilon Greedy is p = 1/3.
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Active Signal Reconstruction: MNIST Experiments

Find optimal policy to maximize the reward where
R(ai ) = digit(imagei ) + Gaussian noise.

Solution π∗ selects ai corresponding to imagei with largest integer.

(a) image1 (b) image2 (c) image3 (d) image4 (e) image5

Figure: Example of MNIST images that form the random context (or state)
vector.
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Active Signal Reconstruction: MNIST Experiments
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Figure: Deep Epsilon Greedy method convergence of regret to 0 at rate x−1/2.
Plotting normalized reward of optimal method minus normalized reward of Deep
Epsilon Greedy method. No noise added to MNIST dataset. Single run with 1000
neurons in the fully connected, final layer.
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Active Signal Reconstruction: MNIST Experiments
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Figure: Left: Low Noise with no Gaussian noise added to reward. Right: High
Noise with Gaussian noise, sigma = 1, added to reward. Left and Right: Mean
reward normalized (divide by time step) plotted over time steps for each method.
Task is to choose the largest MNIST image (digit) of 5 random images. Mean is
over 12 independent runs.
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Figure: Left: Low Noise with no Gaussian noise added to reward. Right: High
Noise with Gaussian noise, sigma = 1, added to reward. Left and Right: Mean
reward normalized (divide by time step) plotted over time steps for each method.
Task is to choose the largest MNIST image (digit) of 5 random images. Mean is
over 12 independent runs.
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Conclusion

Deep Epsilon Greedy Method is simplest, fastest method.

Showed convergence of Deep Epsilon Greedy Method.

Showed that ϵt = t−1/3 minimizes error bound.

Flexible convergence accommodates various learning methods.

Confirmed theory on real-world MNIST dataset.
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End

Thank You!

Questions?
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