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Permutation Invariant Representations Optimizations using Deep Learning

Overview
In this talk, we discuss two related problems:
Given a discrete group G acting on a normed space V :

1 Construct a (bi)Lipschitz Euclidean embedding of the quotient space
V /G , α : V̂ → Rm.

2 Construct projections onto cosets, π : V → ŷ = {g .y , g ∈ G}.
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Overview
In this talk, we discuss two related problems:
Given a discrete group G acting on a normed space V :

1 Construct a (bi)Lipschitz Euclidean embedding of the quotient space
V /G , α : V̂ → Rm. Classification of cosets.

2 Construct projections onto cosets, π : V → ŷ = {g .y , g ∈ G}.
Optimizations within cosets.
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Permutation Invariant Representations
Consider the equivalence relation ∼ on V = Rn×d induced by the group of
permutation matrices Sn acting on V by left multiplication: for any
X ,X ′ ∈ Rn×d ,

X ∼ X ′ ⇔ X ′ = PX , for some P ∈ Sn

Let R̂n×d = Rn×d/ ∼ be the quotient space endowed with the natural
distance induced by Frobenius norm ‖ · ‖F

d(X̂1, X̂2) = min
P∈Sn

‖X1 − PX2‖F , X̂1, X̂2 ∈ R̂n×d .

The Problem: Construct a Lipschitz embedding α̂ : R̂n×d → Rm, i.e., an
integer m = m(n, d), a map α : Rn×d → Rm and a constant L = L(α) > 0
so that for any X ,X ′ ∈ Rn×d ,

1 If X ∼ X ′ then α(X ) = α(X ′)
2 If α(X ) = α(X ′) then X ∼ X ′
3 ‖α(X )− α(X ′)‖2 ≤ L · d(X̂ , X̂ ′) = L minP∈Sn ‖X − PX ′‖F
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Motivation (1)
Graph Learning Problems

Given a data graph (e.g., social network, transportation network, citation
network, chemical network, protein network, biological networks):

Graph adjacency or weight matrix, A ∈ Rn×n;
Data matrix, X ∈ Rn×d , where each row corresponds to a feature
vector per node.

Contruct a map f : (A,X )→ f (A,X ) that performs:
1 classification: f (A,X ) ∈ {1, 2, · · · , c}
2 regression/prediction: f (A,X ) ∈ R.

Key observation: The outcome should be invariant to vertex permutation:
f (PAPT ,PX ) = f (A,X ), for every P ∈ Sn.
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Motivation (2)
Graph Convolutive Networks (GCN), Graph Neural Networks (GNN)

General architecture of a GCN/GNN

GCN (Kipf and Welling (’16)) choses Ã = I + A; GNN (Scarselli et.al.
(’08), Bronstein et.al. (’16)) choses Ã = pl (A), a polynomial in adjacency
matrix. L-layer GNN has parameters (p1,W1,B1, · · · , pL,WL,BL).

Note the covariance (or, equivariance) property: for any P ∈ O(n)
(including Sn), if (A,X ) 7→ (PAPT ,PX ) and Bi 7→ PBi then Y 7→ PY .
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Motivation (3)
Deep Learning with GCN
Our solution for the two learning tasks (classification or regression) is to
utilize the following scheme:

where α is a permutation invariant map (extractor), and SVM/NN is a
single-layer or a deep neural network (Support Vector Machine or a Fully
Connected Neural Network) trained on invariant representations.
The purpose of this (part of the) talk is to analyze the α component.
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Example on the Protein Dataset
Enzyme Classification Example

Protein Dataset: the task is classification of each protein into enzyme or
non-enzyme.
Dataset: 450 enzymes and 450 non-enzymes.
Architecture (ReLU activation):

GCN with L = 3 layers and d = 25 feature vectors in each layer;
No Permutation Invariant Component: α = Identity
Fully connected NN with dense 3-layers and 120 internal units.
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The Universal Embedding

Consider the map

µ : R̂n×d → P(Rd ) , µ(X )(x) = 1
n

n∑
k=1

δ(x − xk)

where P(Rd ) denotes the convex set of probability measures over Rd , and
δ denotes the Dirac measure.
Clearly µ(X ′) = µ(X ) iff X ′ = PX for some P ∈ Sn.

Main drawback: P(Rd ) is infinite dimensional!
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Finite Dimensional Embeddings
Architectures

Two classes of extractors [Zaheer et.al.17’ -’Deep Sets’]:
1 Pooling Map – based on Max pooling
2 Readout Map – based on Sum pooling

Intuition in the case d = 1:
Max pooling:

λ : Rn → Rn , λ(x) = x↓ := (xπ(k))n
k=1 , xπ(1) ≥ xπ(2) ≥ · · · ≥ xπ(n)

Sum pooling:
σ : Rn → Rn , σ(x) = (yk)n

k=1 , yk =
n∑

j=1
ν(ak , xj)

where kernel ν : R× R→ R, e.g. ν(a, t) = e−(a−t)2 , or ν(a = k, t) = tk .
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Pooling Mapping Approach

Fix a matrix R ∈ Rd×D. Consider the map:

Λ : Rn×d → Rn×D ≡ RnD , Λ(X ) = λ(XR)

where λ acts columnwise (reorders monotonically decreasing each
column). Since Λ(ΠX ) = Λ(X ), then Λ : R̂n×d → Rn×D.

Theorem
For any matrix R ∈ Rn,d+1 so that any n × n submatrix is invertible, there
is a subset Z ⊂ R̂n×d of zero measure so that Λ : R̂n×d \ Z → Rn×d+1 is
faithful (i.e., injective).

No known tight bound yet as to the minimum D = D(n, d) so that there
is a matrix R so that Λ is faithful (injective).
However, due to local linearity, if Λ is faithful (injective), then it is stable.
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Enzyme Classification Example
Extraction with Hadamard Matrix

Protein Dataset where task is classification into enzyme vs. non-enzyme.
Dataset: 450 enzymes and 450 non-enzymes.
Architecture (ReLU activation):

GCN with L = 3 layers and d = 25 feature vectors in each layer;
α = Λ, Z = λ(YR) with R = [I Hadamard ]. D = 50, m = 50.
Fully connected NN with dense 3-layers and 120 internal units.
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Readout Mapping Approach
Kernel Sampling

Consider:

Φ : Rn×d → Rm , (Φ(X ))j =
n∑

k=1
ν(aj , xk) or (Φ(X ))j =

n∏
k=1

ν(aj , xk)

where ν : Rd × Rd → R is a kernel, and x1, · · · , xn denote the rows of
matrix X .
Known solutions: If m =∞, then there exists a Φ that is globally faithful
(injective) and stable on compacts.
Interesting mathematical connexion: On compacts, some kernels ν define
Repreducing Kernel Hilberts Spaces (RKHSs) and yield a decomposition

(Φ(X ))j =
∑
p≥1

σpfp(aj)gp(X )
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Enzyme Classification Example
Feature Extraction with Exponential Kernel Sampling

Protein Dataset where task is classification into enzyme vs. non-enzyme.
Dataset: 450 enzymes and 450 non-enzymes.
Architecture (ReLU activation):

GCN with L = 3 layers and d = 25 feature vectors in each layer;
Ext : Zj =

∑n
k=1 exp(−‖yk − zj‖2) with m = 120 and zj random.

Fully connected NN with dense 3-layers and 120 internal units.

Radu Balan (UMD) Permutations and Graph Deep Learning 11/18/2019



Permutation Invariant Representations Optimizations using Deep Learning

Readout Mapping Approach
Polynomial Expansion - Quadratics

Another interpretation of the moments for d = 1: using Vieta’s formula,
Newton-Girard identities

P(X ) =
N∏

k=1
(X − xk)↔ (

∑
k

xk ,
∑

k
x2

k , ...,
∑

k
xn

k )

For d > 1, consider the quadratic d-variate polynomial:
P(Z1, · · · ,Zd ) =

n∏
k=1

(
(Z1 − xk,1)2 + · · ·+ (Zd − xk,d )2

)

=
2n∑

p1,...,pd =0
ap1,...,pd Z p1

1 · · ·Z
pd
d

Encoding complexity:
m =

(
2n + d

d

)
∼ (2n)d .
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Readout Mapping Approach
Polynomial Expansion - Quadratics (2)

A more careful analysis of P(Z1, ...,Zd ) reveals a form:

P(Z1, ...,Zd ) = tn+Q1(Z1, ...,Zd )tn−1+· · ·+Qn−1(Z1, ...,Zd )t+Qn(Z1, ...,Zd )

where t = Z 2
1 + · · ·+ Z 2

d and each Qk(Z1, ...,Zd ) ∈ Rk [Z1, ...,Zd ]. Hence
one needs to encode:

m =
(

d + 1
1

)
+
(

d + 2
2

)
+ · · ·+

(
d + n

n

)
=
(

d + n + 1
n

)
− 1

number of coefficients.
A significant drawback: Inversion is very hard and numerically unstable.
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Readout Mapping Approach
Polynomial Expansion - Linear Forms

A stable embedding can be constructed as follows (see also Gobels’
algorithm (1996) or [Derksen, Kemper ’02]).
Consider the n linear forms λk(Z1, ...,Zd ) = xk,1Z1 + · · · xk,d Zd . Construct
the polynomial in variable t with coefficients in R[Z1, ...,Zd ]:

P(t) =
n∏

k=1
(t−λk(Z1, ...,Zd )) = tn−e1(Z1, ..,Zd )tn−1+· · · (−1)nen(Z1, ...,Zd )

The elementary symmetric polynomials (e1, ..., en) are in 1-1
correspondence (Newton-Girard theorem) with the moments:

µp =
n∑

k=1
λp

k(Z1, ...,Zd ) , 1 ≤ p ≤ n
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Readout Mapping Approach
Polynomial Expansion - Linear Forms (2)

Each µp is a homogeneous polynomial of degree p in d variables. Hence to

encode each of them one needs
(

d + p − 1
p

)
coefficients. Hence the

total embedding dimension is

m =
(

d
1

)
+
(

d + 1
2

)
+ · · ·+

(
d + n − 1

n

)
=
(

d + n
n

)
− 1

For d = 1, m = n which is optimal.

For d = 2, m = n2+3n
2 . Is this optimal?
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Algebraic Embedding
Encoding using Complex Roots

Idea: Consider the case d = 2. Then each x1, · · · , xn ∈ R2 can be replaced
by n complex numbers z1, · · · , zn ∈ C, zk = xk,1 + ixk,2.
Consider the complex polynomial:

Q(z) =
n∏

k=1
(z − zk) = zn +

n∑
k=1

σkzn−k

which requires n complex numbers, or 2n real numbers.

Open problem: Can this construction be extended to d ≥ 3?
Remark: A drawback of polynomial (algebraic) embeddings: [Cahill’19]
showed that polynomial embeddings of translation invariant spaces cannot
be bi-Lipschitz.
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Quadratic Optimization Problems
Approach

Consider two symmetric (and positive semidefinite) matrices A,B ∈ Rn×n.
The quadratic assignment problem asks for the solution of

maximize trace(ΠAΠT B)
subject to:

Π ∈ Sn

where Input stands for a given set input data, and Sn denotes the
symmetric group of permutation matrices.
Idea: Use a two-step procedure:

1 Perform a latent representation of the Input Data using a Graph
Convolutive Network (or Graph Neural Network);

2 Solve the Linear Assignment Problem for an appropriate cost matrix
to obtain an estimate of the optimal Π.

Radu Balan (UMD) Permutations and Graph Deep Learning 11/18/2019



Permutation Invariant Representations Optimizations using Deep Learning

QAP
Motivation

Consider two n× n symmetric matrices A,B. In the alignment problem for
quadratic forms one seeks an orthogonal matrix U ∈ O(n) that minimizes

‖UAUT −B‖2F := trace((UAUT −B)2) = ‖A‖2F +‖B‖2F −2trace(UAUT B).

The solution is well-known and depends on the eigendecomposition of
matrices A,B: if A = U1D1UT

1 , B = U2D2UT
2 then

Uopt = U2UT
1 , ‖UoptAUT

opt − B‖2F =
n∑

k=1
|λk − µk |2,

where D1 = diag(λk) and D2 = diag(µk) are diagonal matrices with
eigenvalues ordered monotonically.
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QAP
Motivation 2

The challenging case is when U is constrained to belong to the
permutation group. In this case, the previous minimization problem

min
U∈Sn

‖UAUT − B‖F

turns into the QAP:
max
U∈Sn

trace(UAUT B).

In the case A,B are graph Laplacians (or adjacency matrices), an efficient
solution to this optimization problem would solve the graph isomorphism
problem, one of the remaining milenium problems: decide if two given
graphs are the same modulo vertex labelling.
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Prior work to discrete optimizations using deep learning

Direct approach to discrete optimization: Pointer Networks (Ptr-Nets)
utilize sequence-to-sequence Recurrent Neural Networks [Vinyals’15];
Reinforcement learning and policy gradients: [Bello’16]
Graph embedding and deep Q-learning: [Dai’17]
QAP using graph deep learning: [Nowak et al’17] utilizes siamese
graph neural networks that act on A and B independently to produce
embeddings E1 and E2; then the product E1E T

2 is transformed into a
permutation matrix through soft-max and cross-entropy loss.

Results of this presentation: [R.B.,N.Haghani,M.Singh] SPIE 2019.
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Shift Invariance Properties

Consider A = AT and B = BT (no positivity assumption).

Lemma
The QAP associated to (A,B) has the same optimizer as the QAP
associated to (A− λI,B − µI), where λ, µ ∈ R.

Indeed, the proof of this lemma is based on the following direct
computation:

trace(Π(A−λI)ΠT (B−µI)) = trace(ΠAΠT B)−µtrace(A)−λtrace(B)+nλµ

A consequence of this lemma is that, without loss of generality, we can
assume A,B ≥ 0. In fact, we can shift the spectrum to vanish the smallest
eigenvalues of A,B.
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The case of Rank One
Assume now A = aaT and B = bbT are non-negative rank one matrices.
Then:

trace(ΠAΠT B) = |bT Πa|2 = (trace(ΠabT ))2 = 1
trace(AB)(trace(ΠAB))2

In this case we obtain the explicit solution to the QAP:

Lemma
Assume A = aaT and B = bbT are rank one. Then the QAP optimizer is
the optimizer of one of the following two optimization problems:

maximize trace(ΠC)
subject to:

Π ∈ Sn

or
minimize trace(ΠC)

subject to:
Π ∈ Sn

where C = AB.
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Linear Assignment Problems
Given a cost matrix C ∈ Rn×n, the Linear Assignment Problem (LAP) is
defined by:

maximize trace(ΠC)
subject to:

Π ∈ Sn

Without loss of generality, max can be replace by min, for instance by
solving LAP for −C .

The key observation is that LAP can be solved efficiently by a linear
program. Specifically, the convexification of LAP produces the same
optimizer:

maximize trace(WC)
subject to:

Wi ,j ≥ 0 , 1 ≤ i , j ≤ n∑n
i=1 Wi ,j = 1 , 1 ≤ j ≤ n∑n
j=1 Wi ,j = 1 , 1 ≤ i ≤ n
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Diagonal Matrices
Another case when we know the exact solution is when A and B are
diagonal matrices. Say A = diag(a) and B = diag(b). Then

trace(ΠAΠT B) = trace(diag(Πa)diag(b)) = trace(ΠabT ) = trace(ΠC)

where C = abT .

Lemma
If A = diag(a) and B = diag(b) then the solution of the QAP is given by
the solution of the LAP

maximize trace(ΠC)
subject to:

Π ∈ Sn

where C = abT .
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Approach

Graph Deep-Learning Based Approach: First convert the input data (A,B)
into a cost matrix C , and then solve two LAPs, one associated to C the
other associated to −C . Finally choose the permutation that produces the
larger objective function.
The conversion step (A,B) 7→ C is performed by a Graph Convolutional
Network (GCN).
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Graph Convolutional Networks (GCN)

Kipf and Welling (2016) introduced a network structure that performs
local processing according to a modified adjacency matrix:

Here T̃ = I + T , where T is an input adjacency matrix, or graph weight
matrix. The L-layer GCN has parameters (W1,B1,W2,B2, · · · ,WL,BL).
As activation map σ we choose the ReLU (Rectified Linear Unit).
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The Specific GCN Architecture

For the QAP associated to matrices (A,B) we design a specific GCN
architecture:

X =
[

A 0
B 0

]
, T̃ =

[
In 1

‖A‖F ‖B‖F
AB

1
‖A‖F ‖B‖F

BA In

]
(2.1)

where the 0 matrices in X are designed to fit the appropriate size of W1.
For σ we choose the ReLU (Rectified Linear Unit) function in each layer
except for the last one; in the last layer we do not use any activation
function (i.e., σ = Identity). The biases B1, · · · ,BL are chosen of the form
Bk = 1 · βT

k , i.e., each row βT
k is repeated.
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GCN Guarantee

The following result applies to this network.

Theorem

Assume A = aaT and B = bbT are rank one with a, b ≥ 0, and consider
the GCN with L layers and activation map ReLU as described above. Then
for any nontrivial weights W1, · · · ,WL and zero biases B1, · · · ,BL = 0 the

network output Y partitioned Y =
[

Y 1

Y 2

]
into two blocks of n rows

each, satisfies Y 1Y 2T = γAB, for some constant γ ∈ R. In particular, the
max-LAP and min-LAP applied to the latent representation matrix
C = Y 1Y 2T are guaranteed to produce the optimal solution of the QAP.
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Reference Algorithms

We compare the GCN based optimizer with two different algorithms.
1. The AB Method bypasses the GCN block. Thus Y = X and the cost
matrix inputted into the LAP solver is simply C = AB (hence the name of
the method). Similar to the GCN approach, the AB Method is exact on
rank 1 inputs. But there is no adaptation of the cost matrix for other
input matrices.
2. The Iterative algorithm is based on alternating max-LAP or min-LAP as
follows:

Πk+1 ∈
{

argmax trace(ΠAΠT
k B)

Π ∈ Sn
,

argmin trace(ΠAΠT
k B)

Π ∈ Sn

}

where Π0 = I (identity), and the choice of permutation at each k is based
on which permutation produces a larger trace(ΠAΠT B).
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Comparison with Ground Truth
Results for 2 ≤ n ≤ 10 and raw data normal distributed

Average relative difference w.r.t. maximum objective function:

Figure: Top left: ABMethod, Top right: Iterative algorithm, Bottom left: GCN
with L=2 layers and bais, Bottom right: GCN with L = 3 layers and bias
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Comparison with Ground Truth
Results for 2 ≤ n ≤ 10 and raw data uniform distributed

Average relative difference w.r.t. maximum objective function:

Figure: Top left: ABMethod, Top right: Iterative algorithm, Bottom left: GCN
with L=2 layers and bais, Bottom right: GCN with L = 3 layers and bias
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Relative Comparison
Results for n = 100 and n = 200 with raw data normal distributed

Figure: Top row: Frequency of optimal algorithm for n = 100 (left), and n = 200
(right). Borrom row: Relative performance [%] to the best algorithm for n = 100
(left) and n = 200 (right)
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Relative Comparison
Results for n = 100 and n = 200 with raw data normal distributed

Figure: Top row: Frequency of optimal algorithm for n = 100 (left), and n = 200
(right). Borrom row: Relative performance [%] to the best algorithm for n = 100
(left) and n = 200 (right)
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