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Problem Statement Existing results: FIM Reconstruction Models

Notations and Assumptions
Phase Retrievability and Identifiability

Hilbert space H = Cn, Ĥ = H/T 1, frame F = {f1, · · · , fm} ⊂ Cn and

α : Ĥ → Rm , α(x) = (|〈x , fk〉|)1≤k≤m .

We assume the frame is phase retrievable, i.e., α is injective. Hence
(|〈x , fk〉|)1≤k≤m determine uniquely x up to a global phase factor.

Measurement process: y = (yk)1≤k≤m. We assume the distribution of
y , p(y ; x) depends on α(x) only. For instance:

yk = |〈x , fk〉+ µk |a + νk , µk ∼ CN(0, ρ2) , νk ∼ N(0, σ2)

Specifically: p(y ; x) = F (s1, · · · , sm, y), where sk = |〈x , fk〉|.
We assume identifiability and regularity: (1) If ∀y ∈ Rm,
F (s [1], y) = F (s [2], y) then s [1] = s [2]; and, (2) The Fisher Infomatrix
E[∂log(F )

∂sk

∂log(F )
∂sj

] is continuous and has constant rank on an open
neighborhood of the operating point [Rthbrg71].
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Problem Statement Existing results: FIM Reconstruction Models

Problem Statement
FIM vs. CRLB

Assumptions:

In previous works we derived various Fisher Information Matrix expressions.
We have also derived a Cramér-Rao Lower Bound (CRLB) for a specific
estimation model. In this paper we analyze a second identification problem
and compare the two CRLBs:

Problem
The problem is not how to compute the Fisher Information Matrix (FIM).
The problem is how to use FIM, to derive Cramér-Rao Lower Bounds.
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Fisher Info Matrix for the AWGN Model

For the AWGN model:

yk = |〈x , fk〉|2 + νk , 1 ≤ k ≤ m

with νk ∼ CN (0, σ2) i.i.d. the Fisher Information Matrix:

I = E [(∇x log p(y ; x))(∇x log p(y ; x))∗]

IAWGN,real (x) = 4
σ2
∑m

k=1 |〈x , fk〉|2fk f T
k = 4

σ2
∑m

k=1(fk f T
k )xxT (fk f T

k )

IAWGN,cplx (x) = 4
σ2
∑m

k=1 Φkξξ
∗Φk [Bal13,BCMN13] with

Φk ∈ R2n×2n and ξ ∈ R2n.

Radu Balan, David Bekkerman (UMD) CRLB SampTA Conference July 10, 2019



Problem Statement Existing results: FIM Reconstruction Models

Fisher Info Matrix for the AWGN Model

For the AWGN model:

yk = |〈x , fk〉|2 + νk , 1 ≤ k ≤ m

with νk ∼ CN (0, σ2) i.i.d. the Fisher Information Matrix:

I = E [(∇x log p(y ; x))(∇x log p(y ; x))∗]

IAWGN,real (x) = 4
σ2
∑m

k=1 |〈x , fk〉|2fk f T
k = 4

σ2
∑m

k=1(fk f T
k )xxT (fk f T

k )

IAWGN,cplx (x) = 4
σ2
∑m

k=1 Φkξξ
∗Φk [Bal13,BCMN13] with

Φk ∈ R2n×2n and ξ ∈ R2n.

Radu Balan, David Bekkerman (UMD) CRLB SampTA Conference July 10, 2019



Problem Statement Existing results: FIM Reconstruction Models

Fisher Info Matrix for the AWGN Model

For the AWGN model:

yk = |〈x , fk〉|2 + νk , 1 ≤ k ≤ m

with νk ∼ CN (0, σ2) i.i.d. the Fisher Information Matrix:

I = E [(∇x log p(y ; x))(∇x log p(y ; x))∗]

IAWGN,real (x) = 4
σ2
∑m

k=1 |〈x , fk〉|2fk f T
k = 4

σ2
∑m

k=1(fk f T
k )xxT (fk f T

k )

IAWGN,cplx (x) = 4
σ2
∑m

k=1 Φkξξ
∗Φk [Bal13,BCMN13] with

Φk ∈ R2n×2n and ξ ∈ R2n.

Radu Balan, David Bekkerman (UMD) CRLB SampTA Conference July 10, 2019



Problem Statement Existing results: FIM Reconstruction Models

FIM for Non-AWGN

Consider the Non-AWGN model:

yk = |〈x , fk〉+ µk |2 , 1 ≤ k ≤ m

with µk ∼ CN (0, ρ2) i.i.d.

The likelihood function:

p(y ; x) = 1
ρ2m exp

{
− 1
ρ2

( m∑
k=1

yk +
m∑

k=1
|〈x , fk〉|2

)} m∏
k=1

I0
(2|〈x , fk〉|

√yk
ρ2

)

Realification: x 7→ ξ = [real(x) imag(x)]T and |〈x , fk〉| =
√
〈Φkξ, ξ〉

where Φk is a rank-2 replacing fk f ∗k .
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FIM for Non-AWGN

Theorem (Bal15)
The Fisher Information Matrix for the Non-AWGN model is given by

I(ξ) = 4
ρ4

m∑
k=1

(
G1

(〈Φkξ, ξ〉
ρ2

)
− 1

)
Φkξξ

∗Φk

= 4
ρ2

m∑
k=1

G2

(〈Φkξ, ξ〉
ρ2

) 1
〈Φkξ, ξ〉

Φkξξ
∗Φk

where

G1(a) = e−a

8a3

∫ ∞
0

I2
1 (t)
I0(t) t3e−

t2
4a dt , G2(a) = a(G1(a)− 1)
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FIM for Non-AWGN
Asymptotic Regimes

Form 1: Low SNR
I(ξ) =
4
ρ4
∑m

k=1

(
G1
(
〈Φkξ,ξ〉
ρ2

)
− 1

)
Φkξξ

∗Φk

≈ 4
ρ4
∑m

k=1 Φkξξ
∗Φk

Form 2: High SNR
I(ξ) =
4
ρ2
∑m

k=1 G2
(
〈Φkξ,ξ〉
ρ2

)
1

〈Φkξ,ξ〉Φkξξ
∗Φk

≈ 2
ρ2
∑m

k=1
1

〈Φkξ,ξ〉Φkξξ
∗Φk
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Problem Statement Existing results: FIM Reconstruction Models

Setup 1: Reference signal based estimation
In the first setup we fix a reference unit-norm signal z0 ∈ Cn. The
unknown (to-be-estimated) signal x is assumed to come from set:

Vz0 = {x ∈ Cn : imag(〈x , z0〉) = 0 , real(〈x , z0〉) > 0 }.

The estimator has access to the reference signal z0:

Let Vζ0 = {ξ ∈ R2n , 〈ξ, ζ0〉) ≥ 0, 〈ξ, Jζ0〉) = 0}. , Eζ0 = spanR(Vζ0)
with ζ0 = [real(z0) imag(z0)]T . The estimator o : Rm → Eζ0 is unbiased if
E[o(y); ξ] = ξ for every x ∈ Vz0 , with ξ = [real(x); imag(x)].
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Setup 1: Positive correlation with a reference signal
The CRL Bound

Let Πη = 1− 1
‖η‖2 JηηT JT and L = I − 1

〈ξ,ζ0〉Jζ0ξ
T JT , with J the

symplectic form matrix [0,−I; I, 0].

Theorem
Assume the measurement model y = (yk)1≤k≤m where the likelihood
function p(y ; x) = F (|〈x , f1〉|, · · · , |〈x , fm〉|, y) is identifiable and regular.
Then the covariance of any unbiased estimtor ω : Rm → Eζ0 is bounded
below by

Cov [ω(y); ξ] ≥ (Πz0I(ξ)Πz0)† = LT (I(ξ))†L.

In particular: E[‖ω(y)− ξ‖2; ξ] ≥ trace
{

(Πz0I(ξ)Πz0)†
}

=

trace(I(ξ))† + ‖ξ‖2

|〈ξ,ζ0〉|2 〈(I(ξ))†Jζ0, Jζ0〉.

Remark: First inequality was derived in 2015 paper; the second equality is
new.
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Setup 2: Oracle-based signal estimation
Consider now a different setup, where x ∈ Cn is unconstrained and the
estimation is performed in two stages: (i) the first stage returns a ”class”
estimate through o : Rm → Cn; (ii) in the second stage, an oracle provides
the optimal global phase 〈x ,o(y)〉

|〈x ,o(y)〉| . Thus, the overall estimator:

õ : Rm → Cn , õ(y) = o(y) 〈x , o(y)〉
|〈x , o(y)〉| .

The estimator is unbiased if E[õ(y); x ] = x for every x ∈ Cn.
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Setup 2: Oracle-based signal estimation
The CRL Bound

Theorem
Assume the measurement model y = (yk)1≤k≤m where the likelihood
function p(y ; x) = F (|〈x , f1〉|, · · · , |〈x , fm〉|, y) is identifiable and regular.
Let õ : Rm → Cn be an unbiased estimator in Setup 2 (Oracle-based
estimator). Denote by ω(y) = [real(o(y)); imag(o(y))] and

˜omega(y) = [real(õ(y)); imag(õ(y))]. Then for any
ξ = [real(x); imag(x)] 6= 0,

Cov [ω̃(y); ξ] ≥ (I −∆)(I(ξ))†(I −∆)

where ∆ =
E
[

(〈ω, Jξ〉)2

((〈ω, ξ〉)2 + (〈ω, Jξ〉)2)3/2
ωω

T +
〈ω, ξ〉〈ω, Jξ〉

((〈ω, ξ〉)2 + (〈ω, Jξ〉)2)3/2
(JωωT +ωωT JT )+

(〈ω, ξ〉)2

((〈ω, ξ〉)2 + (〈ω, Jξ〉)2)3/2
JωωT JT

]
and satisfies ∆ = ∆T ≥ I − Πξ ≥ 0, ∆Jξ = Jξ and ∆ξ = 0.
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Conclusions and Open Questions

We obtained Cramér-Rao (type) Lower Bounds for two setups:
1 Positive Correlation with a reference signal: CRLB has a simple form.
2 Oracle-based global phase: CRLB seems very complicated, and

estimator dependent. (Remark: Estimator dependency is known for
other classes of estimators)

Open Question: Which of the two CRL bounds is smaller?

Intuitively, Oracle-based estimator seems to have more information than
the reference signal based estimator. But is this true/quantifiable?
Easy case: CRLBSetup 1 →∞ as ξ ⊥ ζ0.
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Thank you! Merci!

Questions?
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