The Cramér-Rao Lower Bound in the Phase Retrieval Problem

Radu Balan , David Bekkerman

Department of Mathematics and CSCAMM University of Maryland, College Park, MD 20742

July 10, 2019 SampTA 2019 Conference Bordeaux, FRANCE

Reconstruction Models

Notations and Assumptions Phase Retrievability and Identifiability

- Hilbert space $H = \mathbb{C}^n$, $\hat{H} = H/T^1$, frame $\mathcal{F} = \{f_1, \dots, f_m\} \subset \mathbb{C}^n$ and $\alpha : \hat{H} \to \mathbb{R}^m$, $\alpha(x) = (|\langle x, f_k \rangle|)_{1 \le k \le m}$.
- We assume the frame is *phase retrievable*, i.e., α is injective. Hence $(|\langle x, f_k \rangle|)_{1 \le k \le m}$ determine uniquely x up to a global phase factor.

Reconstruction Models

Notations and Assumptions Phase Retrievability and Identifiability

- Hilbert space $H = \mathbb{C}^n$, $\hat{H} = H/T^1$, frame $\mathcal{F} = \{f_1, \cdots, f_m\} \subset \mathbb{C}^n$ and $\alpha : \hat{H} \to \mathbb{R}^m$, $\alpha(x) = (|\langle x, f_k \rangle|)_{1 \le k \le m}$.
- We assume the frame is *phase retrievable*, i.e., α is injective. Hence $(|\langle x, f_k \rangle|)_{1 \le k \le m}$ determine uniquely x up to a global phase factor.
- Measurement process: y = (y_k)_{1≤k≤m}. We assume the distribution of y, p(y; x) depends on α(x) only. For instance:

$$y_k = |\langle x, f_k \rangle + \mu_k|^a + \nu_k , \ \mu_k \sim \mathbb{CN}(0, \rho^2) , \ \nu_k \sim \mathbb{N}(0, \sigma^2)$$

Specifically: $p(y; x) = F(s_1, \dots, s_m, y)$, where $s_k = |\langle x, f_k \rangle|$.

 We assume *identifiability and regularity*: (1) If ∀y ∈ ℝ^m, F(s^[1], y) = F(s^[2], y) then s^[1] = s^[2]; and, (2) The Fisher Infomatrix E[∂log(F) ∂log(F) ∂s_k ∂log(F) ∂s_j] is continuous and has constant rank on an open neighborhood of the operating point [Rthbrg71].

Reconstruction Models

Problem Statement FIM vs. CRLB

Assumptions:

Reconstruction Models

Problem Statement FIM vs. CRLB

Assumptions:

In previous works we derived various Fisher Information Matrix expressions. We have also derived a Cramér-Rao Lower Bound (CRLB) for a specific estimation model. In this paper we analyze a second identification problem and compare the two CRLBs:

Problem

The problem is not how to compute the Fisher Information Matrix (FIM). The problem is how to use FIM, to derive Cramér-Rao Lower Bounds.

Fisher Info Matrix for the AWGN Model

• For the AWGN model:

$$y_k = |\langle x, f_k \rangle|^2 + \nu_k \ , \ 1 \le k \le m$$

with $\nu_k \sim \mathbb{CN}(0, \sigma^2)$ i.i.d. the Fisher Information Matrix:

$$\mathbb{I} = \mathbb{E}\left[(\nabla_x \log p(y; x)) (\nabla_x \log p(y; x))^* \right]$$

Fisher Info Matrix for the AWGN Model

• For the AWGN model:

$$y_k = |\langle x, f_k \rangle|^2 + \nu_k \ , \ 1 \le k \le m$$

with $\nu_k \sim \mathbb{CN}(0, \sigma^2)$ i.i.d. the Fisher Information Matrix:

$$\mathbb{I} = \mathbb{E}\left[(\nabla_x \log p(y; x)) (\nabla_x \log p(y; x))^* \right]$$

• $\mathbb{I}^{AWGN,real}(x) = \frac{4}{\sigma^2} \sum_{k=1}^m |\langle x, f_k \rangle|^2 f_k f_k^T = \frac{4}{\sigma^2} \sum_{k=1}^m (f_k f_k^T) x x^T (f_k f_k^T)$

Fisher Info Matrix for the AWGN Model

• For the AWGN model:

$$y_k = |\langle x, f_k \rangle|^2 + \nu_k \ , \ 1 \le k \le m$$

with $\nu_k \sim \mathbb{CN}(0, \sigma^2)$ i.i.d. the Fisher Information Matrix:

$$\mathbb{I} = \mathbb{E}\left[(\nabla_x \log p(y; x)) (\nabla_x \log p(y; x))^* \right]$$

• $\mathbb{I}^{AWGN,real}(x) = \frac{4}{\sigma^2} \sum_{k=1}^m |\langle x, f_k \rangle|^2 f_k f_k^T = \frac{4}{\sigma^2} \sum_{k=1}^m (f_k f_k^T) x x^T (f_k f_k^T)$

•
$$\mathbb{I}^{AWGN,cplx}(x) = \frac{4}{\sigma^2} \sum_{k=1}^{m} \Phi_k \xi \xi^* \Phi_k$$
 [Bal13,BCMN13] with $\Phi_k \in \mathbb{R}^{2n \times 2n}$ and $\xi \in \mathbb{R}^{2n}$.

Reconstruction Models

FIM for Non-AWGN

• Consider the Non-AWGN model:

$$y_k = |\langle x, f_k
angle + \mu_k|^2$$
, $1 \le k \le m$

with $\mu_k \sim \mathbb{C}\mathcal{N}(0, \rho^2)$ i.i.d.

Reconstruction Models

FIM for Non-AWGN

• Consider the Non-AWGN model:

$$y_k = |\langle x, f_k \rangle + \mu_k|^2$$
, $1 \le k \le m$

with $\mu_k \sim \mathbb{CN}(\mathbf{0}, \rho^2)$ i.i.d.

• The likelihood function:

$$p(y;x) = \frac{1}{\rho^{2m}} exp\left\{-\frac{1}{\rho^2} \left(\sum_{k=1}^m y_k + \sum_{k=1}^m |\langle x, f_k \rangle|^2\right)\right\} \prod_{k=1}^m I_0\left(\frac{2|\langle x, f_k \rangle|\sqrt{y_k}}{\rho^2}\right)$$

Reconstruction Models

FIM for Non-AWGN

• Consider the Non-AWGN model:

$$y_k = |\langle x, f_k \rangle + \mu_k|^2$$
, $1 \le k \le m$

with $\mu_k \sim \mathbb{C}\mathcal{N}(\mathbf{0}, \rho^2)$ i.i.d.

• The likelihood function:

$$p(y;x) = \frac{1}{\rho^{2m}} exp\left\{-\frac{1}{\rho^2} \left(\sum_{k=1}^m y_k + \sum_{k=1}^m |\langle x, f_k \rangle|^2\right)\right\} \prod_{k=1}^m l_0\left(\frac{2|\langle x, f_k \rangle|\sqrt{y_k}}{\rho^2}\right)$$

• Realification: $x \mapsto \xi = [real(x) \ imag(x)]^T$ and $|\langle x, f_k \rangle| = \sqrt{\langle \Phi_k \xi, \xi \rangle}$ where Φ_k is a rank-2 replacing $f_k f_k^*$.

Reconstruction Models

FIM for Non-AWGN

• Consider the Non-AWGN model:

$$y_k = |\langle x, f_k \rangle + \mu_k|^2$$
, $1 \le k \le m$

with $\mu_k \sim \mathbb{C}\mathcal{N}(\mathbf{0}, \rho^2)$ i.i.d.

• The likelihood function:

$$p(y;x) = \frac{1}{\rho^{2m}} exp\left\{-\frac{1}{\rho^2} \left(\sum_{k=1}^m y_k + \sum_{k=1}^m |\langle x, f_k \rangle|^2\right)\right\} \prod_{k=1}^m l_0\left(\frac{2|\langle x, f_k \rangle|\sqrt{y_k}}{\rho^2}\right)$$

• Realification: $x \mapsto \xi = [real(x) \ imag(x)]^T$ and $|\langle x, f_k \rangle| = \sqrt{\langle \Phi_k \xi, \xi \rangle}$ where Φ_k is a rank-2 replacing $f_k f_k^*$.

Reconstruction Models

FIM for Non-AWGN

Theorem (Bal15)

The Fisher Information Matrix for the Non-AWGN model is given by

$$\mathbb{I}(\xi) = \frac{4}{\rho^4} \sum_{k=1}^m \left(G_1\left(\frac{\langle \Phi_k \xi, \xi \rangle}{\rho^2}\right) - 1 \right) \Phi_k \xi \xi^* \Phi_k$$
$$= \frac{4}{\rho^2} \sum_{k=1}^m G_2\left(\frac{\langle \Phi_k \xi, \xi \rangle}{\rho^2}\right) \frac{1}{\langle \Phi_k \xi, \xi \rangle} \Phi_k \xi \xi^* \Phi_k$$

where

$$G_1(a) = rac{e^{-a}}{8a^3} \int_0^\infty rac{l_1^2(t)}{l_0(t)} t^3 e^{-rac{t^2}{4a}} dt \ , \ \ G_2(a) = a(G_1(a)-1)$$

Problem Statement

Existing results: FIM 000●

Reconstruction Models

FIM for Non-AWGN Asymptotic Regimes

Problem Statement

Existing results: FIM 000●

Reconstruction Models

FIM for Non-AWGN Asymptotic Regimes

Form 1: Low SNR

$$\mathbb{I}(\xi) = \frac{4}{\rho^4} \sum_{k=1}^{m} \left(G_1\left(\frac{\langle \Phi_k \xi, \xi \rangle}{\rho^2}\right) - 1 \right) \Phi_k \xi \xi^* \Phi_k$$

$$\approx \frac{4}{\rho^4} \sum_{k=1}^{m} \Phi_k \xi \xi^* \Phi_k$$

Problem Statement

Existing results: FIM 000●

Reconstruction Models

FIM for Non-AWGN Asymptotic Regimes

Form 1: Low SNR

$$\mathbb{I}(\xi) = \frac{4}{\rho^4} \sum_{k=1}^{m} \left(G_1\left(\frac{\langle \Phi_k \xi, \xi \rangle}{\rho^2}\right) - 1 \right) \Phi_k \xi \xi^* \Phi_k$$

$$\approx \frac{4}{\rho^4} \sum_{k=1}^{m} \Phi_k \xi \xi^* \Phi_k$$

Form 2: High SNR

$$\mathbb{I}(\xi) = \frac{4}{\rho^2} \sum_{k=1}^m G_2\left(\frac{\langle \Phi_k \xi, \xi \rangle}{\rho^2}\right) \frac{1}{\langle \Phi_k \xi, \xi \rangle} \Phi_k \xi \xi^* \Phi_k$$

$$\approx \frac{2}{\rho^2} \sum_{k=1}^m \frac{1}{\langle \Phi_k \xi, \xi \rangle} \Phi_k \xi \xi^* \Phi_k$$

Reconstruction Models

Setup 1: Reference signal based estimation

In the first setup we fix a reference unit-norm signal $z_0 \in \mathbb{C}^n$. The unknown (to-be-estimated) signal x is assumed to come from set:

$$V_{z_0} = \{ x \in \mathbb{C}^n : imag(\langle x, z_0 \rangle) = 0 , real(\langle x, z_0 \rangle) > 0 \}.$$

The estimator has access to the reference signal z_0 :

Reconstruction Models

Setup 1: Reference signal based estimation

In the first setup we fix a reference unit-norm signal $z_0 \in \mathbb{C}^n$. The unknown (to-be-estimated) signal x is assumed to come from set:

$$V_{z_0} = \{ x \in \mathbb{C}^n : imag(\langle x, z_0 \rangle) = 0 , real(\langle x, z_0 \rangle) > 0 \}.$$

The estimator has access to the reference signal z_0 :

Let $\mathcal{V}_{\zeta_0} = \{\xi \in \mathbb{R}^{2n}, \langle \xi, \zeta_0 \rangle\} \ge 0, \langle \xi, J\zeta_0 \rangle\} = 0\}$. , $\mathcal{E}_{\zeta_0} = span_{\mathbb{R}}(\mathbb{V}_{\zeta_0})$ with $\zeta_0 = [real(z_0) \ imag(z_0)]^T$. The estimator $o : \mathbb{R}^m \to \mathcal{E}_{\zeta_0}$ is unbiased if $\mathbb{E}[o(y); \xi] = \xi$ for every $x \in V_{z_0}$, with $\xi = [real(x); imag(x)]$.

Reconstruction Models

Setup 1: Positive correlation with a reference signal The CRL Bound

Let $\Pi_{\eta} = 1 - \frac{1}{\|\eta\|^2} J\eta \eta^T J^T$ and $L = I - \frac{1}{\langle \xi, \zeta_0 \rangle} J\zeta_0 \xi^T J^T$, with J the symplectic form matrix [0, -I; I, 0].

Theorem

Assume the measurement model $y = (y_k)_{1 \le k \le m}$ where the likelihood function $p(y; x) = F(|\langle x, f_1 \rangle|, \cdots, |\langle x, f_m \rangle|, y)$ is identifiable and regular. Then the covariance of any unbiased estimator $\omega : \mathbb{R}^m \to \mathcal{E}_{\zeta_0}$ is bounded below by

$$Cov[\omega(y);\xi] \ge (\Pi_{z_0}\mathbb{I}(\xi)\Pi_{z_0})^{\dagger} = L^{T}(\mathbb{I}(\xi))^{\dagger}L.$$

In particular: $\mathbb{E}[\|\omega(y) - \xi\|^2; \xi] \ge trace\left\{(\Pi_{z_0}\mathbb{I}(\xi)\Pi_{z_0})^{\dagger}\right\} = trace(\mathbb{I}(\xi))^{\dagger} + \frac{\|\xi\|^2}{|\langle\xi,\zeta_0\rangle|^2}\langle(\mathbb{I}(\xi))^{\dagger}J\zeta_0, J\zeta_0\rangle.$

Remark: First inequality was derived in 2015 paper; the second equality is new.

Radu Balan, David Bekkerman (UMD)

Reconstruction Models

Setup 2: Oracle-based signal estimation

Consider now a different setup, where $x \in \mathbb{C}^n$ is unconstrained and the estimation is performed in two stages: (i) the first stage returns a "class" estimate through $o : \mathbb{R}^m \to \mathbb{C}^n$; (ii) in the second stage, an oracle provides the optimal global phase $\frac{\langle x, o(y) \rangle}{|\langle x, o(y) \rangle|}$. Thus, the overall estimator:

$$ilde{o}: \mathbb{R}^m o \mathbb{C}^n \;, \; ilde{o}(y) = o(y) rac{\langle x, o(y)
angle}{|\langle x, o(y)
angle|}.$$

The estimator is *unbiased* if $\mathbb{E}[\tilde{o}(y); x] = x$ for every $x \in \mathbb{C}^n$.

Radu Balan, David Bekkerman (UMD)

Reconstruction Models

Setup 2: Oracle-based signal estimation The CRL Bound

Theorem

Assume the measurement model $y = (y_k)_{1 \le k \le m}$ where the likelihood function $p(y; x) = F(|\langle x, f_1 \rangle|, \dots, |\langle x, f_m \rangle|, y)$ is identifiable and regular. Let $\tilde{o} : \mathbb{R}^m \to \mathbb{C}^n$ be an unbiased estimator in Setup 2 (Oracle-based estimator). Denote by $\omega(y) = [real(o(y)); imag(o(y))]$ and $om ega(y) = [real(\tilde{o}(y)); imag(\tilde{o}(y))]$. Then for any $\xi = [real(x); imag(x)] \neq 0$,

$$Cov[\widetilde{\omega}(y);\xi] \geq (I-\Delta)(\mathbb{I}(\xi))^{\dagger}(I-\Delta)$$

where
$$\Delta = \begin{bmatrix} (\langle \omega, J\xi \rangle)^2 & \\ ((\langle \omega, \xi \rangle)^2 + (\langle \omega, J\xi \rangle)^2)^{3/2} & \\ \omega & \\ \end{bmatrix} + \frac{\langle \omega, \xi \rangle \langle \omega, J\xi \rangle}{((\langle \omega, \xi \rangle)^2 + (\langle \omega, J\xi \rangle)^2)^{3/2}} (J\omega\omega^T + \omega\omega^T J^T) + \frac{(\langle \omega, \xi \rangle)^2}{((\langle \omega, \xi \rangle)^2 + (\langle \omega, J\xi \rangle)^2)^{3/2}} J\omega\omega^T J^T$$

and satisfies $\Delta = \Delta^T \ge I - \Pi_{\xi} \ge 0$, $\Delta J \xi = J \xi$ and $\Delta \xi = 0$.

Reconstruction Models

Conclusions and Open Questions

We obtained Cramér-Rao (type) Lower Bounds for two setups:

- **1** Positive Correlation with a reference signal: CRLB has a simple form.
- Oracle-based global phase: CRLB seems very complicated, and estimator dependent. (Remark: Estimator dependency is known for other classes of estimators)

Reconstruction Models

Conclusions and Open Questions

We obtained Cramér-Rao (type) Lower Bounds for two setups:

- **O** Positive Correlation with a reference signal: CRLB has a simple form.
- Oracle-based global phase: CRLB seems very complicated, and estimator dependent. (Remark: Estimator dependency is known for other classes of estimators)

Open Question: Which of the two CRL bounds is smaller?

Intuitively, Oracle-based estimator seems to have more information than the reference signal based estimator. But is this true/quantifiable? Easy case: $CRLB_{Setup \ 1} \rightarrow \infty$ as $\xi \perp \zeta_0$.

くロト く得ト くほト くほとう

Thank you! Merci!

Questions?

< □ > < 同 >

References

- M. Abramowitz, I. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, US Dept.Comm., Nat.Bur.Stand. Applied Math. Ser. 55, 10th Printing, 1972.
- B. Alexeev, A. S. Bandeira, M. Fickus, D. G. Mixon, Phase retrieval with polarization, SIAM J. Imaging Sci., **7** (1) (2014), 35–66.
- R. Balan, P. Casazza, D. Edidin, On signal reconstruction without phase, Appl.Comput.Harmon.Anal. **20** (2006), 345–356.
- R. Balan, B. Bodmann, P. Casazza, D. Edidin, Painless reconstruction from Magnitudes of Frame Coefficients, J.Fourier Anal.Applic., 15 (4) (2009), 488–501.
- R. Balan, Reconstruction of Signals from Magnitudes of Frame Representations, arXiv submission arXiv:1207.1134

- R. Balan, Reconstruction of Signals from Magnitudes of Redundant Representations: The Complex Case, available online arXiv:1304.1839v1, Found.Comput.Math. 2015, http://dx.doi.org/10.1007/s10208-015-9261-0
- R. Balan and Y. Wang, Invertibility and Robustness of Phaseless Reconstruction, available online arXiv:1308.4718v1, Appl. Comp. Harm. Anal., 38 (2015), 469–488.
- A. S. Bandeira, J. Cahill, D. Mixon, A. A. Nelson, Saving phase: Injectivity and Stability for phase retrieval, arXiv submission, arXiv: 1302.4618, Appl. Comp. Harm. Anal. 37 (1) (2014), 106–125.
- B. G. Bodmann, N. Hammen, Stable Phase Retrieval with Low-Redundancy Frames, arXiv submission:1302.5487v1, Adv. Comput. Math., accepted 10 April 2014.
- E. Candés, T. Strohmer, V. Voroninski, PhaseLift: Exact and Stable Signal Recovery from Magnitude Measurements via Convex and Stable

Radu Balan, David Bekkerman (UMD)

Programming, Communications in Pure and Applied Mathematics 66 (2013), 1241–1274.

- P. Casazza, The art of frame theory, Taiwanese J. Math., 4(2) (2000), 129–202.
- Y. Ephraim, D. Malah, Speech enhancement using a minimum mean-square error short-time spectral amplitude estimator, IEEE Trans. ASSP, 32(6) (1984), 1109-1121.
- T.J. Rothenberg, Identification in Parametric Models, Econometrica, 39(3) (1971), 577-591.