The Cramér-Rao Lower Bound in the Phase Retrieval Problem

Radu Balan , David Bekkerman

Department of Mathematics and CSCAMM University of Maryland, College Park, MD 20742

July 10, 2019
SampTA 2019 Conference
Bordeaux, FRANCE

Notations and Assumptions

Phase Retrievability and Identifiability

- Hilbert space $H=\mathbb{C}^{n}, \hat{H}=H / T^{1}$, frame $\mathcal{F}=\left\{f_{1}, \cdots, f_{m}\right\} \subset \mathbb{C}^{n}$ and

$$
\alpha: \hat{H} \rightarrow \mathbb{R}^{m}, \quad \alpha(x)=\left(\left|\left\langle x, f_{k}\right\rangle\right|\right)_{1 \leq k \leq m} .
$$

- We assume the frame is phase retrievable, i.e., α is injective. Hence $\left(\left|\left\langle x, f_{k}\right\rangle\right|\right)_{1 \leq k \leq m}$ determine uniquely x up to a global phase factor.

Notations and Assumptions

Phase Retrievability and Identifiability

- Hilbert space $H=\mathbb{C}^{n}, \hat{H}=H / T^{1}$, frame $\mathcal{F}=\left\{f_{1}, \cdots, f_{m}\right\} \subset \mathbb{C}^{n}$ and

$$
\alpha: \hat{H} \rightarrow \mathbb{R}^{m} \quad, \quad \alpha(x)=\left(\left|\left\langle x, f_{k}\right\rangle\right|\right)_{1 \leq k \leq m} .
$$

- We assume the frame is phase retrievable, i.e., α is injective. Hence $\left(\left|\left\langle x, f_{k}\right\rangle\right|\right)_{1 \leq k \leq m}$ determine uniquely x up to a global phase factor.
- Measurement process: $y=\left(y_{k}\right)_{1 \leq k \leq m}$. We assume the distribution of $y, p(y ; x)$ depends on $\alpha(x)$ only. For instance:

$$
y_{k}=\left|\left\langle x, f_{k}\right\rangle+\mu_{k}\right|^{a}+\nu_{k}, \mu_{k} \sim \mathbb{C N}\left(0, \rho^{2}\right), \nu_{k} \sim \mathbb{N}\left(0, \sigma^{2}\right)
$$

Specifically: $p(y ; x)=F\left(s_{1}, \cdots, s_{m}, y\right)$, where $s_{k}=\left|\left\langle x, f_{k}\right\rangle\right|$.

- We assume identifiability and regularity: (1) If $\forall y \in \mathbb{R}^{m}$, $F\left(s^{[1]}, y\right)=F\left(s^{[2]}, y\right)$ then $s^{[1]}=s^{[2]}$; and, (2) The Fisher Infomatrix $\mathbb{E}\left[\frac{\partial \log (F)}{\partial s_{k}} \frac{\partial \log (F)}{\partial s_{j}}\right]$ is continuous and has constant rank on an open neighborhood of the operating point [Rthbrg71].

Problem Statement FIM vs. CRLB

Assumptions:

Problem Statement
 FIM vs. CRLB

Assumptions:

In previous works we derived various Fisher Information Matrix expressions. We have also derived a Cramér-Rao Lower Bound (CRLB) for a specific estimation model. In this paper we analyze a second identification problem and compare the two CRLBs:

Problem

The problem is not how to compute the Fisher Information Matrix (FIM). The problem is how to use FIM, to derive Cramér-Rao Lower Bounds.

Fisher Info Matrix for the AWGN Model

- For the AWGN model:

$$
y_{k}=\left|\left\langle x, f_{k}\right\rangle\right|^{2}+\nu_{k}, \quad 1 \leq k \leq m
$$

with $\nu_{k} \sim \mathbb{C} \mathcal{N}\left(0, \sigma^{2}\right)$ i.i.d. the Fisher Information Matrix:

$$
\mathbb{I}=\mathbb{E}\left[\left(\nabla_{x} \log p(y ; x)\right)\left(\nabla_{x} \log p(y ; x)\right)^{*}\right]
$$

Fisher Info Matrix for the AWGN Model

- For the AWGN model:

$$
y_{k}=\left|\left\langle x, f_{k}\right\rangle\right|^{2}+\nu_{k}, \quad 1 \leq k \leq m
$$

with $\nu_{k} \sim \mathbb{C} \mathcal{N}\left(0, \sigma^{2}\right)$ i.i.d. the Fisher Information Matrix:

$$
\mathbb{I}=\mathbb{E}\left[\left(\nabla_{x} \log p(y ; x)\right)\left(\nabla_{x} \log p(y ; x)\right)^{*}\right]
$$

- $\mathbb{I}^{A W G N, \text { real }}(x)=\frac{4}{\sigma^{2}} \sum_{k=1}^{m}\left|\left\langle x, f_{k}\right\rangle\right|^{2} f_{k} f_{k}^{T}=\frac{4}{\sigma^{2}} \sum_{k=1}^{m}\left(f_{k} f_{k}^{T}\right) x x^{T}\left(f_{k} f_{k}^{T}\right)$

Fisher Info Matrix for the AWGN Model

- For the AWGN model:

$$
y_{k}=\left|\left\langle x, f_{k}\right\rangle\right|^{2}+\nu_{k}, \quad 1 \leq k \leq m
$$

with $\nu_{k} \sim \mathbb{C N}\left(0, \sigma^{2}\right)$ i.i.d. the Fisher Information Matrix:

$$
\mathbb{I}=\mathbb{E}\left[\left(\nabla_{x} \log p(y ; x)\right)\left(\nabla_{x} \log p(y ; x)\right)^{*}\right]
$$

- $\mathbb{I}^{A W G N, \text { real }}(x)=\frac{4}{\sigma^{2}} \sum_{k=1}^{m}\left|\left\langle x, f_{k}\right\rangle\right|^{2} f_{k} f_{k}^{T}=\frac{4}{\sigma^{2}} \sum_{k=1}^{m}\left(f_{k} f_{k}^{T}\right) x x^{T}\left(f_{k} f_{k}^{T}\right)$
- $\mathbb{I}^{A W G N, c p l x}(x)=\frac{4}{\sigma^{2}} \sum_{k=1}^{m} \Phi_{k} \xi \xi^{*} \Phi_{k} \quad$ [Bal13,BCMN13] with $\Phi_{k} \in \mathbb{R}^{2 n \times 2 n}$ and $\xi \in \mathbb{R}^{2 n}$.

FIM for Non-AWGN

- Consider the Non-AWGN model:

$$
\begin{aligned}
& \qquad y_{k}=\left|\left\langle x, f_{k}\right\rangle+\mu_{k}\right|^{2}, 1 \leq k \leq m \\
& \text { with } \mu_{k} \sim \mathbb{C N}\left(0, \rho^{2}\right) \text { i.i.d. }
\end{aligned}
$$

FIM for Non-AWGN

- Consider the Non-AWGN model:

$$
y_{k}=\left|\left\langle x, f_{k}\right\rangle+\mu_{k}\right|^{2} \quad, \quad 1 \leq k \leq m
$$

with $\mu_{k} \sim \mathbb{C N}\left(0, \rho^{2}\right)$ i.i.d.

- The likelihood function:

$$
p(y ; x)=\frac{1}{\rho^{2 m}} \exp \left\{-\frac{1}{\rho^{2}}\left(\sum_{k=1}^{m} y_{k}+\sum_{k=1}^{m}\left|\left\langle x, f_{k}\right\rangle\right|^{2}\right)\right\} \prod_{k=1}^{m} I_{0}\left(\frac{2\left|\left\langle x, f_{k}\right\rangle\right| \sqrt{y_{k}}}{\rho^{2}}\right)
$$

FIM for Non-AWGN

- Consider the Non-AWGN model:

$$
y_{k}=\left|\left\langle x, f_{k}\right\rangle+\mu_{k}\right|^{2} \quad, \quad 1 \leq k \leq m
$$

with $\mu_{k} \sim \mathbb{C N}\left(0, \rho^{2}\right)$ i.i.d.

- The likelihood function:
$p(y ; x)=\frac{1}{\rho^{2 m}} \exp \left\{-\frac{1}{\rho^{2}}\left(\sum_{k=1}^{m} y_{k}+\sum_{k=1}^{m}\left|\left\langle x, f_{k}\right\rangle\right|^{2}\right)\right\} \prod_{k=1}^{m} I_{0}\left(\frac{2\left|\left\langle x, f_{k}\right\rangle\right| \sqrt{y_{k}}}{\rho^{2}}\right)$
- Realification: $x \mapsto \xi=[\operatorname{real}(x) \operatorname{imag}(x)]^{T}$ and $\left|\left\langle x, f_{k}\right\rangle\right|=\sqrt{\left\langle\Phi_{k} \xi, \xi\right\rangle}$ where Φ_{k} is a rank-2 replacing $f_{k} f_{k}^{*}$.

FIM for Non-AWGN

- Consider the Non-AWGN model:

$$
y_{k}=\left|\left\langle x, f_{k}\right\rangle+\mu_{k}\right|^{2} \quad, \quad 1 \leq k \leq m
$$

with $\mu_{k} \sim \mathbb{C N}\left(0, \rho^{2}\right)$ i.i.d.

- The likelihood function:
$p(y ; x)=\frac{1}{\rho^{2 m}} \exp \left\{-\frac{1}{\rho^{2}}\left(\sum_{k=1}^{m} y_{k}+\sum_{k=1}^{m}\left|\left\langle x, f_{k}\right\rangle\right|^{2}\right)\right\} \prod_{k=1}^{m} I_{0}\left(\frac{2\left|\left\langle x, f_{k}\right\rangle\right| \sqrt{y_{k}}}{\rho^{2}}\right)$
- Realification: $x \mapsto \xi=[\operatorname{real}(x) \operatorname{imag}(x)]^{T}$ and $\left|\left\langle x, f_{k}\right\rangle\right|=\sqrt{\left\langle\Phi_{k} \xi, \xi\right\rangle}$ where Φ_{k} is a rank-2 replacing $f_{k} f_{k}^{*}$.

FIM for Non-AWGN

Theorem (Bal15)

The Fisher Information Matrix for the Non-AWGN model is given by

$$
\begin{aligned}
\mathbb{I}(\xi) & =\frac{4}{\rho^{4}} \sum_{k=1}^{m}\left(G_{1}\left(\frac{\left\langle\Phi_{k} \xi, \xi\right\rangle}{\rho^{2}}\right)-1\right) \Phi_{k} \xi \xi^{*} \Phi_{k} \\
& =\frac{4}{\rho^{2}} \sum_{k=1}^{m} G_{2}\left(\frac{\left\langle\Phi_{k} \xi, \xi\right\rangle}{\rho^{2}}\right) \frac{1}{\left\langle\Phi_{k} \xi, \xi\right\rangle} \Phi_{k} \xi \xi^{*} \Phi_{k}
\end{aligned}
$$

where

$$
G_{1}(a)=\frac{e^{-a}}{8 a^{3}} \int_{0}^{\infty} \frac{l_{1}^{2}(t)}{l_{0}(t)} t^{3} e^{-\frac{t^{2}}{4 a}} d t \quad, \quad G_{2}(a)=a\left(G_{1}(a)-1\right)
$$

FIM for Non-AWGN

Asymptotic Regimes

FIM for Non-AWGN

Asymptotic Regimes

Form 1: Low SNR

$$
\begin{aligned}
& \mathbb{I}(\xi)= \\
& \frac{4}{\rho^{4}} \sum_{k=1}^{m}\left(G_{1}\left(\frac{\left\langle\Phi_{k} \xi, \xi\right\rangle}{\rho^{2}}\right)-1\right) \Phi_{k} \xi \xi^{*} \Phi_{k} \\
& \approx \frac{4}{\rho^{4}} \sum_{k=1}^{m} \Phi_{k} \xi \xi^{*} \Phi_{k}
\end{aligned}
$$

FIM for Non-AWGN

Asymptotic Regimes

Form 1: Low SNR

$$
\begin{aligned}
& \mathbb{I}(\xi)= \\
& \frac{4}{\rho^{4}} \sum_{k=1}^{m}\left(G_{1}\left(\frac{\left\langle\Phi_{k} \xi, \xi\right\rangle}{\rho^{2}}\right)-1\right) \Phi_{k} \xi \xi^{*} \Phi_{k} \\
& \approx \frac{4}{\rho^{4}} \sum_{k=1}^{m} \Phi_{k} \xi \xi^{*} \Phi_{k}
\end{aligned}
$$

Form 2: High SNR

$$
\mathbb{I}(\xi)=
$$

$$
\frac{4}{\rho^{2}} \sum_{k=1}^{m} G_{2}\left(\frac{\left\langle\Phi_{k} \xi, \xi\right\rangle}{\rho^{2}}\right) \frac{1}{\left\langle\Phi_{k} \xi, \xi\right\rangle} \Phi_{k} \xi \xi^{*} \Phi_{k}
$$

$$
\approx \frac{2}{\rho^{2}} \sum_{k=1}^{m} \frac{1}{\left\langle\Phi_{k} \xi, \xi\right\rangle} \Phi_{k} \xi \xi^{*} \Phi_{k}
$$

Setup 1: Reference signal based estimation

In the first setup we fix a reference unit-norm signal $z_{0} \in \mathbb{C}^{n}$. The unknown (to-be-estimated) signal x is assumed to come from set:

$$
V_{z_{0}}=\left\{x \in \mathbb{C}^{n}: \operatorname{imag}\left(\left\langle x, z_{0}\right\rangle\right)=0, \text { real }\left(\left\langle x, z_{0}\right\rangle\right)>0\right\}
$$

The estimator has access to the reference signal z_{0} :

Setup 1: Reference signal based estimation

In the first setup we fix a reference unit-norm signal $z_{0} \in \mathbb{C}^{n}$. The unknown (to-be-estimated) signal x is assumed to come from set:

$$
V_{z_{0}}=\left\{x \in \mathbb{C}^{n}: \operatorname{imag}\left(\left\langle x, z_{0}\right\rangle\right)=0, \text { real }\left(\left\langle x, z_{0}\right\rangle\right)>0\right\}
$$

The estimator has access to the reference signal z_{0} :

Let $\left.\left.\mathcal{V}_{\zeta_{0}}=\left\{\xi \in \mathbb{R}^{2 n},\left\langle\xi, \zeta_{0}\right\rangle\right) \geq 0,\left\langle\xi, J \zeta_{0}\right\rangle\right)=0\right\} ., \quad \mathcal{E}_{\zeta_{0}}=\operatorname{span}_{\mathbb{R}}\left(\mathbb{V}_{\zeta_{0}}\right)$
with $\zeta_{0}=\left[\operatorname{real}\left(z_{0}\right) \operatorname{imag}\left(z_{0}\right)\right]^{T}$. The estimator $0: \mathbb{R}^{m} \rightarrow \mathcal{E}_{\zeta_{0}}$ is unbiased if $\mathbb{E}[o(y) ; \xi]=\xi$ for every $x \in V_{z_{0}}$, with $\xi=\left[\right.$ real $\left.(x)_{\text {; }} \operatorname{imag}(x)\right]$.

Setup 1: Positive correlation with a reference signal The CRL Bound

Let $\Pi_{\eta}=1-\frac{1}{\|\eta\|^{2}} J \eta \eta^{T} J^{T}$ and $L=I-\frac{1}{\left\langle\xi, \zeta_{0}\right\rangle} J \zeta_{0} \xi^{T} J^{T}$, with J the symplectic form matrix $[0,-l ; I, 0]$.
Theorem
Assume the measurement model $y=\left(y_{k}\right)_{1 \leq k \leq m}$ where the likelihood function $p(y ; x)=F\left(\left|\left\langle x, f_{1}\right\rangle\right|, \cdots,\left|\left\langle x, f_{m}\right\rangle\right|, y\right)$ is identifiable and regular. Then the covariance of any unbiased estimtor $\omega: \mathbb{R}^{m} \rightarrow \mathcal{E}_{\zeta_{0}}$ is bounded below by

$$
\operatorname{Cov}[\omega(y) ; \xi] \geq\left(\Pi_{z_{0}} \mathbb{I}(\xi) \Pi_{z_{0}}\right)^{\dagger}=L^{T}(\mathbb{I}(\xi))^{\dagger} L
$$

In particular: $\mathbb{E}\left[\|\omega(y)-\xi\|^{2} ; \xi\right] \geq \operatorname{trace}\left\{\left(\Pi_{z_{0}} \mathbb{I}(\xi) \Pi_{z_{0}}\right)^{\dagger}\right\}=$ $\operatorname{trace}(\mathbb{I}(\xi))^{\dagger}+\frac{\|\xi\|^{2}}{\left|\left\langle\xi, \zeta_{0}\right\rangle\right|^{2}}\left\langle(\mathbb{I}(\xi))^{\dagger} J \zeta_{0}, J \zeta_{0}\right\rangle$.

Remark: First inequality was derived in 2015 paper; the second equality is new.

Setup 2: Oracle-based signal estimation

Consider now a different setup, where $x \in \mathbb{C}^{n}$ is unconstrained and the estimation is performed in two stages: (i) the first stage returns a "class" estimate through $o: \mathbb{R}^{m} \rightarrow \mathbb{C}^{n}$; (ii) in the second stage, an oracle provides the optimal global phase $\frac{\langle x, o(y)\rangle}{|\langle x, o(y)\rangle|}$. Thus, the overall estimator:

$$
\tilde{o}: \mathbb{R}^{m} \rightarrow \mathbb{C}^{n}, \tilde{o}(y)=o(y) \frac{\langle x, o(y)\rangle}{|\langle x, o(y)\rangle|} .
$$

The estimator is unbiased if $\mathbb{E}[\tilde{o}(y) ; x]=x$ for every $x \in \mathbb{C}^{n}$.

Setup 2: Oracle-based signal estimation The CRL Bound

Theorem

Assume the measurement model $y=\left(y_{k}\right)_{1 \leq k \leq m}$ where the likelihood function $p(y ; x)=F\left(\left|\left\langle x, f_{1}\right\rangle\right|, \cdots,\left|\left\langle x, f_{m}\right\rangle\right|, y\right)$ is identifiable and regular. Let õ : $\mathbb{R}^{m} \rightarrow \mathbb{C}^{n}$ be an unbiased estimator in Setup 2 (Oracle-based estimator). Denote by $\omega(y)=[r e a l(o(y)) ; \operatorname{imag}(o(y))]$ and omega $(y)=[$ real $(\tilde{o}(y)) ; \operatorname{imag}(\tilde{o}(y))]$. Then for any $\xi=[r e a l(x) ; \operatorname{imag}(x)] \neq 0$,

$$
\operatorname{Cov}[\tilde{\omega}(y) ; \xi] \geq(I-\Delta)(\mathbb{I}(\xi))^{\dagger}(I-\Delta)
$$

where $\Delta=$
$\mathbb{E}\left[\frac{(\langle\omega, J \xi\rangle)^{2}}{\left((\langle\omega, \xi\rangle)^{2}+(\langle\omega, J \xi\rangle)^{2}\right)^{3 / 2}} \omega \omega^{\top}+\frac{\langle\omega, \xi\rangle\langle\omega, J \xi\rangle}{\left((\langle\omega, \xi\rangle)^{2}+(\langle\omega, J \xi\rangle)^{2}\right)^{3 / 2}}\left(J \omega \omega^{T}+\omega \omega^{T} J^{T}\right)+\frac{(\langle\omega, \xi\rangle)^{2}}{\left((\langle\omega, \xi\rangle)^{2}+(\langle\omega, J \xi\rangle)^{2}\right)^{3 / 2}} J \omega \omega^{T} J\right.$ and satisfies $\Delta=\Delta^{T} \geq I-\Pi_{\xi} \geq 0, \Delta J \xi=J \xi$ and $\Delta \xi=0$.

Conclusions and Open Questions

We obtained Cramér-Rao (type) Lower Bounds for two setups:
(1) Positive Correlation with a reference signal: CRLB has a simple form.
(2) Oracle-based global phase: CRLB seems very complicated, and estimator dependent. (Remark: Estimator dependency is known for other classes of estimators)

Conclusions and Open Questions

We obtained Cramér-Rao (type) Lower Bounds for two setups:
(1) Positive Correlation with a reference signal: CRLB has a simple form.
(2) Oracle-based global phase: CRLB seems very complicated, and estimator dependent. (Remark: Estimator dependency is known for other classes of estimators)

Open Question: Which of the two CRL bounds is smaller?
Intuitively, Oracle-based estimator seems to have more information than the reference signal based estimator. But is this true/quantifiable? Easy case: $C R L B_{\text {Setup } 1} \rightarrow \infty$ as $\xi \perp \zeta_{0}$.

Thank you! Merci!

Questions?

References

(in M. Abramowitz, I. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, US Dept.Comm., Nat.Bur.Stand. Applied Math. Ser. 55, 10th Printing, 1972.

國 B. Alexeev, A. S. Bandeira, M. Fickus, D. G. Mixon, Phase retrieval with polarization, SIAM J. Imaging Sci., 7 (1) (2014), 35-66.
R. Balan, P. Casazza, D. Edidin, On signal reconstruction without phase, Appl.Comput.Harmon.Anal. 20 (2006), 345-356.

R R. Balan, B. Bodmann, P. Casazza, D. Edidin, Painless reconstruction from Magnitudes of Frame Coefficients, J.Fourier Anal.Applic., 15 (4) (2009), 488-501.
R. Balan, Reconstruction of Signals from Magnitudes of Frame Representations, arXiv submission arXiv:1207.1134

R R. Balan, Reconstruction of Signals from Magnitudes of Redundant Representations: The Complex Case, available online arXiv:1304.1839v1, Found.Comput.Math. 2015, http://dx.doi.org/10.1007/s10208-015-9261-0
R. Balan and Y. Wang, Invertibility and Robustness of Phaseless Reconstruction, available online arXiv:1308.4718v1, Appl. Comp. Harm. Anal., 38 (2015), 469-488.
A. S. Bandeira, J. Cahill, D. Mixon, A. A. Nelson, Saving phase: Injectivity and Stability for phase retrieval, arXiv submission, arXiv: 1302.4618, Appl. Comp. Harm. Anal. 37 (1) (2014), 106-125.

國 B. G. Bodmann, N. Hammen, Stable Phase Retrieval with Low-Redundancy Frames, arXiv submission:1302.5487v1, Adv. Comput. Math., accepted 10 April 2014.
E. Candés, T. Strohmer, V. Voroninski, PhaseLift: Exact and Stable Signal Recovery from Magnitude Measurements via Convex

Programming, Communications in Pure and Applied Mathematics 66 (2013), 1241-1274.

回 P. Casazza, The art of frame theory, Taiwanese J. Math., 4(2) (2000), 129-202.
(Y. Ephraim, D. Malah, Speech enhancement using a minimum mean-square error short-time spectral amplitude estimator, IEEE Trans. ASSP, 32(6) (1984), 1109-1121.
T.J. Rothenberg, Identification in Parametric Models, Econometrica, 39(3) (1971), 577-591.

