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High-Level Overview

In this series of lectures, we discuss a few harmonic analysis techniques
and problems applied to machine learning.
1. NN: Neural networks (NN) and their universal approximation property.
2. Lipschitz analysis: we provide rationals for studying Lipschitz properties
of NNs, and then we perform a Lipschitz analysis of these networks. We
focus on two aspects of this analysis: stochastic modelng of local vs.
global analysis, and a scattering network inspired Lipschitz analysis of
convolutive networks.
3. Invariance and Equivariance: We highlight the duality between
invariance and covariance/equivariance, with focus on G-invariant
representations.
4. Applications to data analysis and modeling: We present applications on
a variety of problems: classification and regression on graphs; generative
models for data sets; neural network based modeling of time-evolution of
dynamical systems; discrete optimizatons.
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Graph Deep Learning Applications

Based on joint works with:
Naveed Haghani (UMD,APL-JHU)
Maneesh Singh (Verisk, Comcast)

N. Haghani, M. Singh, R. Balan, “Graph Regressing and Classification
using Permutation Invariant Representations”, AAAI-GCLR March 2022
R. Balan, N. Haghani, M. Singh, “Permutation Invariant Representations
with Applications to Graph Deep Learning”, arXiv preprint: 2203.07546
[math.FA], [cs.LG]

For this part of the talk, two applications performed on two graph data
sets, with two different tasks: classification (on a protein data set), and
regression (on the QM9 chemical compund data set).
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1. Protein Data set and Enzyme Classification

The Protein Dataset
The Enzyme Classification Problem

Protein Dataset: 663 non-enzymes and 450 enzymes out of 1113 proteins.
Each graph associated to one protein: nodes represent amino acids and
edges represent the bonds between them. Number of nodes (aminoacids):
varying between 20 and 620 with average of 39. Input feature vectors os
size r = 29.
Task: the task is classification of each protein into enzyme or non-enzyme.
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1. Protein Data set and Enzyme Classification

The Deep Network Architecture
Architecture: ReLU activation and

GCN with L = 3 layers and 29 input feature vectors, and 50 hidden
nodes in each layer; no dropouts, no batch normalization. output of
GCN: d = 1, 10, 50, 100.
Mid-layer component: α
Fully connected NN with dense 3-layers and 150 internal units; no
dropouts, with batch normalization.
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1. Protein Data set and Enzyme Classification

The Network

Training has been done over 300 epochs with a batch size of 128. Loss
function: binary cross-entropy.
The following 7 α modules have been tested:

1 identity: α(X ) = X ; no permutation invariance.
2 data augmentation: α(X ) = X BUT the training data set has been

augmented with 4 random permutatons of each graph.
3 ordering: α(X ) =↓ (XA), A = [I 1]
4 kernels: α(X ) = (

∑n
k=1 exp(−‖xk − aj‖2))1≤j≤m=5nd

5 sumpooling: α(X ) = 1T X
6 sort-pooling: sorted by last column
7 set-to-set: introduced in [Vinyals&al.’16]
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1. Protein Data set and Enzyme Classification

Enzyme Classification Example
Training Loss: X Entropy
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1. Protein Data set and Enzyme Classification

Enzyme Classification Example
Accuracy on Training set
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1. Protein Data set and Enzyme Classification

Enzyme Classification Example
Accuracy on Holdout data
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1. Protein Data set and Enzyme Classification

Enzyme Classification Example
Accuracy on Holdout data with nodes randomly permuted
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1. Protein Data set and Enzyme Classification

Performance Results: Accuracy

d = 50 ordering kernels identity data
augment

sum-
pooling

sort-
pooling

set-2-
set

Training 83.1 78.8 91 96 79.2 83.7 76.7
Holdout 71.5 76.5 72.5 71 77 71 76

Holdout Perm 71.5 76.5 69.5 72 77 71 76

Table: Accuracy ACC(%) for enzyme/non-enzyme classification of the seven
algorithms on PROTEINS FULL dataset after 300 epochs for embedding
dimension d = 50

For comparison: [Dobson&al.] obtain an accuracy of 77-80% using an
SVM based classifier.
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2. The QM9 Dataset and Regression Problems

The QM9 Dataset

Dataset: Consists of about 134,000 isomers of organic molecules made up
of CHONF, each containing 10-29 atoms. see
http://quantum-machine.org/datasets/ Nodes corresponds to atoms; each
feature vector containins geometry (x,y,z coordinates), partial charge per
atom (Mulliken charge), and atom type.
Task: the task is regression: predict a physical feature (electron energy
gap ∆ε) computed for each molecule.
Architecture: ReLU activation and

GCN with L = 3 layers and 50 hidden nodes in each layer; no
dropouts, no batch normalization; zero padding to m = 29 number of
rows. output of GCN: d = 1, 10, 50, 100.
Mid-layer component: α
Fully connected NN with dense 3-layers and 150 internal units in each
of the two hidden layers; no dropouts, with batch normalization.
Radu Balan (UMD) HA - ML Day 3 06/28-30/2023
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2. The QM9 Dataset and Regression Problems

The Network

Training has been done over 300 epochs with a batch size of 128. Loss
function: Mean-Square Error (MSE).
The same 7 α modules have been tested:

1 identity: α(X ) = X ; no permutation invariance.
2 data augmentation: α(X ) = X BUT the training data set has been

augmented with 4 random permutatons of each graph.
3 ordering: α(X ) =↓ (XA), A = [I 1]
4 kernels: α(X ) = (

∑n
k=1 exp(−‖xk − aj‖2))1≤j≤m=5nd

5 sumpooling: α(X ) = 1T X
6 sort-pooling: sorted by last column
7 set-to-set: introduced in [Vinyals&al.’16]
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2. The QM9 Dataset and Regression Problems

QM9 Regression Example
Training MSE
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2. The QM9 Dataset and Regression Problems

QM9 Regression Example
Validation MSE
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2. The QM9 Dataset and Regression Problems

QM9 Regression Example
Validation MSE with Random Permutations
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2. The QM9 Dataset and Regression Problems

Performance Results: MAE

d = 100 ordering kernels identity data
augment

sum-
pooling

sort-
pooling

set-2-
set

Training 0.155 0.269 0.139 0.164 0.178 0.199 0.173
Holdout 0.187 0.267 0.227 0.206 0.201 0.239 0.201

Holdout Perm 0.187 0.267 1.086 0.213 0.201 0.239 0.201

Table: Mean Absolute Error (MAE) for regression of the electron energy gap
∆ε = LUMO − HOMO (eV) of the seven algorithms on QM9 dataset after 300
epochs for embedding dimension d = 100

For comparison:
chemical accuracy is 0.043eV
the best ML method [Gilmer&al.’17] achieves MAE of 0.053eV
Coulomb method [Rupp&al.’12] achieves MAE of 0.229eV
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Modeling Deterministic and Stochastic Evolution
Operators using Deep Networks

Collaborators:
USC: Paul Bogdan, Gaurav Gupta, Xiongye Xiao, Ruochen Yang

Joint work:
G. Gupta, X. Xiao, R. Balan, P. Bogdan, “Non-Linear Operator
Approximations for Initial Value Problems”, Proceedings of ICLR 2022,
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1. Problem Formulation: IVP

Problem Formulation
A fundamental problem in machine learning: predict future states using
current conditions, x0 ∈ Rs 7→ xT = Φ(x0) ∈ Rs .
Examples: Solutions of PDEs , Epidemic Forcasting (COVID19)

Our problem: How to implement Φ using a Deep Network and a Training
data set?
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1. Problem Formulation: IVP

Existing Approaches

UAP based NN: Use of (Conv.) N.N. (Guo, 2016), (Grohs,2019);
UAP with Reduced Basis/PCA: Galerkin-like schemes (Santo,2019),
sparse networks (Boelcskei,Kutyniok, 2019);
IVP defined NN: Physics-inspired neural networks (PINNs): (Raissi,
Karniadakis, 2019), (Wang, Perdikaris, 2021);
Reservoir Computing: (Schrauwen, 2007), (Girvan, Hunt, 2020);
Neural Operators: Data-driven and input-resolution independent:
Fourier Neural Op. (FNO) (Li,2020), Graph Nystrom sampling (Li,
2020), Multi Wavelet Transform (MWT) (Gupta, 2021);
...

Radu Balan (UMD) HA - ML Day 3 06/28-30/2023
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2. Network Architecture

Architecture
As special type of Neural Operator, is the exponential operator seen as the
evolution operator of a linear (time-invariant) differential equation:

Approach: Learn operator L while implementing a (nonlinear) version of
eL.

Performance metrics:
1 Approximation error MSE (for training), MAE (for testing);
2 Model complexity, expressed by number of parameters to be learned;

Important especially when the training data set is relatively small.

Radu Balan (UMD) HA - ML Day 3 06/28-30/2023
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2. Network Architecture

Architecture
As special type of Neural Operator, is the exponential operator seen as the
evolution operator of a linear (time-invariant) differential equation:

Approach: Learn operator L while implementing a (nonlinear) version of
eL.
Performance metrics:

1 Approximation error MSE (for training), MAE (for testing);
2 Model complexity, expressed by number of parameters to be learned;

Important especially when the training data set is relatively small.Radu Balan (UMD) HA - ML Day 3 06/28-30/2023
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2. Network Architecture

Architecture (2)

The exponential operator L 7→ eL has been used in deep learning:
1 exponential function used to model NN non-linearity (Andoni, 2014);
2 Taylor polynomial as a truncation of the Taylor series (Hoogeboom,

2020) - particularly in the context of convolutive operators, and
(Sylvester) normalizing flow;

3 Our first contribution: Use Padé approximation as a more compact
polynomial form than the Taylor polynomial. Padé Neural Operator.

Padé Approximation of the exponential function, x 7→ ex is denoted by
[p/q] = Apq(x)

Bpq(x) , with p, q ≥ 0 integers and:

ex ≈ [p/q] :=
∑p

j=0 ajx j∑q
j=0 bjx j , aj = (p + q − j)!p!

(p + q)!j!(p − j)! , bj = (−1)j (p + q − j)!q!
(p + q)!j!(q − j)!

Radu Balan (UMD) HA - ML Day 3 06/28-30/2023
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2. Network Architecture

Architecture (3)
• Padé Neural Operator [p/q]eL with a single layer nonlinear block:

• Our second contribution: Decompose L using a Multi-Wavelet basis (Gupta,
2021), eL =

∑L
i=1
(
Qi eLQi + Qi eLPi + Pi eLQi

)
+ PLeLPL. Then apply the

Padé Neural Operator for each term of this decomposition:
Φ(x0) =

∑L
i=1
(
Qi [p/q]eAi Qi + Qi [p/q]eBi Pi + Pi [p/q]eCi Qi

)
+ PL[p/q]eLL PL

Overall we obtain: the Multiwavelet Padé Exponential Model.
Radu Balan (UMD) HA - ML Day 3 06/28-30/2023



Day 3: GCN Day 3: Forecasting Day 3: UQ Day 3: Normalizing Flows Day 3: Optimizations

3. Lipschitz Analysis

Lipschitz Analysis of the Padé Neural Operator
Theorem
Given a linear operator L = L(θL) (or, a Lipschitz operator with Lipschitz
constant ‖L‖ and L(0) = 0), a non-linearity layer v = σ(Wu + b), and p, q ∈ N,
at points of differentiability, the gradients of the operation
x 7→ y = F (x ; θL,W , b) := [p/q]eL(x) using the [p/q] Padé neural operator are
bounded in operator norm by∥∥∥∥ ∂y

∂θL

∥∥∥∥ ≤ exp(‖L‖) (‖b‖2 + ‖W ‖‖x‖2)
( nθ∑

j=1

∥∥∥∥ ∂L∂θj

∥∥∥∥2
)1/2

, (2.1)∥∥∥∥ ∂y
∂W

∥∥∥∥ ≤ exp(‖L‖)‖x‖2, (2.2)∥∥∥∥∂y
∂b

∥∥∥∥ ≤ exp
(

p
p + q ‖L‖

)
. (2.3)

Remarks: The polynomials Apq(L) and Bpq(L) are implemented as recurrent
networks. This theorem guarantees the gradient does not explode with p, q →∞.

Radu Balan (UMD) HA - ML Day 3 06/28-30/2023
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4. Experiments

Testing on PDEs
Data Efficiency

How fast the training error decays (“data efficiency”) w.r.t. number N of training
samples, for Korteweg - de Vries (KdV, left), and Kuramoto-Shivashinski (SV,
right):
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Number of training samples N vs performance (relative L2 error) for neural
operators evaluated on the KdV equation with s=1024. For N < 1000, each
smaller dataset is sampled uniformly randomly 5 times from the complete dataset
(N = 1000) and mean ± std.dev (shaded region) results are shown across the
sampling experiments. (Right) Same analysis for KS equation with s=1024.Radu Balan (UMD) HA - ML Day 3 06/28-30/2023
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4. Experiments

Testing on PDEs
Sensitivity to Input Resolution

Korteweg-de Vries (KdV) equation benchmarks for different input
resolution s. The relative L2 errors are shown for each model.

Networks s = 64 s = 128 s = 256 s = 512 s = 1024
Padé Exp 0.00301 0.00308 0.00311 0.00298 0.00295
MWT Leg 0.00372 0.00369 0.00391 0.00408 0.00392
FNO 0.00663 0.00676 0.00657 0.00649 0.00672
MGNO 0.12507 0.13610 0.13664 0.15042 0.13666
LNO 0.04234 0.04764 0.04303 0.04465 0.04549
GNO 0.13826 0.12768 0.13570 0.13616 0.12521

GNO: Graph Neural Operator (Li, 2020); MGNO: Multi-level version of
GNO (Li, 2020); LNO: low-rank representation of the integral operator
kernel, à la DeepONet (Lu,2020); FNO: Fourier Neural Operator (Li,
2020); MWT Leg: MWT with Legendre OPs;

Radu Balan (UMD) HA - ML Day 3 06/28-30/2023
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4. Experiments

Epidemic Forecasting (COVID19)
Problem Specifications

Epidemic Forecasting is an example where the dynamical system is
unknown (or it may not be deterministic). Neural operators provide an
entirely data-driven approach and are capable to learn PDE agnostic maps.
Dataset COVID-19 from April 12, 2020 to August 28,2021 provided by
JHU. Data from 50 US states, and for each state, total counts of daily
reported confirmed (C), recovered (R), and deaths (D). Data in each state
is normalized by the respectie state total population. Total data: array of
50× 3× 484 numbers.
Task: The forecasting problem is to learn the map between 14 consecutive
counts (C,R,D) to next 7 days data for each of the 50 US state. Let dt
denote the 50× 3 array on day t. Then the operator map can be written
as:

T (d−14, d−13, . . . , d−1︸ ︷︷ ︸
u0(x)

) = (d0, d1, . . . , d6︸ ︷︷ ︸
u(τ,x)

).

Challenge: Due to data scarcity, we do a 10-fold resampling of the
dataset for additional training/testing samples.

Radu Balan (UMD) HA - ML Day 3 06/28-30/2023
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4. Experiments

Epidemic Forecasting (COVID19)
Prediction Benchmarks

COVID-19 prediction benchmarks for different networks using 10-fold
resampling with mean ± std. dev. across folds. The Mean Average Error
(MAE) is presented for Confirmed (C), Recovered (R), and Deaths (D)
counts averaged across 7 days of prediction for 50 US states. The relative
L2 error is the test error for each model. The last column compares each
network vs FC (auto-regressive fully connected network) in terms of the
total MAE improvement and total model parameters difference.

Networks MAE Relative L2 error Net. vs FC
C R D

Padé Exp 1219 ± 130 1752 ± 666 211 ± 31 0.0155 ± 0.0034 82.14% (+652K)
MWT Leg 3554 ± 1157 2928 ± 1338 284 ± 209 0.0245 ± 0.0043 62.0% (+18M)
FNO 3D 4213 ± 391 3391 ± 1233 592 ± 157 0.0301 ± 0.0045 54.0% (+1.02M)
LNO 3D 28502 ± 12698 6586 ± 3442 1465 ± 965 0.1056 ± 0.0394 -105.0% (+238K)
Neural ODE 4339 ± 1174 3443 ± 1408 443 ± 192 0.0310 ± 0.0069 53.8% (+172K)
Seq2Seq 2798 ± 456 3317 ± 1690 346 ± 83 0.0273 ± 0.0058 63.7%(+1.8M)
Transformer 7087 ± 972 6613 ± 2853 1722 ± 320 0.0501 ± 0.0094 13.4% (+15.2K)
FC 10305 ± 2818 5885 ± 1609 1634 ± 686 0.0609 ± 0.0111 (37.2K)

seq2seq , transforms, FC are non-neural operators.Radu Balan (UMD) HA - ML Day 3 06/28-30/2023
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4. Experiments

Epidemic Forecasting (COVID19)
A Tale of Two States

COVID19 Forecasting. Confirmed, Recovered, and Deaths count
forecasting results for the 07/07/20 – 07/13/20 (chosen arbitrarily) using
previous 2 weeks as the input. The Padé Exp prediction and the best
non-neural operator scheme from previous table (seq2seq) is shown.

California:
39.77M population.

Massachusetts:
6.89M population.
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Uncertainty Quantification and Propagation through DNN

Collaborators:
UMD: Danial Ludwig, Michael Rawson
UMB:Thomas Ernst, Bo Li, Xiaoke Wang, Ze Wang
Joint Works:
ISMRM 2022: Estimating Noise Propagation of Neural Network based
Image Reconstruction using Automatic Differentiation
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1. MRI and NN

MRI Model

Figure: Credits: hopkinsmedicine.org

The measurement model. For coil k ∈
[Nc ],

xk = F(Skz) + νk

where F is the Fourier acquisition ma-
trix, Sk is the diagonal matrix with the
coil k sensitivity map, νk is measure-
ment noise, and z is the brain signal.

Knowns: F , x1, ..., xNc . Unknowns: S1, ...,SNc , ν1, ..., νNc , z . Target: z.

Lots of research, lots of Nobel prizes, lots of companies (Siemens, GE,
Philips), lots of techniques (compressive sampling, GRAPPA, SENSE, ...)
to solve the inverse problem: z = G(measurements).
More recent: Use of Deep Neural Networks.

Radu Balan (UMD) HA - ML Day 3 06/28-30/2023
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1. MRI and NN

The MRI Inverse Problem
At an abstract level, the forward model, z 7→ x and the reconstruction
(inverse) model, x 7→ ẑ are:

x = F (z) + ν , ẑ = G(x).
To fix notations: the target (brain) signal z ∈ Rd , the measured
(acquired) signal x ∈ Rn.
The DNN approach proposes to implement G using certain Neural
Network architectures. Out of many architectures out there, we focused
on a specific network, namely the end-to-end variational neural network
(E2E-VarNet) introduced by Sriram,et al, at MICCAI 2020.

Our problem: Given a trained network that implements a reconstruction
algorithm G , quantify the level of uncertainty per reconstructed pixel.

Assumption: We assume the network has been trained well enough so that
G(F (z)) = z , i.e., perfect reconstruction in the absence of noise.
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2. Uncertainty Propagation through NN

Uncertainty Propagation through NN
CRLB and FIM

The standard way of quantifying uncertainty is through the Cramer-Rao
Lower Bound (CRLB). The CRLB has been used many times for
experimental design in Medical Imaging and elsewhere. Fisher Information
Matrix I(z) and CRLB:

I(z) = E
[
(∇z log(p(x ; z))) (∇z log(p(x ; z)))T

]
, CRLB = (I(z))−1

Interpretation: Covariance of any unbiased estimator of z is lower bounded
CRLB.
Assume further, the noise is AWGN with variance σ2. A simple
computation yields:

CRLB = σ2
(

JT
F JF

)−1
, JF =

[
∂Fk
∂zj

]
(j,k)∈[n]×[d]

∈ Rn×d

where JF denotes the Jacobian matrix of the forward model.

Goal: Determine CRLB and use it to measure the confidence in the
reconstructed image ẑ .

Challenge: The exact form of F is unknown!
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2. Uncertainty Propagation through NN

The CRLB and the Jacobian of the NN
Our main theoretical result is to connect CRLB = (I(z))−1 and the
Jacobian of G , JG .
A simple lemma:

Lemma
Assume A ∈ Rn×d is full rank with n ≥ d.

1 For any B ∈ Rd×n such that BA = Id (i.e., a left inverse),
BBT ≥ (AT A)−1.

2 If B0 = (AT A)−1AT is the pseudo-inverse of A then,
B0BT

0 = (AT A)−1.

Consequence:

CRLB = σ2JG0JT
G0 , G0 = argminG:G(F (z))=ztrace(JGJT

G )

Remarks:
1. The objective function above can provide an additional regularization
term in the loss function used by the neural network training.
2. The importance of Jacobians has been shown by (Antun et al, 2020),
“On instabilities of deep learning in image reconstruction ...”.
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3. Experimental Results

Architecture
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3. Experimental Results

Results (1)
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3. Experimental Results

Results (2)
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3. Experimental Results

Results (3)
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3. Experimental Results

Results (4)
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Normalizing Flows with DNN

Collaborators:
Chris Dock (UMD), currently at Tufts University
Tushar Jain, Sahil Sidheekh, Maneesh Singh (Verisk)
Joint Work:
UAI 2022: VQ-Flows: Vector Quantized Local Normalizing Flow
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1. Global normalizing flows

Deep latent variable models (DLVMs)
Given samples X = (xn)N

n=1 ∈ X drawn from an unknown distribution
p(x), the goal of generative machine learning is to obtain new and
“realistic” samples also drawn from p(x). One way to do this is to assume
that most of the variation in the unknown distribution arises from a latent
variable z that is simply distributed according to q(z) (usually Gaussian),
in which case Bayes gives

p(x) =
∫
Z

p(x |z)q(z)dz

Once p(x |z) is known, new samples can be generated by first sampling z0
from z ∼ q(z) and then sampling x ∼ p(x |z = z0). LVM’s are useful for

Data Augmentation (by generating new samples that follow the same
distribution as the data)
Domain Adaptation (the latent space provides a common
representation between domains)
Outlier Detection
Generating realistic samplesRadu Balan (UMD) HA - ML Day 3 06/28-30/2023
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1. Global normalizing flows

Deep latent variable models (DLVMs)
When p(x |z) := pθ(x |z) are parameterized as DNNs, such models are
termed DLVMs. Maximum likelihood estimation for θ gives:

argmaxθ log pθ(X ) = argmaxθ
N∑

n=1
log
∫
Z

pθ(xn|z)q(z)dz

When pθ(x |z) is given by a DNN, this objective is intractable to evaluate,
let alone optimize.

VAEs instead optimize the following variational lower bound for
log pθ(X ) that holds for any distribution qφ(z |x), with equality when
qφ(z |x) = p(z |x):

log pθ(X ) ≥
N∑

n=1
Ez∼qφ(·|xn)[log pθ(xn|z)]− DKL(qφ(·|xn)||q(z))

GANs do not directly model p(x |z), instead they sample Z = (zn)N
n=1

from z ∼ q(z) and seek to learn a generator function Gθ : Z → X
that minimizes an adversarial objective L(X ,Gθ(Z )). For example
Goodfellow et al. take

L(X ,Y ) = max
φ

N∑
n=1

1
2 log Dφ(yn) + 1

2 log(1− Dφ(xn))
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1. Global normalizing flows

Global normalizing flows
Neither VAEs or GANs can provide exact densities p(x), as VAEs replace
log p(x) by a lower bound and GANs do not have an explicit probability
model. NFs, however, make the assumption that pθ(x |z) is of the form

pθ(x |z) = δ(x − gθ(z))
Where gθ : Z → X is a diffeomorphism with inverse fθ : X → Z . In other
words, at the level of the random variables x and z it is assumed that

x = gθ(z) z = fθ(x)
Note further that NFs are the σ → 0 limit of the VAE given by
pθ(x |z) = N (gθ(z), σ2I) and qθ(z |x) = N (fθ(z), σ2I).
Change of variables gives

log pθ(X ) =
n∑

n=1
log
∫
Z

pθ(x |z)q(z)dz

=
n∑

n=1
log |Det[Jfθ(xn)]|+ log q(fθ(xn))Radu Balan (UMD) HA - ML Day 3 06/28-30/2023
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1. Global normalizing flows

Global normalizing flows
To compute θ for a NF one would like to maximize

log pθ(X ) =
n∑

n=1
log |Det[Jfθ(z)]|+ log q(fθ(z))

Because computing Det[Jfθ] is intractable for an arbitrary deep neural
network, one builds f out of compositions fθ = f θL

L ◦ · · · ◦ f θ1
1 where

Det[Jf θk
k (z)] and gθk

k = (f θk
k )−1 are simple to compute and

θ = vec(θ1, · · · , θL).

In this case the log-likelihood breaks apart to produce a tractable objective:

log pθ(X ) =
N∑

n=1

{
log q(fθ(xn)) +

L∑
j=1

log |DetJf θj
j (xn)|

}Radu Balan (UMD) HA - ML Day 3 06/28-30/2023
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1. Global normalizing flows

Global normalizing flows
The ability to exactly compute p(x) makes NFs a powerful generative
method, but they have an Achilles heel: they are diffeomorphisms. This
means that the data manifold must be topologically equivalent to the
latent space in order for NFs to get good results. In particular, the data
manifold must have the same dimension as the latent space. The manifold
hypothesis, however, suggests that often real data (like images) lies on a
much lower dimensional submanifold M⊂ X .

Figure: Topological constraints on an NF. Anything with ”non-trivial topology”
will cause an NF to struggle.Radu Balan (UMD) HA - ML Day 3 06/28-30/2023
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2. Conformal embedding flows

Conformal embedding flows
One way to do dimensionality change using a NF gθ : Z → U is to
post-compose it with a dimension raising embedding h : U → X to form
h ◦ gθ. Unfortunately the resulting measure change factor

|Det[(JhJgθ)T (JhJgθ)]|−
1
2 = |Det[JgT

θ JhT JhJgθ]|−
1
2

does not separate into a product. A solution is to restrict h to be
conformal [?]:
C(Rd → RD) := {c ∈ C 1(Rd → RD) | ∃λ ∈ C 0(R) : Jc(u)T Jc(u) = λ(u)2Id×d}
If gθ : Z → U is a NF and c ∈ C(U → X ) then the measure change factor
is:

|Det[(JcJgθ)T (JcJgθ)]|−
1
2 = |λ(u)|−1|DetJfθ| = |λ(u)|−1

L∏
j=1
|DetJf θj

j |

In this case the log-likelihood separates nicely as:

log pθ(X ) =
N∑

n=1

{
log q(fθ(xn)) +

L∑
j=1

log |DetJf θj
j (xn)| − log |λ(c†(xn))|

}
Where c† is a pseudo-inverse of c (exactly which pseudo inverse depends
on how the conformal embedding is parameterized).
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2. Conformal embedding flows

Conformal embedding flows
C(Rd → RD) is quite rich, but hard to parameterize. In [?] the authors
restrict to embeddings of the form:

c = cJ ◦ · · · ◦ c1

where each cj is either a trivially conformal zero padding or a dimension
preserving conformal map, which for d > 2 are Möbius transformations (by
Liouville):

M(A, a, b, α, ε)(x) = b + α(Ax − a)/||Ax − a||ε

where A ∈ O(d) is an orthogonal matrix, α ∈ R, a, b ∈ Rd , and ε is either
0 or 2.
Unfortunately if ps : Rd → Rd+s is the zero padding operation,
m1 = M(A1, a1, b1, α1, ε1) is a d dimensional Möbius transformation and
m2 is a d + s dimensional Möbius transformation then for x ∈ Rd :

m2 ◦ ps ◦m1(x) = (m2 · m̃1)(ps(x))
Where m̃1 is the d + s dimensional Möbius transformation:

m̃1 = (
[

A1 0
0 Is×s

]
, ps(a1), ps(b1), α1, ε1)

Thus, the above yields c as a Möbius transformation of RD composed
with pD−d .

Radu Balan (UMD) HA - ML Day 3 06/28-30/2023



Day 3: GCN Day 3: Forecasting Day 3: UQ Day 3: Normalizing Flows Day 3: Optimizations

3. Chart based flows - model

Chart based flows - motivation
Vanilla NFs don’t perform well for data on a low dimensional manifold
M⊂ X . Current extensions of NFs to allow for dimensionality change
restrict expressivity. Idea:
M diffeomorphic to Z ' Rd is too restrictive. Impediment to
performance is topological, suggesting a few “cuts” of the data would
greatly improve NFs.
Use a VQAE (E ,D, {vk}Kk=1) to learn (Uk)K

k=1, a collection of open
sets in X with X ∈

⋃K
k=1 Uk . With Vk = Uk ∩M, (Vk , fk,θ|Vk )

provides an atlas of charts on M. Model p(x) as a mixture of
normalizing flows

p(x |z) =
K∑

k=1
pkδ(x − gk,θ(z))

Where gk,θ : Z → Uk is a conformal NF and
pk = p(x ∈ Uk)/

∑K
j=1 p(x ∈ Uj). Note p(x ∈ Vk) = p(x ∈ Uk) since

p(x) is supported on M. Abusing terminology, we also refer to
(Uk)K

k=1 as charts.
Assume that M is locally conformally flat, and specifically that there
exist Dk ⊂ U and ck : U → X conformal such that Vk = ck(Dk).
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3. Chart based flows - model

Chart based flows - motivation

Since ck are Möbius transformations composed with zero paddings, the
Riemann measure on Vk is simply a re-scaling of the pullback to the
Lebesgue measure on U . Thus in this sense the invertible normalizing flows
fθ(·, vk) are responsible for learning the probability measure p(x)dMx and
the conformal embeddings are responsible for learning the manifold M.
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3. Chart based flows - model

Chart based flows - probability model
Assume (Uk)K

k=1 are known. Let z be a r.v. taking values in Z and let k
be a r.v. taking values in {1, · · · ,K}. Then assume x , z , k are jointly
distributed as:

p(x , z , k) = δ(x − gk,θ(z))q(z)pk

Where gk,θ : Z → Uk has (pseudo) inverse fk,θ : Uk → Z. Suppressing θ,

p(x , k) = pk

∫
Z
δ(x − gk(z))q(z)dz

= pk1Uk (x)
∫
Z
δ(z − fk(x))|det [Jgk(z)]|−1q(z)dz

= pk1Uk (x)|det [Jgk(fk(x))]|−1q(fk(x))
= pk1Uk (x)|det [Jfk(x)]|q(fk(x))

Thus we obtain the density p(x) as

p(x) =
∑

k:x∈Uk

pk |det [Jfk(x)]|q(fk(x))

=
∑

k:x∈Uk

p(k)q(fk(x))|λk(c†k(x))|−1
L∏

l=1
|Det[Jf l

k (f l+1
k ◦ · · · ◦ f L

k (x))]|
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3. Chart based flows - model

Chart based flows - VQAEs
Given data {x}Nn=1 ∈ X and a latent space V with dimV << dimX a
VQAE seeks to learn an encoder E : X → V, a decoder D : V → X , and a
collection of encoded centers {vk}Kk=1 ⊂ V so that the following loss is
minimized:

Ex∼p(x)[L(D(arg minvk ||v − E (x)||2), x)]

The number of centers is increased until the reconstruction error is below
a threshold.
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3. Chart based flows - model

Chart based flows - chart design
We would like charts (Uk)K

k=1 that cover X , that overlap, and that are
sparse in the sense that no single x ∈ X is contained in too many charts.

Definition
Given v1, · · · , vK ∈ V ' Rd the (m, ε)-Voronoi cell of vk is

Vk = {v ∈ V | ∃J ⊂ [K ] |J | > K −m and ||v − vk || ≤ (1 + ε)||v − vj ||2∀j ∈ J}

Once a VQAE (E ,D, {vk}Kk=1) is trained, we can use the pullback through
E of (m, ε)-Voronoi cells as charts:

Uk := {x ∈ X | E (x) ∈ Vk}
Note that checking whether x ∈ Uk amounts to computing
d1 := ||E (x)− v1||2 through dk := ||E (x)− vk ||2 and checking whether
dk ≤ (1 + ε)d̃m where d̃1 ≤ · · · ≤ d̃K . Here ε and m are hyper-parameters
of the model. Note that if m(x) := |{k : x ∈ Uk}| then m(x) ≥ m and
limε→0 m(x) = m almost everywhere.Radu Balan (UMD) HA - ML Day 3 06/28-30/2023
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3. Chart based flows - model

Chart based flows - implementation
Each conformal normalizing flow g1,θ, · · · , gK ,θ is trained on only data
lying in Uk . Even so, training K separate flows g1,θ, · · · , gK ,θ becomes
infeasibly time consuming as K increases (VQAE produces ∼ 120 charts
for the MNIST dataset), so instead let gθ : Z × V → X be such that
g(z , vk) ∈ Uk for all z . Then assume

gk,θ(z) = gθ(z , vk)
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3. Chart based flows - model

Chart based flows - training
During training the objective function is

ln pθ(X ) =
N∑

n=1
ln pθ(xn) =

N∑
n=1

ln
∑

k:xn∈Uk

pkp(xn|k)

=
N∑

n=1
ln

∑
k:xn∈Uk

pkq(fk(xn))|λk(c†k(xn))|−1
L∏

l=1
|det [Jf l

k (f l+1
k ◦ · · · ◦ f L

k (xn))]|

Noting that p(x |k) is zero unless x ∈ Uk . The density p(x) can also be
written

p(x) = Ek∼p̃x (k)[p(x |k)]
∑

j:x∈Uj

p(j)

︸ ︷︷ ︸
piecewise constant

Where p̃x (k) = p(k|p(x |k) > 0) = pk/
∑

j:x∈Uj pj . During training we
replace the expectation Ek∼p̃(k)[p(x |k)] with the stochastic quantity
p(x |k), k ∼ p̃(k), performing only a single gradient descent pass per
data-point as opposed to m(x) passes.
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3. Chart based flows - model

Chart based flows - sampling, inference, and density

Sampling: Since z and k are independent sample z from z ∼ q(z)
and k ∼ pk and then compute x = gθ(z , vk).
Inference: Since z is no longer wholly determined by x , but instead
takes values (f (x , vk))k:x∈Uk with corresponding probabilities
(p(k|x))k:x∈Uk . One could perform a stochastic inference via
sampling k ∼ p(k|x) and computing z = f (x , vk). If deterministic
inference is preferred then one may use the expected value of z as
z = Ek∼p(k|x)[fk(x)] =

∑
k:x∈Uk

p(k|x)fk(x) or the most probable
value of z as z = fs(x) where s = argmaxk:x∈Uk p(k|x).
Density Evaluation: If the exact density p(x) is needed for
x ∈

⋃K
k=1 Uk it can be computed at the cost of m(x) evaluations of a

normalizing flow:

p(x) =
∑

k:xn∈Uk

pkq(fk(xn))|λk(c†k(xn))|−1
L∏

l=1
|det [Jf l

k (f l+1
k ◦ · · · ◦ f L

k (xn))]|
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4. Chart based flows - performance

Chart based flows - performance

Figure: Toy datasets with various topological features.
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4. Chart based flows - performance

Chart based flows - performance

Figure: Qualitative visualization of the samples generated by a classical flow
(Middle Row) and its VQ-counterpart (Bottom Row) trained on Toy 3D data
distributions (Top Row).
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4. Chart based flows - performance

Chart based flows - performance

Figure: Qualitative visualization of the samples generated by a classical flow
(Middle Row) and its VQ-counterpart (Bottom Row) trained on Toy 3D data
distributions (Top Row).Radu Balan (UMD) HA - ML Day 3 06/28-30/2023
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4. Chart based flows - performance

Chart based flows - performance
Model Spherical Helix Lissajous Twisted-Eight Knotted Interlocked-Circles

Real NVP 0.50 ± 0.07 -57.46 ± 2.11 0.18 ± 0.14 -2.72 ± 0.90 -8.65 ± 0.87 -2.18 ± 0.37
VQ-RealNVP 0.99 ± 0.14 -3.85 ± 0.98 0.59 ± 0.08 0.18 ± 0.17 -1.44 ± 0.37 -0.11 ± 0.12

MAF 0.65 ± 0.26 -92.83 ± 5.69 0.12 ± 0.16 -2.77 ± 0.81 -7.04 ± 0.49 -2.49 ± 0.14
VQ-MAF 1.01 ± 0.07 -4.62 ± 0.37 0.59 ± 0.07 -0.32± 0.13 -2.44 ± 0.11 -0.15 ± 0.08

CEF -1.17 ± 0.06 -29.90 ± 2.12 0.38 ± 0.14 -4.03 ± 0.38 -19.40 ± 1.80 -3.42 ± 0.49
VQ-CEF 0.80 ± 3.42 -20.75 ± 2.22 0.49 ± 0.03 -3.51 ± 0.73 -14.44 ± 1.57 -3.23 ± 0.19

Model Non-Knotted Bent-Lissajous Disjoint-Circles Star

Real NVP 0.53 ± 0.18 1.04 ± 0.22 1.71 ± 0.12 3.33 ± 0.18
VQ-RealNVP 2.39 ± 0.24 2.62 ± 0.13 2.71 ± 0.19 4.23 ± 0.06

MAF 0.73 ± 0.18 1.48 ± 0.11 1.95 ± 0.12 3.53 ± 0.03
VQ-MAF 2.41 ± 0.19 2.06 ± 0.12 2.87 ± 0.07 3.59 ± 0.12

CEF -0.46 ± 0.13 -0.51 ± 0.16 -0.71 ± 0.21 1.26 ± 0.11
VQ-CEF -0.15 ± 0.09 -0.54 ± 0.22 0.24 ± 0.15 1.32 ± 0.02

Table: Quantitative evaluation of Sample Generation in terms of the
log-likelihood of generated samples in nats (higher the better) on the 3D
datasets. The values are averaged across 5 independent trials, ± represents the
95% confidence interval.Radu Balan (UMD) HA - ML Day 3 06/28-30/2023



Day 3: GCN Day 3: Forecasting Day 3: UQ Day 3: Normalizing Flows Day 3: Optimizations

4. Chart based flows - performance

Chart based flows - Higher Dimensional Data

Figure: Seen here are the results of recent experiments on the MNIST dataset.
FID is Fréchet Inception Distance (lower is better).
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Combinatorial Optimizations using DNN

Collaborators: Maneesh Singh, Julian Yarkoni (Verisk, NJ), Naveed
Haghani (UMD)
Presented at SPIE 2019:
R. Balan, N. Haghani, “Discrete optimizations using graph convolutional
networks”, Proc. SPIE 11138 Wavelets and Sparsity XVIII, San Diego,
August 2019
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1. Problem Formulation

Quadratic Optimization Problems

Consider two symmetric (and positive semidefinite) matrices A,B ∈ Rn×n.
The quadratic assignment problem asks for the solution of

maximize trace(ΠAΠT B)
subject to:

Π ∈ Sn

where Sn denotes the symmetric group of n × n permutation matrices.
Application: Develop a Graph Deep Learning architecture for solving the
Quadratic Assignment Problem.
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1. Problem Formulation

QAP
Motivation

Consider two n× n symmetric matrices A,B. In the alignment problem for
quadratic forms one seeks an orthogonal matrix U ∈ O(n) that minimizes

‖UAUT −B‖2
F := trace((UAUT −B)2) = ‖A‖2

F +‖B‖2
F −2trace(UAUT B).

The solution is well-known and depends on the eigendecomposition of
matrices A,B: if A = U1D1UT

1 , B = U2D2UT
2 then

Uopt = U2UT
1 , ‖UoptAUT

opt − B‖2
F =

n∑
k=1
|λk − µk |2,

where D1 = diag(λk) and D2 = diag(µk) are diagonal matrices with
eigenvalues ordered monotonically.
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1. Problem Formulation

QAP
Motivation 2

The challenging case is when U is constrained to belong to the
permutation group. In this case, the previous minimization problem

min
U∈Sn

‖UAUT − B‖F

turns into the QAP:
max
U∈Sn

trace(UAUT B).

In the case A,B are graph Laplacians (or adjacency matrices), an efficient
solution to this optimization problem would solve the graph isomorphism
problem, one of the remaining milenium problems: decide if two given
graphs are the same modulo vertex labelling.
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1. Problem Formulation

Prior work to discrete optimizations using deep learning

Direct approach to discrete optimization: Pointer Networks (Ptr-Nets)
utilize sequence-to-sequence Recurrent Neural Networks [Vinyals’15];
Reinforcement learning and policy gradients: [Bello’16]
Graph embedding and deep Q-learning: [Dai’17]
QAP using graph deep learning: [Nowak’17] utilizes siamese graph
neural networks that act on A and B independently to produce
embeddings E1 and E2; then the product E1E T

2 is transformed into a
permutation matrix through soft-max and cross-entropy loss.
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2. Miscelleneous Results

Shift Invariance Properties

Consider A = AT and B = BT (no positivity assumption).

Lemma
The QAP associated to (A,B) has the same optimizer as the QAP
associated to (A− λI,B − µI), where λ, µ ∈ R.

Indeed, the proof of this lemma is based on the following direct
computation:

trace(Π(A−λI)ΠT (B−µI)) = trace(ΠAΠT B)−µtrace(A)−λtrace(B)+nλµ

A consequence of this lemma is that, without loss of generality, we can
assume A,B ≥ 0. In fact, we can shift the spectrum to vanish the smallest
eigenvalues of A,B.
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2. Miscelleneous Results

The case of Rank One
Assume now A = aaT and B = bbT are non-negative rank one matrices.
Then:

trace(ΠAΠT B) = |bT Πa|2 = (trace(ΠabT ))2 = 1
trace(AB)(trace(ΠAB))2

In this case we obtain the explicit solution to the QAP:

Lemma
Assume A = aaT and B = bbT are rank one. Then the QAP optimizer is
the optimizer of one of the following two optimization problems:

maximize trace(ΠC)
subject to:

Π ∈ Sn

or
minimize trace(ΠC)

subject to:
Π ∈ Sn

where C = AB.
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2. Miscelleneous Results

Linear Assignment Problems
Given a cost matrix C ∈ Rn×n, the Linear Assignment Problem (LAP) is
defined by:

maximize trace(ΠC)
subject to:

Π ∈ Sn

Without loss of generality, max can be replace by min, for instance by
solving LAP for −C .

The key observation is that LAP can be solved efficiently by a linear
program. Specifically, the convexification of LAP produces the same
optimizer:

maximize trace(WC)
subject to:

Wi ,j ≥ 0 , 1 ≤ i , j ≤ n∑n
i=1 Wi ,j = 1 , 1 ≤ j ≤ n∑n
j=1 Wi ,j = 1 , 1 ≤ i ≤ n
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2. Miscelleneous Results

Linear Assignment Problems
Given a cost matrix C ∈ Rn×n, the Linear Assignment Problem (LAP) is
defined by:

maximize trace(ΠC)
subject to:

Π ∈ Sn

Without loss of generality, max can be replace by min, for instance by
solving LAP for −C .
The key observation is that LAP can be solved efficiently by a linear
program. Specifically, the convexification of LAP produces the same
optimizer:
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2. Miscelleneous Results

Diagonal Matrices
Another case when we know the exact solution is when A and B are
diagonal matrices. Say A = diag(a) and B = diag(b). Then

trace(ΠAΠT B) = trace(diag(Πa)diag(b)) = trace(ΠabT ) = trace(ΠC)

where C = abT .

Lemma
If A = diag(a) and B = diag(b) then the solution of the QAP is given by
the solution of the LAP

maximize trace(ΠC)
subject to:

Π ∈ Sn

where C = abT .
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3. Our Approach

Approach

The idea is the following: First we convert the input data (A,B) into a
cost matrix C , and then we solve two LAPs, one associated to C the other
associated to −C . Finally we choose the permutation that produces the
larger objective function.
The conversion step (A,B) 7→ C is performed by a Graph Convolutional
Network (GCN).
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3. Our Approach

Graph Convolutional Networks (GCN)

Kipf and Welling (2016) introduced a network structure that performs
local processing according to a modified adjacency matrix:

Here T̃ = I + T , where T is an input adjacency matrix, or graph weight
matrix. The L-layer GCN has parameters (W1,B1,W2,B2, · · · ,WL,BL).
As activation map σ we choose the ReLU (Rectified Linear Unit).
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3. Our Approach

The Specific GCN Architecture

For the QAP associated to matrices (A,B) we design a specific GCN
architecture:

X =
[

A 0
B 0

]
, T̃ =

[
In 1

‖A‖F ‖B‖F
AB

1
‖A‖F ‖B‖F

BA In

]
(5.4)

where the 0 matrices in X are designed to fit the appropriate size of W1.
For σ we choose the ReLU (Rectified Linear Unit) function in each layer
except for the last one; in the last layer we do not use any activation
function (i.e., σ = Identity). The biases B1, · · · ,BL are chosen of the form
Bk = 1 · βT

k , i.e., each row βT
k is repeated.
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3. Our Approach

GCN Guarantee

The following result applies to this network.

Theorem

Assume A = aaT and B = bbT are rank one matrices, and consider the
GCN with L layers and activation map ReLU as described above. Then for
any nontrivial weights W1, · · · ,WL and biases B1, · · · ,BL (whose rows are

repeated), the network output Y partitioned Y =
[

Y 1

Y 2

]
into two blocks

of n rows each, satisfies Y 1Y 2T = γAB, for some constant γ ∈ R. In
particular, the max-LAP and min-LAP applied to the latent representation
matrix C = Y 1Y 2T are guaranteed to produce the optimal solution of the
QAP.
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4. Numerical Results

Reference Algorithms

We compare the GCN based optimizer with two different algorithms.
1. The AB Method bypasses the GCN block. Thus Y = X and the cost
matrix inputted into the LAP solver is simply C = AB (hence the name of
the method). Similar to the GCN approach, the AB Method is exact on
rank 1 inputs. But there is no adaptation of the cost matrix for other
input matrices.
2. The Iterative algorithm is based on alternating max-LAP or min-LAP as
follows:

Πk+1 ∈
{

argmax trace(ΠAΠT
k B)

Π ∈ Sn
,

argmin trace(ΠAΠT
k B)

Π ∈ Sn

}

where Π0 = I (identity), and the choice of permutation at each k is based
on which permutation produces a larger trace(ΠAΠT B).
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4. Numerical Results

Comparison with Ground Truth
Results for 2 ≤ n ≤ 10 and raw data normal distributed

Average relative difference w.r.t. maximum objective function:

Figure: Top left: ABMethod, Top right: Iterative algorithm, Bottom left: GCN
with L=2 layers and bais, Bottom right: GCN with L = 3 layers and bias
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4. Numerical Results

Comparison with Ground Truth
Results for 2 ≤ n ≤ 10 and raw data uniform distributed

Average relative difference w.r.t. maximum objective function:

Figure: Top left: ABMethod, Top right: Iterative algorithm, Bottom left: GCN
with L=2 layers and bais, Bottom right: GCN with L = 3 layers and bias
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4. Numerical Results

Relative Comparison
Results for n = 100 and n = 200 with raw data normal distributed

Figure: Top row: Frequency of optimal algorithm for n = 100 (left), and n = 200
(right). Borrom row: Relative performance [%] to the best algorithm for n = 100
(left) and n = 200 (right)
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4. Numerical Results

Relative Comparison
Results for n = 100 and n = 200 with raw data normal distributed

Figure: Top row: Frequency of optimal algorithm for n = 100 (left), and n = 200
(right). Borrom row: Relative performance [%] to the best algorithm for n = 100
(left) and n = 200 (right)
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4. Numerical Results

Conclusions

The results showed an unexpected result:
For small n when ground truth is available, the GCN architectures
performs comparable to the AB Method and in general worse than
the Iterative algorithm. Among the GCN architectures, the 2 layer
with bias architecture seems to have a small advantage compared to
the other three GCN architectures.
For large matrix size, the GCN algorithms consistently outperform the
AB Method as well as the Iterative algorithm. However the ground
truth is not available in these cases. Interestingly, for the case of
uniformly [0, 1] case the GCN schemes with no bias provide the best
objective function, whereas for the gaussian case the GCN schemes
with bias provide the best objective functions. Yet, in all cases, the
GCN with bias have the smallest relative difference to the largest
objective value in each instance.
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Thank you!

Questions?
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