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Combinatorial Problems
Approach

In this talk we consider the class of combinatorial problems,
maximize J(Π; Input)
subject to:

Π ∈ Sn

where Input stands for a given set input data, and Sn denotes the
symmetric group of permutation matrices.
We analyze two specific objective functions:

1 Linear Assignment, J(Π; C) = trace(ΠCT )
2 Quadratic Assignment, J(Π; A,B) = trace(AΠBΠT )

Idea: Use a two-step procedure:
1 Perform a latent representation of the Input Data using a Graph

Convolutive Network;
2 Apply a direct algorithm (e.g., a greedy-type algorithm) or solve a

convex optimization problem to obtain an estimate of the optimal Π.
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The Linear Assignment Problem
Consider a N × R cost/reward matrix C = (Ci ,j)1≤i≤N,1≤j≤R of
non-negative entries associated to edge connections between two sets of
nodes, {x1, · · · , xN} and {y1, · · · , yR} with N ≥ R. The problem is to find
the minimum cost/maximum reward matching/assignment, namely:

minimize/maximize
∑N

i=1
∑R

j=1 πi ,jCi ,j = trace(ΠC̃T )
subject to:

πi ,j ∈ {0, 1} , ∀i , j∑N
i=1 πi ,j = 1 , ∀1 ≤ j ≤ R∑R
j=1 πi ,j ≤ 1 , ∀1 ≤ i ≤ N
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Quadratic Assignment Problem

Consider two symmetric (and positive semidefinite) matrices A,B ∈ Rn×n.
The quadratic assignment problem asks for the solution of

maximize trace(AΠBΠT )
subject to:

Π ∈ Sn

In turns this is equivalent to the minimization problem:

minimize ‖ΠA− BΠ‖2F
subject to:

Π ∈ Sn

In the case A,B are graph Laplacian, an efficient solution to this
optimization problem would solve the millenium problem of whether two
graphs are isomorphic.
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Novel Approach: Optimization in a Latent Representation
Domain

Idea: Perform a two-step procedure: (1) perform a nonlinear representation
of the input data; (2) perform optimization in the representation space.

The nonlinear representation map Φ : Input Data 7→ Y is implemented
using a GCN.
The Optimization map Ψ : Y 7→ π̂ can be implemented using a specific
nonlinear map (e.g., greedy algorithm, or turning into stochastic matrix) or
by solving a convex optimization problem.
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Graph Convolutive Networks (GCN)

Kipf and Welling introduced a network structure that performs local
processing according to a modified adjacency matrix:

Here Ã = I + A, where A is an input adjacency matrix, or graph weight
matrix. The L-layer GCN has parameters (W1,B1,W2,B2, · · · ,WL,BL).
As activation map σ we choose the ReLU (Rectified Linear Unit).

Radu Balan (UMD) Optimizations March 11, 2019 Workshop on Machine Learning and Applications at UMD



Optimizations using Deep Learning DNN as UA Numerical Results

Linear Assignment Problems using GCN

The GCN design: Consider the GCN with N + R nodes, adjacency/weight

matrix A =
[

0 C
CT 0

]
and data matrix X =

[
ν(C(i , :))
ν(CT (j , :))

]
.

Key observation: When C = uvT , that is, when the cost matrix is rank
one then:

1 Objective Function: J(Π; C) = uT Πv = 〈Πv , u〉

2 GCN output when no bias (Bj = 0): Γ =
[

Γ1
Γ2

]
satisfies Γ1ΓT

2 = αC .

Consequence: the ”greedy” algorithm produces the optimal solution.

Network Objective: Once trained, the GCN produces a latent
representation Z = Γ1ΓT

2 close to the input cost matrix C so that the
greedy algorithm applied on Z produces the optimal solution.
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Quadratic Assignment Problem using GCN
Preliminary result

The GCN Design: Consider the GCN with n nodes, adjacency/weight

matrix A =
[

0 AB
BA 0

]
and data matrix X =

[
A
B

]
.

Key observation: When A = uuT and B = vvT , that is, when the matrices
are rank one then:

1 Objective function: J(Π; A,B) = (uT Πv)2 = (〈Πv , u〉)2

2 GCN output when no bias ((Bj = 0): Γ =
[

Γ1
Γ2

]
satisfies

Γ1ΓT
2 ∼ uvT .

Consequence: the ”greedy” algorithm or the solution to the linear
assignment problem associated to uvT produces the optimal solution.
Network Objective: Once trained, the GCN produces a latent
representation Z = Γ1ΓT

2 so that the linear assignment problem associated
to Z produces the same optimal permutation.
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Deep Neural Networks as Universal Approximators

minimize/maximize
∑N

i=1
∑R

j=1 πi ,jCi ,j
subject to:

πi ,j ∈ {0, 1} , ∀i , j∑N
i=1 πi ,j = 1 , ∀1 ≤ j ≤ R∑R
j=1 πi ,j ≤ 1 , ∀1 ≤ i ≤ N

Luckily, the convex relaxation (Linear Program) produces the same
optimal solution:

minimize
∑N

i=1
∑R

j=1 πi ,jCi ,j
subject to:

0 ≤ πi ,j ≤ 1 , ∀i , j∑N
i=1 πi ,j = 1 , ∀1 ≤ j ≤ R∑R
j=1 πi ,j ≤ 1 , ∀1 ≤ i ≤ N
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Deep Neural Networks as Universal Approximators
Architectures

The overall system must output feasible solutions π̂. Our architecture
compose two components: (1) a deep neural network (DNN) that outputs
a (generally) unfeasible estimate π̄; (2) an enforcer (P) of the feasibility
conditions that outputs the estimate π̂:

Issues:
1 DNN architecture: how many layers; how many neurons per layer?
2 P, the feasibility enforcer
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Deep Neural Networks as Universal Approximators
DNNs

We studied three architectures:
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Deep Neural Networks as Universal Approximators
Feasibility Enforcer P

An ”optimal” feasibility condition enforcer would minimize some
”distance” to the feasibility set. However this may be a very
computationally expensive component. An intermediate solution is to
alternate between different feasibility conditions (equalities and
inequalities) until convergence.
Instead we opt for a simpler and ”greedier” approach:

Repeat R times:
1. Find (i , j) the largest entry in π̄
2. Set π̂i ,j = 1; set to 0 other entries
in row i and column j ;
3. Remove row i and column j from
both π̄ and π̂.
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Deep Neural Networks as Universal Approximators
Baseline solution: The Greedy Algorithm

The ”greedy” enforcer can be modified into a ”greedy” optimization
algorithm:

1 Initialize E = C and π̂ = 0N×R
2 Repeat R times:

Find (i , j) = argmin(a,b)Ea,b;
Set π̂i,j = 1, π̂i,l = 0 ∀l 6= j , π̂l,j = 0 ∀l 6= i ;
Set Ei,: =∞, E:,j =∞.

Proposition

The greedy algorithm produces the optimal solution if there is a positive
number λ > 0 and two nonnegative vectors u, v such that
C = λ1 · 1T − u · vT .
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Exp.1 : N = 5, R = 4 with ReLU activation
First architecture:

Number of internal layers: 9
Number of hidden units per layer: 250
Batch size: 200; ADAM optimizer
Loss function: cross-entropy:∑

i ,j πi ,j(−log(π̂i ,j)) + (1− πi ,j)(−log(1− π̂i ,j))
Training data set: 1 million random instances U(0, 1) i.i.d.
Validation set: 20,000 random instances.
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Exp.1 : N = 5, R = 4 with ReLU activation
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Exp.1 : N = 5, R = 4 with ReLU activation
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Exp.1 : N = 5, R = 4 with ReLU activation
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Exp.1 : N = 5, R = 4 with ReLU activation

Radu Balan (UMD) Optimizations March 11, 2019 Workshop on Machine Learning and Applications at UMD



Optimizations using Deep Learning DNN as UA Numerical Results

Exp.1 : N = 5, R = 4 with ReLU activation
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Exp.2 : N = 10, R = 8 with sigmoid activation
Second architecture:

Number of internal layers: 10
Number of hidden units per layer: 250
No Batch; ADAM optimizer
Loss function: cross-entropy:∑

i ,j πi ,j(−log(π̂i ,j)) + (1− πi ,j)(−log(1− π̂i ,j))
Training data set: 1 million random instances U(0, 1) i.i.d.
Validation set: 20,000 random instances.
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Exp.2 : N = 10, R = 8 with sigmoid activation
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Exp.2 : N = 10, R = 8 with sigmoid activation
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Exp.2 : N = 10, R = 8 with sigmoid activation
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Exp.2 : N = 10, R = 8 with sigmoid activation
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Exp.2 : N = 10, R = 8 with sigmoid activation
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Exp.3 : N = 5, R = 4 with sigmoid activation
Second architecture:

Number of internal layers: 10
Number of hidden units per layer: 250
Batch size 200; ADAM optimizer
Loss function: cross-entropy:∑

i ,j πi ,j(−log(π̂i ,j)) + (1− πi ,j)(−log(1− π̂i ,j))
Training data set: 500,000 random instances U(0, 1) i.i.d.
Validation set: 20,000 random instances.
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Exp.3 : N = 5, R = 4 with sigmoid activation
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Exp.3 : N = 5, R = 4 with sigmoid activation
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Exp.3 : N = 5, R = 4 with sigmoid activation
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Exp.3 : N = 5, R = 4 with sigmoid activation
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Exp.3 : N = 5, R = 4 with sigmoid activation
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Exp.4 : N = 10, R = 8 with sigmoid activation
Second architecture:

Number of internal layers: 10
Number of hidden units per layer: 300
Batch size 200; ADAM optimizer
Loss function: cross-entropy:∑

i ,j πi ,j(−log(π̂i ,j)) + (1− πi ,j)(−log(1− π̂i ,j))
Training data set: 500,000 random instances U(0, 1) i.i.d.
Validation set: 20,000 random instances.
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Exp.4 : N = 10, R = 8 with sigmoid activation
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Exp.4 : N = 10, R = 8 with sigmoid activation
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Exp.4 : N = 10, R = 8 with sigmoid activation
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Exp.4 : N = 10, R = 8 with sigmoid activation
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Exp.4 : N = 10, R = 8 with sigmoid activation
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