Lipschitz Extensions in Inverse Problems

Radu Balan

Department of Mathematics, CSCAMM and NWC University of Maryland, College Park, MD

May 14-18, 2018
International Conference on Camputational Harmonic Analysis Vanderbilt University, Nashville, TN

"This material is based upon work partially supported by the National Science Foundation under grant no. DMS-1413249, ARO under grant W911NF-16-1-0008, and LTS under grant H9823013D00560049. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation."
Based on joint works with: Yang Wang (HKST), Dongmian Zou (IMA), David Bekkerman and Wenbo Li (UMD).

Happy Birthday Akram！

Table of Contents:

(1) Framework
(2) Metrics on Matrices
(3) BiLipschitz Results
(4) Proofs

High-Level Problem Formulation

Given: A nonlinear map (analysis) $\alpha: \mathcal{S} \rightarrow \mathbb{R}^{m}$ from a metric space (\mathcal{S}, d) to the Euclidean space $\left(\mathbb{R}^{m},\|\cdot\|_{2}\right)$.
Wanted: A left inverse $\omega: \mathbb{R}^{m} \rightarrow \mathcal{S}$ that is globally Lipschitz.

Today problems: The case when $\mathcal{S} \subset \operatorname{Sym}^{+}\left(\mathbb{C}^{n}\right)$ is a class of psd matrices, or $\mathcal{S} \subset \mathbb{R}^{n}$ is the class of sparse signals.

Quantum Tomography
 Setup

A quantum system is characterized by the density matrix $M \in \mathbb{C}^{n \times n}$. Given a set of observables Y_{1}, \cdots, Y_{m} that can be measured simultaneously, the problem is to estimate (compute) the density matrix $M=M^{*} \geq 0$ from noisy measurements:

$$
y_{k}=\operatorname{trace}\left(M Y_{k}\right)+\nu_{k} .
$$

Constraints: (1) trace $(M)=1$ (2) weakly mixed system, i.e. M has low rank, $\operatorname{rank}(M) \leq d$:

$$
\mathcal{S}=S t^{d}\left(\mathbb{C}^{n}\right)=\left\{X=X^{*} \geq 0, \quad \operatorname{trace}(X)=1, \operatorname{rank}(X) \leq d\right\}
$$

Scene Understanding from Power Measurements Setup

Mixing model: d decorrelated sources (acoustic, RF, etc) monitored by n sensors. A subset S of all possible ordered pairs $\{(i, j) ; 1 \leq i \leq j \leq n\}$ of sensors determines signal covariance, i.e. the measurements are:

$$
y_{\alpha}=\mathbb{E}\left[x_{i} \overline{x_{j}}\right]+\nu_{\alpha}=R_{i, j}+\nu_{\alpha} .
$$

for $\alpha=(i, j) \in S$ and $R=\mathbb{E}\left[x x^{*}\right]$ is the $n \times n$ cov. matrix of rank d.
The problem is to estimate R from $\left\{y_{\alpha}, \alpha \in S\right\}(|S|=m)$.
Here: $\mathcal{S}=\mathbb{S}^{d, 0}=\left\{X=X^{*} \geq 0, \operatorname{rank}(X) \leq d\right\}$.

Compressive Sampling Scenario Setup

Signal Model: x: d-sparse \mathbb{R}^{n}-vector. Measurement Model:

$$
y=A x+\nu \in \mathbb{R}^{m}
$$

Here:

$$
\mathcal{S}=\mathbb{R}_{d}^{n}=\left\{x \in \mathbb{R}^{n},\|x\|_{0} \leq d\right\}
$$

Notations

$H=\mathbb{F}^{n}$ a finite dimensional Euclidean space, with $\mathbb{F}=\mathbb{R}$ or $\mathbb{F}=\mathbb{C}$,

- $\operatorname{Sym}(H)=\left\{T \in H^{n \times n}, T=T^{*}\right\}$
- Convex cone of PSD: $\operatorname{Sym}^{+}(H)=\left\{T \in \operatorname{Sym}(H), T=T^{*} \geq 0\right\}$
- Quantum states: $\operatorname{St}(H)=\left\{T \in \operatorname{Sym}^{+}(H), \operatorname{trace}(T)=1\right\}$
- Low-rank quantum states

$$
\operatorname{St}^{r}(H)=\left\{T \in \operatorname{Sym}^{+}(H), \quad \operatorname{trace}(T)=1, \operatorname{rank}(T) \leq r\right\}
$$

- Cone of low-rank mixed signature matrices:
$\mathbb{S}^{p, q}=\{T \in \operatorname{Sym}(H), T$ has at most p positive and q negative eigenvalues $\}$ In particular $\mathbb{S}^{1,0}=\left\{x x^{*}, x \in H\right\}$, set of rank (at most) one PSDs.
- Cone of sparse signals:

$$
H_{d}=\mathbb{R}_{d}^{n}=\left\{x \in H=\mathbb{R}^{n},\|x\|_{0} \leq d\right\}
$$

Problem Formulation

Models

Forward maps:

$$
\begin{gathered}
\alpha: \operatorname{Sym}^{+}(H) \rightarrow \mathbb{R}^{m}, \quad(\alpha(X))_{k}=\sqrt{\operatorname{trace}\left(X F_{k}\right)}=\sqrt{\left\langle X, F_{k}\right\rangle} \\
\beta: \operatorname{Sym}^{+}(H) \rightarrow \mathbb{R}^{m}, \quad(\beta(X))_{k}=\operatorname{trace}\left(X F_{k}\right)=:\left\langle X, F_{k}\right\rangle
\end{gathered}
$$

where $F_{1}, \cdots, F_{m} \in \operatorname{Sym}^{+}(H)$ are fixed PSD matrices.

$$
\gamma: H_{d} \rightarrow \mathbb{R}^{m} \quad, \quad \gamma(x)=A x
$$

where $A \in \mathbb{R}^{m \times n}$ is a "fat" measurement matrix $(n>m \geq 2 d)$.

Problem Formulation

Models

Forward maps:

$$
\begin{gathered}
\alpha: \operatorname{Sym}^{+}(H) \rightarrow \mathbb{R}^{m}, \quad(\alpha(X))_{k}=\sqrt{\operatorname{trace}\left(X F_{k}\right)}=\sqrt{\left\langle X, F_{k}\right\rangle} \\
\beta: \operatorname{Sym}^{+}(H) \rightarrow \mathbb{R}^{m}, \quad(\beta(X))_{k}=\operatorname{trace}\left(X F_{k}\right)=:\left\langle X, F_{k}\right\rangle
\end{gathered}
$$

where $F_{1}, \cdots, F_{m} \in \operatorname{Sym}^{+}(H)$ are fixed PSD matrices.

$$
\gamma: H_{d} \rightarrow \mathbb{R}^{m} \quad, \quad \gamma(x)=A x
$$

where $A \in \mathbb{R}^{m \times n}$ is a "fat" measurement matrix ($n>m \geq 2 d$). Spaces:

- Phase Retrieval: $\mathcal{S}=\mathbb{S}^{1,0}=\left\{x x^{*}, x \in H\right\}$ or $\mathcal{S}=\hat{H}=H / T^{1}$.
- Quantum Tomography:

$$
\mathcal{S}=S t^{r}(H)=\left\{X=X^{*} \geq 0, \operatorname{trace}(X)=1, \operatorname{rank}(X) \leq r\right\} .
$$

- Covariance Matrix Estimation: $\mathcal{S}=\mathbb{S}^{d, 0}$.
- Sparse Signal Estimation: $\mathcal{S}=\mathbb{R}_{d}^{n}$.

Problem Formulation

The phase retrieval problem

Hilbert space $H=\mathbb{C}^{n}, \hat{H}=H / T^{1}$, frame $\mathcal{F}=\left\{f_{1}, \cdots, f_{m}\right\} \subset \mathbb{C}^{n}$ and

$$
\begin{aligned}
& \alpha: \hat{H} \rightarrow \mathbb{R}^{m}, \quad(\alpha(x))_{k}=\left|\left\langle x, f_{k}\right\rangle\right|=\sqrt{\left\langle x x^{*}, f_{k} f_{k}^{*}\right\rangle} . \\
& \beta: \hat{H} \rightarrow \mathbb{R}^{m}, \quad(\beta(x))_{k}=\left|\left\langle x, f_{k}\right\rangle\right|^{2}=\left\langle x x^{*}, f_{k} f_{k}^{*}\right\rangle .
\end{aligned}
$$

Assume α, β are injective, the problem is to construct global Lipschitz inverses and to study their Lipschitz constants.

Problem Formulation

Lipschitz reconstruction: the general case

Assume the maps $\alpha, \beta, \gamma: \mathcal{S} \rightarrow \mathbb{R}^{m}$ are injective, where

$$
(\alpha(X))_{k}=\sqrt{\operatorname{trace}\left(X F_{k}\right)}, \quad(\beta(X))_{k}=\operatorname{trace}\left(X F_{k}\right), \gamma(x)=A x .
$$

Our Problem Today:

Construct Lipschitz maps $\omega, \psi, \theta: \mathbb{R}^{m} \rightarrow \mathbb{S}$ so that $\omega \circ \alpha=1_{X}$, $\psi \circ \beta=1_{X}, \theta \circ \gamma=1_{\mathcal{S}}$. Determine $\operatorname{Lip}(\omega), \operatorname{Lip}(\psi)$ and $\operatorname{Lip}(\theta)$.

Metric Structures on \hat{H} and $\operatorname{Sym}(H)$

Norm Induced Metric

Fix $1 \leq p \leq \infty$. The matrix-norm induced distance on $\operatorname{Sym}(H)$:

$$
d_{p}: \operatorname{Sym}(H) \times \operatorname{Sym}(H) \rightarrow \mathbb{R}, d_{p}(X, Y)=\|X-Y\|_{p}
$$

the p-norm of singular values (nuclear $p=1$, Frobenius $p=2$, operator $p=\infty)$.
On $\hat{H}=H / T^{1}$ it induces the metric

$$
\mathbf{d}_{p}: \hat{H} \times \hat{H} \rightarrow \mathbb{R}, \mathbf{d}_{p}(\hat{x}, \hat{y})=\left\|x x^{*}-y y^{*}\right\|_{p}
$$

so that $\mathbf{d}_{p}(\hat{x}, \hat{y})=d_{p}\left(x x^{*}, y y^{*}\right)$. In the case $p=2$ we obtain

$$
d_{2}(X, Y)=\|X-Y\|_{F} \quad, \quad \mathbf{d}_{2}(x, y)=\sqrt{\|x\|^{4}+\|y\|^{4}-2|\langle x, y\rangle|^{2}}
$$

Metric Structures on \hat{H} and $\operatorname{Sym}(H)$

The Natural Metric

The natural metric

$$
\mathbf{D}_{p}: \hat{H} \times \hat{H} \rightarrow \mathbb{R}, \quad \mathbf{D}_{p}(\hat{x}, \hat{y})=\min _{\varphi}\left\|x-e^{i \varphi} y\right\|_{p}
$$

with the usual p-norm on \mathbb{C}^{n}. In the case $p=2$ we obtain

$$
\mathbf{D}_{2}(\hat{x}, \hat{y})=\sqrt{\|x\|^{2}+\|y\|^{2}-2|\langle x, y\rangle|}
$$

On $\mathrm{Sym}^{+}(H)$, the "natural" metric lifts to

$$
D_{p}: \operatorname{Sym}^{+}(H) \times \operatorname{Sym}^{+}(H) \rightarrow \mathbb{R}, D_{p}(X, Y)=\min _{\substack{ \\V V^{*}=X \\ W W^{*}=Y}}\|V-W\|_{p}
$$

Metric Structures on Sym(H)

Natural metric vs. Bures/Helinger
Let $X, Y \in \operatorname{Sym}^{+}(H)$. For the natural distance we choose $p=2$:

$$
\begin{gathered}
D_{\text {natural }}(X, Y)=\min _{V V^{*}=X}\|V-W\|_{F} \\
W W^{*}=Y
\end{gathered}
$$

$\begin{gathered}\text { Fact: } \\ D_{\text {natural }}(X, Y)\end{gathered} \min _{U \in U(n)}\left\|X^{1 / 2}-Y^{1 / 2} U\right\|_{F}=\sqrt{\operatorname{tr}(X)+\operatorname{tr}(Y)-2\left\|X^{1 / 2} Y^{1 / 2}\right\|_{1}}$

Metric Structures on Sym(H)

Natural metric vs. Bures/Helinger
Let $X, Y \in \operatorname{Sym}^{+}(H)$. For the natural distance we choose $p=2$:

$$
\begin{gathered}
D_{\text {natural }}(X, Y)=\min _{V V^{*}=X}\|V-W\|_{F} \\
W W^{*}=Y
\end{gathered}
$$

$$
\begin{gathered}
\text { Fact: } \\
D_{\text {natural }}(X, Y)
\end{gathered} \min _{U \in U(n)}\left\|X^{1 / 2}-Y^{1 / 2} U\right\|_{F}=\sqrt{\operatorname{tr}(X)+\operatorname{tr}(Y)-2\left\|X^{1 / 2} Y^{1 / 2}\right\|_{1}}
$$

Another distance: Bures/Helinger distance:

$$
D_{\text {Bures }}(X, Y)=\left\|X^{1 / 2}-Y^{1 / 2}\right\|_{F}=d_{2}\left(X^{1 / 2}, Y^{1 / 2}\right)
$$

A consequence of the Arithmetic-Geometric Mean Inequality [BhatiaKittaneh00]:

$$
\frac{1}{2}\left\|X^{\frac{1}{2}}-Y^{\frac{1}{2}}\right\|_{F}^{2} \leq \min _{U \in U(n)}\left\|X^{\frac{1}{2}}-Y^{\frac{1}{2}} U\right\|_{F}^{2} \leq\left\|X^{\frac{1}{2}}-Y^{\frac{1}{2}}\right\|_{F}^{2}
$$

Stability Results for the forward maps

Bi-Lipschitz properties of α and β

Fix a closed subset $\mathcal{S} \subset \operatorname{Sym}^{+}(H)$. For instance $\mathcal{S}=\operatorname{St}(H)$, or $\mathcal{S}=\mathbb{S}^{r, 0}$, or $\mathcal{S}=S t^{r}(H)=S t(H) \cap \mathbb{S}^{r, 0}$.

Theorem

Assume $\mathcal{F}=\left\{F_{1}, \cdots, F_{m}\right\} \subset \operatorname{Sym}^{+}(H)$ so that $\left.\alpha\right|_{\mathcal{S}}$ and $\left.\beta\right|_{\mathcal{S}}$ are injective. Then there are constants $a_{0}, A_{0}, b_{0}, B_{0}>0$ so that for every $X, Y \in \mathcal{S}$,

$$
\begin{gathered}
A_{0}\left\|X^{1 / 2}-Y^{1 / 2}\right\|_{F}^{2} \leq \sum_{k=1}^{m}\left|\sqrt{\left\langle X, F_{k}\right\rangle}-\sqrt{\left\langle Y, F_{k}\right\rangle}\right|^{2} \leq B_{0}\left\|X^{1 / 2}-Y^{1 / 2}\right\|_{F}^{2} \\
a_{0}\|X-Y\|_{F}^{2} \leq \sum_{k=1}^{m}\left|\left\langle X, F_{k}\right\rangle-\left\langle Y, F_{k}\right\rangle\right|^{2} \leq b_{0}\|X-Y\|_{F}^{2}
\end{gathered}
$$

Stability Results for the inverse map Lipschitz inversion of α and β on Quantum States

Consider the measurement maps
$\alpha, \beta:\left(S t^{r}(H), d_{1}\right) \rightarrow\left(\mathbb{R}^{m},\|\cdot\|_{2}\right),(\alpha(T))_{k}=\sqrt{\operatorname{tr}\left(T F_{k}\right)},(\beta(T))_{k}=\operatorname{tr}\left(T F_{k}\right)$ where $S t^{r}(H)=\left\{T=T^{*} \geq 0, \operatorname{tr}(T)=1, \operatorname{rank}(T) \leq r\right\}$. If $r=n:=\operatorname{dim}(H)$ then $S t^{n}(H)=S t(H)$ is a compact convex set, hence a Lipschitz retract.
If $r<n$ then $S t^{r}(H)$ is not contractible hence not a Lipschitz retract $\left(S t^{1}(H)=P(H)\right.$).

Stability Results for the inverse map

Lipschitz inversion of α and β on Quantum States

Consider the measurement maps
$\alpha, \beta:\left(S t^{r}(H), d_{1}\right) \rightarrow\left(\mathbb{R}^{m},\|\cdot\|_{2}\right),(\alpha(T))_{k}=\sqrt{\operatorname{tr}\left(T F_{k}\right)},(\beta(T))_{k}=\operatorname{tr}\left(T F_{k}\right)$ where $S t^{r}(H)=\left\{T=T^{*} \geq 0, \operatorname{tr}(T)=1, \operatorname{rank}(T) \leq r\right\}$. If $r=n:=\operatorname{dim}(H)$ then $S t^{n}(H)=S t(H)$ is a compact convex set, hence a Lipschitz retract.
If $r<n$ then $S t^{r}(H)$ is not contractible hence not a Lipschitz retract $\left(S t^{1}(H)=P(H)\right)$. Consequence:

Theorem

Fix $1 \leq r<n$. For any set of matrices $F_{1}, \cdots, F_{m} \in \operatorname{Sym}^{+}(H)$ thre are no continuous maps $\omega: \mathbb{R}^{m} \rightarrow \operatorname{St}^{r}(H)$ or $\psi: \mathbb{R}^{m} \rightarrow \operatorname{St}^{r}(H)$ so that $\omega\left(\alpha(T)=T\right.$ for every $T \in \operatorname{Sym}^{+}(H)$, or $\psi(\beta(T))=T$ for every $T \in \operatorname{Sym}^{+}(H)$.

Lipschitz inversion of α on $\mathbb{S}^{r, 0}$

Theorem

Assume the map

$$
\alpha:\left(\mathbb{S}^{r, 0}(H), D_{\text {Bures }}\right) \rightarrow\left(\mathbb{R}^{m},\|\cdot\|_{2}\right), \quad(\alpha(T))_{k}=\sqrt{\operatorname{trace}\left(T F_{k}\right)}
$$

is injective, where $\mathbb{S}^{r, 0}(H)=\left\{T=T^{*} \geq 0, \operatorname{rank}(T) \leq r\right\}$. Then there exists a Lipschitz map $\omega: \mathbb{R}^{m} \rightarrow \mathbb{S}$ so that $\omega(\alpha(T))=T$ for every $T \in \mathbb{S}^{r, 0}$, and

$$
\operatorname{Lip}(\omega)=\sup _{c \neq d \in \mathbb{R}^{m}} \frac{\left\|(\omega(c))^{1 / 2}-(\omega(d))^{1 / 2}\right\|_{F}}{\|c-d\|_{2}} \leq \frac{\sqrt{r+1}}{\sqrt{A_{0}}}
$$

Lipschitz inversion of β on $\mathbb{S}^{r, 0}$

Theorem

Assume the map

$$
\beta:\left(\mathbb{S}^{r, 0}(H),\|\cdot\|_{F}\right) \rightarrow\left(\mathbb{R}^{m},\|\cdot\|_{2}\right), \quad(\beta(T))_{k}=\operatorname{trace}\left(T F_{k}\right)
$$

is injective, where $\mathbb{S}^{r, 0}(H)=\left\{T=T^{*} \geq 0, \operatorname{rank}(T) \leq r\right\}$. Then there exists a Lipschitz map $\psi: \mathbb{R}^{m} \rightarrow \mathbb{S}$ so that $\psi(\beta(T))=T$ for every $T \in \mathbb{S}^{r, 0}$, and

$$
\operatorname{Lip}(\psi)=\sup _{c \neq d \in \mathbb{R}^{m}} \frac{\|\psi(c)-\psi(d)\|_{F}}{\|c-d\|_{2}} \leq \frac{\sqrt{r+1}}{\sqrt{a_{0}}} .
$$

Phase Retrieval: Lipschitz inversion of α

Theorem (B.Li18,B.Zou15,BWang15,BCMN14)

Assume \mathcal{F} is a phase retrievable frame for H. Then:
(1) The map $\alpha:\left(\hat{\mathbb{C}^{n}}, \mathbf{D}_{2}\right) \rightarrow\left(\mathbb{R}^{m},\|\cdot\|_{2}\right)$ is bi-Lipschitz. Let $\sqrt{A_{0}}, \sqrt{B_{0}}$ denote its Lipschitz constants: for every $x, y \in \mathbb{C}^{n}$:

$$
A_{0} \min _{\varphi}\left\|x-e^{i \varphi} y\right\|_{2}^{2} \leq \sum_{k=1}^{m}\left\|\left\langle x, f_{k}\right\rangle|-|\left\langle y, f_{k}\right\rangle\right\|^{2} \leq B_{0} \min _{\varphi}\left\|x-e^{i \varphi} y\right\|_{2}^{2}
$$

(2) $B_{0}=B$, the frame upper bound.
(3) In the real case: $A_{0}=\min _{I \subset[m]} A[I]+A\left[I^{c}\right]$.
(9) There is a Lipschitz map $\omega:\left(\mathbb{R}^{m},\|\cdot\|_{2}\right) \rightarrow\left(\hat{H}, D_{2}\right)$ so that: (i) $\omega(\alpha(x))=x$ for every $x \in \hat{\mathbb{C}}^{n}$, and (ii) its Lipschitz constant is $\operatorname{Lip}(\omega) \leq \frac{2}{\sqrt{A_{0}}}$.

Phase Retrieval: Lipschitz inversion of β

Theorem (B.Li18,B.Zou15,BWang15,BCMN14)
Assume \mathcal{F} is a phase retrievable frame for H. Then:
(1) The map $\beta:\left(\hat{\mathbb{C}}^{n}, \mathbf{d}_{1}\right) \rightarrow\left(\mathbb{R}^{m},\|\cdot\|_{2}\right)$ is bi-Lipschitz. Let $\sqrt{a_{0}}, \sqrt{b_{0}}$ denote its Lipschitz constants: for every $x, y \in \mathbb{C}^{n}$:

$$
a_{0}\left\|x x^{*}-y y^{*}\right\|_{1}^{2} \leq\left.\sum_{k=1}^{m}| |\left\langle x, f_{k}\right\rangle\right|^{2}-\left.\left|\left\langle y, f_{k}\right\rangle\right|^{2}\right|^{2} \leq b_{0}\left\|x x^{*}-y y^{*}\right\|_{1}^{2}
$$

(2) $b_{0}=\max _{\|x\|=1}\|F x\|_{4}^{4}$.
(3) There is a Lipschitz map $\psi:\left(\mathbb{R}^{m},\|\cdot\|_{2}\right) \rightarrow\left(\hat{H}, d_{1}\right)$ so that: (i) $\psi(\beta(x))=x$ for every $x \in \hat{\mathbb{C}}^{n}$, and (ii) its Lipschitz constant is $\operatorname{Lip}(\psi) \leq \frac{2}{\sqrt{a_{0}}}$.

Global Lipschitz inversion in Compressive Sampling

Theorem

Assume that every $2 d$ columns of the $m \times n$ matrix A are linearly independent. Let $c_{0}=\min _{|| |=2 d} \sigma_{2 d}(A[I])$ (square root of the smallest lower Riesz bound among all possible combinations of $2 d$ columns). Let $\gamma: \mathbb{R}_{d}^{n} \rightarrow \mathbb{R}^{m}, \gamma(x)=A x$, where \mathbb{R}_{d}^{n} denotes the space of d-sparse signals in \mathbb{R}^{n}. Then
(1) For every $x, y \in \mathbb{R}_{d}^{n},\|\gamma(x)-\gamma(y)\|_{0} \geq c_{0}\|x-y\|_{2}$.
(2) There is a Lipschitz maps $\theta: \mathbb{R}^{m} \rightarrow \mathbb{R}_{d}^{n}$ so that: (i) $\theta(\gamma(x))=x$ for all $x \in \mathbb{R}_{d}^{n}$; (ii) $\operatorname{Lip}(\theta) \leq \frac{\sqrt{d+1}}{c_{0}}$.

Note: Same bounds for \mathbb{C}_{d}^{n}.

Lipschitz Inversion
 Overview

The extension mechanism involves three steps:
(1) Embed the metric space (\mathcal{S}, d) into a Hilbert space $K(\operatorname{Sym}(H)$ or $H)$;
(2) Use Kirszbraun's theorem to obtain an isometric extension;
(3) Construct and apply a Lipschitz projection in K onto the image of (\mathcal{S}, d).

We exemplify this mechanism on the phase retrieval (PR) problem. The Low-Rank PSD Case: Similar to the PR case; different Lipschitz retraction for $\mathbb{S}^{r, 0}(H)$. Same for the compressive sampling problem.
Note: The same mechanism works in the Johnson-Lindenstrauss theorem.

PR Inversion

Extension of the inverse for α

We know $\alpha:\left(\hat{H}, \mathbf{D}_{2}\right) \rightarrow\left(\mathbb{R}^{m},\|\cdot\|_{2}\right)$ is bi-Lipschitz:

$$
A_{0} \mathbf{D}_{2}(x, y)^{2} \leq\|\alpha(x)-\alpha(y)\|^{2} \leq b_{0} \mathbf{D}_{2}(x, y)^{2}
$$

Let $M=\alpha(\hat{H}) \subset \mathbb{R}^{m}$.

PR Inversion

Extension of the inverse for α : Step 1

First identify (=embed) \hat{H} with $\mathbb{S}^{1,0}(H)$.

PR Inversion

Extension of the inverse for α : Step 1

Then construct the local left inverse $\omega_{1}: M \rightarrow \hat{H}$ with $\operatorname{Lip}\left(\omega_{1}\right)=\frac{1}{\sqrt{A_{0}}}$.

PR Inversion

Extension of the inverse for α : Step 2

Use Kirszbraun's theorem to extend isometrically $\omega_{2}: \mathbb{R}^{m} \rightarrow \operatorname{Sym}(H)$.

PR Inversion

Extension of the inverse for α : Step 3

Construct a Lipschitz "projection" $\pi: \operatorname{Sym}(H) \rightarrow \mathbb{S}^{1,0}(H)$.

PR Inversion

Extension of the inverse for α : Final process

Compose the two maps to get $\omega: \mathbb{R}^{m} \rightarrow \mathbb{S}^{1,0}, \omega=\pi \circ \omega_{2}$.

Part 2: $\mathbb{S}^{1,0}(H)$ as Lipschitz retract in $\operatorname{Sym}(H)$

Lemma

Consider the spectral decomposition of the self-adjoint operator A in $\operatorname{Sym}(H), A=\sum_{k=1}^{d} \lambda_{m(k)} P_{k}$. Then the map

$$
\pi: \operatorname{Sym}(H) \rightarrow \mathbb{S}^{1,0}(H) \quad, \quad \pi(A)=\left(\lambda_{1}-\lambda_{2}\right) P_{1}
$$

satisfies the following two properties:
(1) $\pi:\left(\operatorname{Sym}(H),\|\cdot\|_{F}\right) \rightarrow\left(\mathbb{S}^{1,0}(H),\|\cdot\|_{F}\right)$ is Lipschitz with $\operatorname{Lip}(\pi)=\sqrt{2}$.
(2) $\pi(A)=A$ for all $A \in \mathbb{S}^{1,0}(H)$.

In [B.Zou'15] paper we proved, for $\pi:\left(\operatorname{Sym}(H), d_{p}\right) \rightarrow\left(\mathbb{S}^{1,0}(H), d_{p}\right)$, $\operatorname{Lip}(\pi) \leq 3+2^{1+\frac{1}{\rho}}$.
Recently [March 2018], Wenbo Li [AMSC/UMD] proved $\operatorname{Lip}(\pi)=2$ for $p=\infty$.

$\mathbb{S}^{r, 0}(H)$ as Lipschitz retract in $\operatorname{Sym}(H)$

Lemma

Consider the nonlinear projector P_{+}onto the cone of PSD matrices $\mathrm{Sym}^{+}(\mathrm{H})$. Then the map

$$
\pi_{r}: \operatorname{Sym}(H) \rightarrow \mathbb{S}^{1,0}(H) \quad, \quad \pi(A)=P_{+}\left(A-\lambda_{r+1}(A) I\right)
$$

satisfies the following two properties:
(1) $\pi_{r}:\left(\operatorname{Sym}(H),\|\cdot\|_{F}\right) \rightarrow\left(\mathbb{S}^{r}, 0(H),\|\cdot\|_{F}\right)$ is Lipschitz with $\operatorname{Lip}\left(\pi_{r}\right)=\sqrt{r+1}$.
(2) $\pi_{r}(A)=A$ for all $A \in \mathbb{S}^{r, 0}(H)$.

$H_{d}=\mathbb{R}_{d}^{n}$ as Lipschitz retract in $H=\mathbb{R}^{n}$

Lemma

Consider the nonlinear soft thresholding operator $\tau_{\theta}(t)=\operatorname{sign}(t)[|t|-\theta]_{+}$. Consider the map

$$
P_{d}: \mathbb{R}^{n} \rightarrow \mathbb{R}_{d}^{n} \quad, \quad\left(P_{d}(x)\right)_{k}=\tau_{\theta}\left(x_{k}\right), \theta=\left|\tilde{x}_{d+1}\right|
$$

where \tilde{x}_{d+1} is the $d+1^{\text {st }}$ largest entry in magnitude. Then P_{d} satisfies the following two properties:
(1) $P_{d}:\left(H,\|\cdot\|_{2}\right) \rightarrow\left(H_{d},\|\cdot\|_{2}\right)$ is Lipschitz with $\operatorname{Lip}\left(P_{d}\right)=\sqrt{d+1}$.
(2) $P_{d}(x)=x$ for all $x \in H_{d}$.

THANK YOU!!

Questions ?

References

[BCE06] R. Balan, P. Casazza, D. Edidin, On signal reconstruction without phase, Appl.Comput.Harmon.Anal. 20 (2006), 345-356.
[BBCE07] R. Balan, B. Bodmann, P. Casazza, D. Edidin, Painless reconstruction from Magnitudes of Frame Coefficients, J.Fourier Anal.Applic., 15 (4) (2009), 488-501.
[B12] R. Balan, Reconstruction of Signals from Magnitudes of Frame Representations, arXiv submission arXiv:1207.1134
[B13] R. Balan, Reconstruction of Signals from Magnitudes of Redundant Representations: The Complex Case, available online arXiv:1304.1839v1, Found.Comput.Math. 2015, http://dx.doi.org/10.1007/s10208-015-9261-0

䍰 [BW14] R. Balan and Y. Wang, Invertibility and Robustness of Phaseless Reconstruction, available online arXiv:1308.4718v1, Appl. Comp. Harm. Anal., 38 (2015), 469-488.
[BZ14] R. Balan, D. Zou, On Lipschitz inversion of nonlinear redundant representations, to appear in Contemporary Mathematics 2015.
[BZ15] R. Balan, D. Zou, On Lipschitz Analysis and Lipschitz Synthesis for the Phase Retrieval Problem, available online arXiv 1506.02092v1 [mathFA], 6 June 2015; Lin. Alg. and Appl. 2016.
[Bal15] R. Balan, The Fisher Information Matrix and the Cramer-Rao Lower Bound in a Non-Additive White Gaussian Noise Model for the Phase Retrieval Problem, proceedings of SampTA 2015.
[BCMN14] A. S. Bandeira, J. Cahill, D. Mixon, A. A. Nelson, Saving phase: Injectivity and Stability for phase retrieval, arXiv submission , arXiv: 1302.4618, Appl. Comp. Harm. Anal. 37 (1) (2014), 106-125.
[BK00] R. Bhatia, F. Kittaneh, Notes on matrix arithmetic-geometric mean inequalities, Lin.Alg.Appl. 308 (2000), 203-211.
[EM12] Y. C. Eldar, S. Mendelson, Phase retrieval: Stability and recovery guarantees, available online: arXiv:1211.0872, Appl. Comp. Harm. Anal. (2014), .
(${ }^{\text {© }}$ [HG13] M.J. Hirn, E. Le Gruyer, A general theorem of existence of quasi absolutely minimal Lipschitz extensions, arXiv:1211.5700v2 [math.FA], 8 Aug 2013.
[ZB06] L. Zwald, G. Blanchard, On the convergence of eigenspaces in kernel Principal Component Analysis, Proc. NIPS 05, vol. 18, 1649-1656, MIT Press, 2006.

