When Harmonic Analysis Meets Machine Learning: Lipschitz Analysis of Deep Convolution Networks

Radu Balan

Department of Mathematics, AMSC, CSCAMM and NWC University of Maryland, College Park, MD

Joint work with Dongmian Zou (UMD), Maneesh Singh (Verisk)

October 10, 2017
IEEE Computational Intelligence Society and Signal Processing Society University of Maryland, College Park, MD

"This material is based upon work supported by the National Science Foundation under Grant No. DMS-1413249. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation." The author has been partially supported by ARO under grant W911NF1610008 and LTS under grant H9823013D00560049.

Table of Contents:

(1) Three Examples
(2) Problem Formulation
(3) Deep Convolutional Neural Networks
(4) Lipschitz Analysis
(5) Numerical Results

Machine Learning

According to Wikipedia (attributed to Arthur Samuel 1959), "Machine Learning [...] gives computers the ability to learn without being explicitly programmed."
While it has been first coined in 1959, today's machine learning, as a field, evolved from and overlaps with a number of other fields: computational statistics, mathematical optimizations, theory of linear and nonlinear systems.

Machine Learning

According to Wikipedia (attributed to Arthur Samuel 1959), "Machine Learning [...] gives computers the ability to learn without being explicitly programmed."
While it has been first coined in 1959, today's machine learning, as a field, evolved from and overlaps with a number of other fields: computational statistics, mathematical optimizations, theory of linear and nonlinear systems.
Types of problems (tasks) in machine learning:
(1) Supervised Learning: The machine (computer) is given pairs of inputs and desired outputs and is left to learn the general association rule.
(2) Unsupervised Learning: The machine is given only input data, and is left to discover structures (patterns) in data.
(3) Reinforcement Learning: The machine operates in a dynamic environment and had to adapt (learn) continuously as it navigates the problem space (e.g. autonomous vehicle).

Example 1: The AlexNet

The ImageNet Dataset
Dataset: ImageNet dataset [DDSLLF09]. Currently (2017): 14.2 mil.images; 21841 categories; image-net.org Task: Classify an input image, i.e. place it into one category.

Figure: The "ostrich" category "Struthio Camelus" 1393 pictures. From image-net.org

Example 1: The AlexNet

The Supervised Machine Learning

The AlexNet is 8 layer network, 5 convolutive layers plus 3 dense layers. Introduced by (Alex) Krizhevsky, Sutskever and Hinton in 2012 [KSH12]. Trained on a subset of the ImageNet: Part of the ImageNet Large Scale Visual Recognition Challenge 2010-2012: 1000 object classes and 1,431,167 images.

Figure: From Krizhevsky et all 2012 [KSH12]: AlexNet: 5 convolutive layers + 3 dense layers. Input size: $224 \times 224 \times 3$ pixels. Output size: 1000.

Example 1: The AlexNet

Adversarial Perturbations

The authors of [SZSBEGF13] (Szegedy, Zaremba, Sutskever, Bruna, Erhan, Goodfellow, Fergus, 'Intriguing properties ...') found small variations of the input, almost imperceptible, that produced completely different classification decisions:

Figure: From Szegedy et all 2013 [SZSBEGF13]: AlexNet: 6 different classes: original image, difference, and adversarial example - all_classified as 'ostrich'

Example 1: The AlexNet

Lipschitz Analysis

Szegedy et all 2013 [SZSBEGF13] computed the Lipschitz constants of each layer.

Layer	Size	Sing.Val
Conv. 1	$3 \times 11 \times 11 \times 96$	20
Conv. 2	$96 \times 5 \times 5 \times 256$	10
Conv. 3	$256 \times 3 \times 3 \times 384$	7
Conv. 4	$384 \times 3 \times 3 \times 384$	7.3
Conv. 5	$384 \times 3 \times 3 \times 256$	11
Fully Conn.1	$9216(43264) \times 4096$	3.12
Fully Conn.2	4096×4096	4
Fully Conn.3	4096×1000	4

Overall Lipschitz constant:

$$
\operatorname{Lip} \leq 20 * 10 * 7 * 7.3 * 11 * 3.12 * 4 * 4=5,612,006
$$

Example 2: Generative Adversarial Networks

 The GAN ProblemTwo systems are involved: a generator network producing synthetic data; a discriminator network that has to decide if its input is synthetic data or real-world (true) data:

Example 2: Generative Adversarial Networks The GAN Problem

Two systems are involved: a generator network producing synthetic data; a discriminator network that has to decide if its input is synthetic data or real-world (true) data:

Introduced by Goodfellow et al [GPMXWOCB14] in 2014, GANs solve a minimax optimization problem:

$$
\min _{G} \max _{D} \mathbb{E}_{x \sim P_{r}}[\log (D(x))]+\mathbb{E}_{\tilde{x} \sim P_{g}}[\log (1-D(\tilde{x}))]
$$

where P_{r} is the distribution of true data, P_{g} is the generator distribution, and $D: x \mapsto D(x) \in[0,1]$ is the discriminator map (1 for likely true data; 0 for likely synthetic data).

Example 2: Generative Adversarial Networks The Wasserstein Optimization Problem

In practice, the training algorithms do not behave well ("saddle point effect").
The Wasserstein GAN (Arjovsky et al [ACB17]) replaces the Jensen-Shannon divergence by the Wasserstein-1 distance:

$$
\min _{G} \max _{D \in \operatorname{Lip}(1)} \mathbb{E}_{x \sim P_{r}}[D(x)]-\mathbb{E}_{\tilde{x} \sim P_{g}}[D(\tilde{x})]
$$

where $\operatorname{Lip}(1)$ denotes the set of Lipschitz functions with constant 1, enforced by weight clipping.

Example 2: Generative Adversarial Networks

The Wasserstein Optimization Problem
In practice, the training algorithms do not behave well ("saddle point effect").
The Wasserstein GAN (Arjovsky et al [ACB17]) replaces the Jensen-Shannon divergence by the Wasserstein-1 distance:

$$
\min _{G} \max _{D \in \operatorname{Lip}(1)} \mathbb{E}_{x \sim P_{r}}[D(x)]-\mathbb{E}_{\tilde{x} \sim P_{g}}[D(\tilde{x})]
$$

where $\operatorname{Lip}(1)$ denotes the set of Lipschitz functions with constant 1 , enforced by weight clipping.
Gulrajani et al in [GAADC17] propose to incorporate the Lip(1) condition into the optimization criterion using a soft Lagrange multiplier technique for minimization of:

$$
\left.L=\mathbb{E}_{\tilde{x} \sim P_{g}}[D(x)]-\mathbb{E}_{x \sim P_{r}}[D(x)]+\lambda \mathbb{E}_{\hat{x} \sim P_{\hat{x}}}\left[\left\|\nabla_{\hat{x}} D(\hat{x})\right\|_{2}-1\right)^{2}\right]
$$

where \hat{x} is sampled uniformly between $x \sim P_{r}$ and $\tilde{x} \sim P_{g}$.

Example 3: The Scattering Network

Topology

Example of Scattering Network; definition and properties: [Mallat12]; this example from [BSZ17]:

Input: f; Outputs: $y=\left(y_{l, k}\right)$.

Example 3: Scattering Network

Lipschitz Analysis

Remarks:

- Outputs from each layer

Example 3: Scattering Network

Lipschitz Analysis

Remarks:

- Outputs from each layer
- Tree-like topology

Example 3: Scattering Network

Lipschitz Analysis

Remarks:

- Outputs from each layer
- Tree-like topology
- Backpropagation/Chain rule: Lipschitz bound 40.

Example 3: Scattering Network

Lipschitz Analysis

Remarks:

- Outputs from each layer
- Tree-like topology
- Backpropagation/Chain rule: Lipschitz bound 40.
- Mallat's result predicts $\operatorname{Lip}=1$.

Problem Formulation

Nonlinear Maps

Consider a nonlinear function between two metric spaces,

$$
\mathcal{F}:\left(X, d_{X}\right) \rightarrow\left(Y, d_{Y}\right)
$$

Problem Formulation

Lipschitz analysis of nonlinear systems

$$
\mathcal{F}:\left(X, d_{X}\right) \rightarrow\left(Y, d_{Y}\right)
$$

\mathcal{F} is called Lipschitz with constant C if for any $f, \tilde{f} \in X$,

$$
d_{Y}(\mathcal{F}(f), \mathcal{F}(\tilde{f})) \leq C d_{X}(f, \tilde{f})
$$

The optimal (i.e. smallest) Lipschitz constant is denoted $\operatorname{Lip}(\mathcal{F})$. The square C^{2} is called Lipschitz bound (similar to the Bessel bound).
\mathcal{F} is called bi-Lipschitz with constants $C_{1}, C_{2}>0$ if for any $f, \tilde{f} \in X$,

$$
C_{1} d_{X}(f, \tilde{f}) \leq d_{Y}(\mathcal{F}(f), \mathcal{F}(\tilde{f})) \leq C_{2} d_{X}(f, \tilde{f})
$$

The square C_{1}^{2}, C_{2}^{2} are called Lipschitz bounds (similar to frame bounds).

Problem Formulation

Motivating Examples

Consider the typical neural network as a feature extractor component in a classification system:

Layer 1

Layer M

$$
\begin{gathered}
g=\mathcal{F}(f)=\mathcal{F}_{M}\left(\ldots \mathcal{F}_{1}\left(f ; W_{1}, \varphi_{1}\right) ; \ldots ; W_{M}, \varphi_{M}\right) \\
\mathcal{F}_{m}\left(f ; W_{m}, \varphi_{m}\right)=\varphi_{m}\left(W_{m} f\right)
\end{gathered}
$$

W_{m} is a linear operator (matrix); φ_{m} is a $\operatorname{Lip}(1)$ scalar nonlinearity (e.g. Rectified Linear Unit).

Problem Formulation

Problem 1

Given a deep network:

Estimate the Lipschitz constant, or bound:

$$
L i p=\sup _{f \neq \tilde{f} \in L^{2}} \frac{\|y-\tilde{y}\|_{2}}{\|f-\tilde{f}\|_{2}}, \quad \text { Bound }=\sup _{f \neq \tilde{f} \in L^{2}} \frac{\|y-\tilde{y}\|_{2}^{2}}{\|f-\tilde{f}\|_{2}^{2}}
$$

Problem Formulation

Problem 1

Given a deep network:

Estimate the Lipschitz constant, or bound:

$$
\text { Lip }=\sup _{f \neq \tilde{f} \in L^{2}} \frac{\|y-\tilde{y}\|_{2}}{\|f-\tilde{f}\|_{2}}, \quad \text { Bound }=\sup _{f \neq \tilde{f} \in L^{2}} \frac{\|y-\tilde{y}\|_{2}^{2}}{\|f-\tilde{f}\|_{2}^{2}} .
$$

Methods (Approaches):
(1) Standard Method: Backpropagation, or chain-rule
(2) New Method: Storage function based approach (dissipative systems)
(3) Numerical Method: Simulations

Problem Formulation

Problem 2

Given a deep network:

Estimate the stability of the output to specific variations of the input:
(1) Invariance to deformations: $\tilde{f}(x)=f(x-\tau(x))$, for some smooth τ.
(2) Covariance to such deformations $\tilde{f}(x)=f(x-\tau(x))$, for smooth τ and bandlimited signals f;
(3) Tail bounds when f has a known statistical distribution (e.g. normal with known spectral power)

ConvNet

Topology

A deep convolution network is composed of multiple layers:

ConvNet

One Layer

Each layer is composed of two or three sublayers: convolution, downsampling, detection/pooling/merge.

ConvNet: Sublayers

Linear Filters: Convolution and Pooling-to-Output Sublayer

$$
f^{(2)}=g * f^{(1)} \quad, \quad f^{(2)}(x)=\int g(x-\xi) f^{(1)}(\xi) d \xi
$$

where $g \in \mathcal{B}=\left\{g \in \mathcal{S}^{\prime}, \hat{g} \in L^{\infty}\left(\mathbb{R}^{d}\right)\right\}$.
$(\mathcal{B}, *)$ is a Banach algebra with norm $\|g\|_{\mathcal{B}}=\|\hat{g}\|_{\infty}$.
Notation: g for regular convolution filters, and Φ for pooling-to-output filters.

ConvNet: Sublayers

Downsampling Sublayer

$$
f^{(2)}(x)=f^{(1)}(D x)
$$

For $f^{(1)} \in L^{2}\left(\mathbb{R}^{d}\right)$ and $D=D_{0} \cdot I, f^{(2)} \in L^{2}\left(\mathbb{R}^{d}\right)$ and

$$
\left\|f^{(2)}\right\|_{2}^{2}=\int_{\mathbb{R}^{d}}\left|f^{(2)}(x)\right|^{2} d x=\frac{1}{|\operatorname{det}(D)|} \int_{\mathbb{R}^{d}}\left|f^{(1)}(x)\right|^{2} d x=\frac{1}{D_{0}^{d}}\left\|f^{(1)}\right\|_{2}^{2}
$$

ConvNet: Sublayers

Detection and Pooling Sublayer

We consider three types of detection/pooling/merge sublayers:

- Type I, τ_{1} : Componentwise Addition: $z=\sum_{j=1}^{k} \sigma_{j}\left(y_{j}\right)$
- Type II, τ_{2} : p-norm aggregation: $z=\left(\sum_{j=1}^{k}\left|\sigma_{j}\left(y_{j}\right)\right|^{p}\right)^{1 / p}$
- Type III, τ_{3} : Componentwise Multiplication: $z=\prod_{j=1}^{k} \sigma_{j}\left(y_{j}\right)$

Assumptions: (1) σ_{j} are scalar Lipschitz functions with $\operatorname{Lip}\left(\sigma_{j}\right) \leq 1$; (2) If σ_{j} is connected to a multiplication block then $\left\|\sigma_{j}\right\|_{\infty} \leq 1$.

ConvNet: Sublayers

MaxPooling and AveragePooling

MaxPooling can be implemented as follows:

ConvNet: Sublayers

MaxPooling and AveragePooling
MaxPooling can be implemented as follows:

AveragePooling can be implemented as follows:

ConvNet: Sublayers

Long Short-Term Memory (LSTM) networks [HS97, GSKSS15]. By BiObserver - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=43992484

ConvNet: Layer m

Components of the $m^{\text {th }}$ layer

ConvNet: Layer m

Topology coding of the $m^{\text {th }}$ layer
n_{m} denotes the number of input nodes in the m-th layer:
$\mathcal{I}_{m}=\left\{N_{m, 1}, N_{m, 2}, \cdots, N_{m, n_{m}}\right\}$.
Filters:
(1) pooling filter: $\phi_{m, n}$ for node n, in layer m;
(2) convolution filter: $g_{m, n, k}$ for input node n to output node k, in layer m;

For node $n: G_{m, n}=\left\{g_{m, n ; 1}, \cdots g_{m, n ; k_{m, n}}\right\}$.
The set of all convolution filters in layer m: $G_{m}=\cup_{n=1}^{n_{m}} G_{m, n}$.

ConvNet: Layer m
 Topology coding of the $m^{\text {th }}$ layer

n_{m} denotes the number of input nodes in the m-th layer:
$\mathcal{I}_{m}=\left\{N_{m, 1}, N_{m, 2}, \cdots, N_{m, n_{m}}\right\}$.
Filters:
(1) pooling filter: $\phi_{m, n}$ for node n, in layer m;
(2) convolution filter: $g_{m, n, k}$ for input node n to output node k, in layer m;

For node $n: G_{m, n}=\left\{g_{m, n ; 1}, \cdots g_{m, n ; k_{m, n}}\right\}$.
The set of all convolution filters in layer $m: G_{m}=\cup_{n=1}^{n_{m}} G_{m, n}$.
$\mathcal{O}_{m}=\left\{N_{m, 1}^{\prime}, N_{m, 2}^{\prime}, \cdots, N_{m, n_{m}^{\prime}}^{\prime}\right\}$ the set of output nodes of the m-th layer. Note that $n_{m}^{\prime}=n_{m+1}$ and there is a one-one correspondence between \mathcal{O}_{m} and \mathcal{I}_{m+1}.
The output nodes automatically partitions G_{m} into n_{m}^{\prime} disjoint subsets $G_{m}=\cup_{n^{\prime}=1}^{n_{m}^{\prime}} G_{m, n^{\prime}}^{\prime}$, where $G_{m, n^{\prime}}^{\prime}$ is the set of filters merged into $N_{m, n^{\prime}}^{\prime}$.

ConvNet: Layer m

Topology coding of the $m^{\text {th }}$ layer

For each filter $g_{m, n ; k}$, we define an associated multiplier $I_{m, n ; k}$ in the following way: suppose $g_{m, n ; k} \in G_{m, k}^{\prime}$, let $K=\left|G_{m, k}^{\prime}\right|$ denote the cardinality of $G_{m, k}^{\prime}$. Then

$$
I_{m, n ; k}= \begin{cases}K & , \text { if } g_{m, n ; k} \in \tau_{1} \cup \tau_{3} \tag{3.1}\\ K^{\max \{0,2 / p-1\}} & , \text { if } g_{m, n ; k} \in \tau_{2}\end{cases}
$$

ConvNet: Layer m

Topology coding of the $m^{\text {th }}$ layer

ConvNet: Layer m

Topology coding of the $m^{\text {th }}$ layer

ConvNet: Layer m

Topology coding of the $m^{\text {th }}$ layer

Layer Analysis

Bessel Bounds

In each layer m and for each input node n we define three types of Bessel bounds:

- 1st type Bessel bound:

$$
\begin{equation*}
B_{m, n}^{(1)}=\left\|\left|\hat{\phi}_{m, n}\right|^{2}+\sum_{g_{m, n ; k} \in G_{m, n}} I_{m, n ; k} D_{m, n ; k}^{-d}\left|\hat{g}_{m, n ; k}\right|^{2}\right\| \tag{4.2}
\end{equation*}
$$

- 2nd type Bessel bound:

$$
\begin{equation*}
B_{m, n}^{(2)}=\left\|\sum_{g_{m, n ; k} \in G_{m, n}} I_{m, n ; k} D_{m, n ; k}^{-d}\left|\hat{g}_{m, n ; k}\right|^{2}\right\| \tag{4.3}
\end{equation*}
$$

- 3rd type (or generating) bound:

$$
\begin{equation*}
B_{m, n}^{(3)}=\left\|\hat{\phi}_{m, n}\right\|_{\infty}^{2} \tag{4.4}
\end{equation*}
$$

Layer Analysis

Bessel Bounds

Next we define the layer m Bessel bounds:

$$
\begin{equation*}
1^{\text {st }} \text { type Bessel bound } B_{m}^{(1)}=\max _{1 \leq n \leq n_{m}} B_{m, n}^{(1)} \tag{4.5}
\end{equation*}
$$

$$
\begin{equation*}
2^{\text {nd }} \text { type Bessel bound } B_{m}^{(2)}=\max _{1 \leq n \leq n_{m}} B_{m, n}^{(2)} \tag{4.7}
\end{equation*}
$$

$3^{\text {rd }}$ type (generating) Bessel bound $B_{m}^{(3)}=\max _{1 \leq n \leq n_{m}} B_{m, n}^{(3)}$.
Remark. These bounds characterize semi-discrete Bessel systems.

Lipschitz Analysis

First Result

Theorem

[BSZ17] Consider a Convolutional Neural Network with M layers as described before, where all scalar nonlinear functions are Lipschitz with $\operatorname{Lip}\left(\varphi_{m, n, n^{\prime}}\right) \leq 1$. Additionally, those $\varphi_{m, n, n^{\prime}}$ that aggregate into a multiplicative block satisfy $\left\|\varphi_{m, n, n^{\prime}}\right\|_{\infty} \leq 1$. Let the m-th layer 1st type Bessel bound be

$$
B_{m}^{(1)}=\max _{1 \leq n \leq n_{m}}\left\|\left|\hat{\phi}_{m, n}\right|^{2}+\sum_{k=1}^{k_{m, n}} I_{m, n ; k} D_{m, n ; k}^{-d}\left|\hat{g}_{m, n ; k}\right|^{2}\right\| .
$$

Then the Lipschitz bound of the entire CNN is upper bounded by $\prod_{m=1}^{M} \max \left(1, B_{m}^{(1)}\right)$. Specifically, for any $f, \tilde{f} \in L^{2}\left(\mathbb{R}^{d}\right)$:

$$
\|\mathcal{F}(f)-\mathcal{F}(\tilde{f})\|_{2}^{2} \leq\left(\prod_{m=1}^{M} \max \left(1, B_{m}^{(1)}\right)\right)\|f-\tilde{f}\|_{2}^{2},
$$

Lipschitz Analysis

Second Result

Theorem

Consider a Convolutional Neural Network with M layers as described before, where all scalar nonlinearities satisfy the same conditions as in the previous result. For layer m, let $B_{m}^{(1)}, B_{m}^{(2)}$, and $B_{m}^{(3)}$ denote the three Bessel bounds defined earlier. Denote by L the optimal solution of the following linear program:

$$
\begin{align*}
\max _{y_{1}, \ldots, y_{M}, z_{1}, \ldots, z_{M} \geq 0} & \sum_{m=1}^{M} z_{m} \\
\text { s.t. } & y_{0}=1 \\
& y_{m}+z_{m} \leq B_{m}^{(1)} y_{m-1}, \quad 1 \leq m \leq M \tag{4.8}\\
& y_{m} \leq B_{m}^{(2)} y_{m-1}, \quad 1 \leq m \leq M \\
& z_{m} \leq B_{m}^{(3)} y_{m-1}, \quad 1 \leq m \leq M
\end{align*}
$$

Lipschitz Analysis

Second Result - cont'd

Theorem

Then the Lipschitz bound satisfies $\operatorname{Lip}(\mathcal{F})^{2} \leq \Gamma$. Specifically, for any $f, \tilde{f} \in L^{2}\left(\mathbb{R}^{d}\right):$

$$
\|\mathcal{F}(f)-\mathcal{F}(\tilde{f})\|_{2}^{2} \leq \Gamma\|f-\tilde{f}\|_{2}^{2}
$$

Example 1: Scattering Network

The Lipschitz constant:

- Backpropagation/Chain rule: Lipschitz bound 40 (hence Lip ≤ 6.3).

Example 1: Scattering Network

The Lipschitz constant:

- Backpropagation/Chain rule: Lipschitz bound 40 (hence Lip ≤ 6.3).
- Using our main theorem, Lip ≤ 1, but Mallat's result: Lip $=1$.
Filters have been choosen as in a dyadic wavelet decomposition. Thus $B_{m}^{(1)}=B_{m}^{(2)}=B_{m}^{(3)}=1,1 \leq m \leq 4$.

Example 2: A General Convolutive Neural Network

Example 2: A General Convolutive Neural Network

Set $p=2$ and:

$$
\begin{aligned}
& F(\omega)=\exp \left(\frac{4 \omega^{2}+4 \omega+1}{4 \omega^{2}+4 \omega}\right) \chi_{(-1,-1 / 2)}(\omega)+\chi_{(-1 / 2,1 / 2)}(\omega)+\exp \left(\frac{4 \omega^{2}-4 \omega+1}{4 \omega^{2}-4 \omega}\right) \chi_{(1 / 2,1)}(\omega) . \\
& \hat{\phi}_{1}(\omega)=F(\omega) \\
& \hat{g}_{1, j}(\omega)=F(\omega+2 j-1 / 2)+F(\omega-2 j+1 / 2), j=1,2,3,4 \\
& \hat{\phi}_{2}(\omega)=\exp \left(\frac{4 \omega^{2}+12 \omega+9}{4 \omega^{2}+12 \omega+8}\right) \chi_{(-2,-3 / 2)}(\omega)+ \\
& \chi_{(-3 / 2,3 / 2)}(\omega)+\exp \left(\frac{4 \omega^{2}-12 \omega+9}{4 \omega^{2}-12 \omega+8}\right) \chi_{(3 / 2,2)}(\omega) \\
& \hat{g}_{2, j}(\omega)=F(\omega+2 j)+F(\omega-2 j), j=1,2,3 \\
& \hat{g}_{2,4}(\omega)=F(\omega+2)+F(\omega-2) \\
& \hat{g}_{2,5}(\omega)=F(\omega+5)+F(\omega-5) \\
& \hat{\phi}_{3}(\omega)=\exp \left(\frac{4 \omega^{2}+20 \omega+25}{4 \omega^{2}+20 \omega+24}\right) \chi_{(-3,-5 / 2)}(\omega)+ \\
& \chi_{(-5 / 2,5 / 2)}(\omega)+\exp \left(\frac{4 \omega^{2}-20 \omega+25}{4 \omega^{2}-20 \omega+25}\right) \chi_{(5 / 2,3)}(\omega) .
\end{aligned}
$$

Example 2: A General Convolutive Neural Network

Bessel Bounds: $B_{m}^{(1)}=2 e^{-1 / 3}=$ 1.43, $B_{m}^{(2)}=B_{m}^{(3)}=1$.

The Lipschitz bound:

- Using
backpropagation/chain-rule: $L i p^{2} \leq 5$.
- Using Theorem 1 :
$L i p^{2} \leq 2.9430$.
- Using Theorem 2 (linear program): Lip $^{2} \leq 2.2992$.

Example 3: Lipschitz constant as an optimization criterion

 Nonlinear Discriminant AnalysisIn Linear Discriminant Analysis (LDA), the objective is to maximize the "separation" between two classes, while controlling the variances within class.
A similar nonlinear discriminant can be defined:

$$
S=\frac{\left\|\mathbb{E}\left[\mathcal{F}(f) \mid f \in C_{1}\right]-\mathbb{E}\left[\mathcal{F}(f) \mid f \in C_{2}\right]\right\|^{2}}{\left\|\operatorname{Cov}\left(\mathcal{F}(f) \mid f \in C_{1}\right)\right\|_{F}+\left\|\operatorname{Cov}\left(\mathcal{F}(f) \mid f \in C_{2}\right)\right\|_{F}} .
$$

Example 3: Lipschitz constant as an optimization criterion

 Nonlinear Discriminant AnalysisIn Linear Discriminant Analysis (LDA), the objective is to maximize the "separation" between two classes, while controlling the variances within class.
A similar nonlinear discriminant can be defined:

$$
S=\frac{\left\|\mathbb{E}\left[\mathcal{F}(f) \mid f \in C_{1}\right]-\mathbb{E}\left[\mathcal{F}(f) \mid f \in C_{2}\right]\right\|^{2}}{\left\|\operatorname{Cov}\left(\mathcal{F}(f) \mid f \in C_{1}\right)\right\|_{F}+\left\|\operatorname{Cov}\left(\mathcal{F}(f) \mid f \in C_{2}\right)\right\|_{F}} .
$$

Replace the statistics $\|\operatorname{Cov}\|_{F}$ by Lipschitz bounds:
Lipschitz bound based separation:

$$
\tilde{S}=\frac{\left\|\mathbb{E}\left[\mathcal{F}(f) \mid f \in C_{1}\right]-\mathbb{E}\left[\mathcal{F}(f) \mid f \in C_{2}\right]\right\|^{2}}{L i p_{1}^{2}+L i p_{2}^{2}} .
$$

Example 3: Lipschitz constant as an optimization criterion

 Nonlinear Discriminant AnalysisThe Lipschitz bounds $L i p_{1}^{2}, L i p_{2}^{2}$ are computed using Gaussian generative models for the two classes: $\left(\mu_{c}, W_{c} W_{c}^{T}\right)$, where W_{c} represents the whitening filter for class $c \in\{1,2\}$.

Example 3: Lipschitz constant as an optimization criterion Numerical Results

Dataset: MNIST database; input images: 28×28 pixels. Two classes: "3" and " 8 "
Classifier: 3 layer and 4 layer random CNN, followed by a trained SVM.

Figure: Results for uniformly distributed random weights

Conclusion: The error rate decreases as the Lipschitz bound separation increases. The discriminant spread is wider.

Example 3: Lipschitz constant as an optimization criterion Numerical Results

Dataset: MNIST database; input images: 28×28 pixels. Two classes: " 3 " and "8"
Classifier: 3 layer and 4 layer random CNN, followed by a trained SVM.

Figure: Results for normaly distributed random weights

References

囦 [ACB17] M. Arjovsky, S. Chintala, L. Bottou, Wasserstein GAN, online arXive:1701.07875, 2017.
[BSZ17] Radu Balan, Manish Singh, Dongmian Zou, Lipschitz Properties for Deep Convolutional Networks, available online arXiv 1701.01527 [cs.LG], 18 Jan 2017.

目 [BZ15] Radu Balan, Dongmian Zou, On Lipschitz Analysis and Lipschitz Synthesis for the Phase Retrieval Problem, available online arXiv 1506.02092v1 [mathFA], 6 June 2015; Lin. Alg. and Appl. 496 (2016), 152-181.
[BGC16] Yoshua Bengio, Ian Goodfellow and Aaron Courville, Deep learning, MIT Press, 2016.
[BM13] Joan Bruna and Stephane Mallat, Invariant scattering convolution networks, IEEE Transactions on Pattern Analysis and Machine Intelligence 35 (2013), no. 8, 1872-1886.
[BCLPS15] Joan Bruna, Soumith Chintala, Yann LeCun, Serkan Piantino, Arthur Szlam, and Mark Tygert, A theoretical argument for complex-valued convolutional networks, CoRR abs/1503.03438 (2015).
[DDSLLF09] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei Imagenet: A large-scale hierarchical image database, IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, 248-255. 2009.

䡒 [GPMXWOCB14] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, W. Warde-Farley, S. Ozair, A. Courville, Y. Bengio, Generative Adverserial Nets, Advances in Neural Information Processing Systems, 2672-2680, 2014.

图 [GSKSS15] Klaus Greff, Rupesh K. Srivastava, Jan Koutnik, Bas R. Steunebrink, Jurgen Schmidhuber, LSTM: A Search Space Odyssey, arXiv:1503.04069v1 [cs.NE], 13 Mar. 2015.
[GAADC17] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, A. Courville, Improved Training of Wasserstein GANs, online arXiv:1704.00028 [cs.LG], 29 May 2017.

固 [HS97] Sepp Hochreiter and Jürgen Schmidhuber, Long short-term memory, Neural Comput. 9 (1997), no. 8, 1735-1780.
[KSH12] Alex Krizhevsky, Ilya Sutskever, and Geoff Hinton, Imagenet classification with deep convolutional neural networks, Advances in Neural Information Processing Systems 25, 1106-1114, 2012.

目 [LBH15] Yann Lecun, Yoshua Bengio, and Geoffrey Hinton, Deep learning, Nature 521 (2015), no. 7553, 436-444.
[[LSS14] Roi Livni, Shai Shalev-Shwartz, and Ohad Shamir, On the computational efficiency of training neural networks, Advances in Neural Information Processing Systems 27 (Z. Ghahramani, M. Welling, C. Cortes, N.d. Lawrence, and K.q. Weinberger, eds.), Curran Associates, Inc., 2014, pp. 855-863.

國［Mallat12］Stephane Mallat，Group invariant scattering， Communications on Pure and Applied Mathematics 65 （2012），no．10， 1331－1398．
固［SVS15］Tara N．Sainath，Oriol Vinyals，Andrew W．Senior，and Hasim Sak，Convolutional，long short－term memory，fully connected deep neural networks， 2015 IEEE International Conference on Acoustics， Speech and Signal Processing，ICASSP 2015，South Brisbane， Queensland，Australia，April 19－24，2015，2015，pp．4580－4584．
國［SLJSRAEVR15］Christian Szegedy，Wei Liu，Yangqing Jia，Pierre Sermanet，Scott Reed，Dragomir Angelov，Dumitru Erhan，Vincent Vanhoucke，and Andrew Rabinovich，Going deeper with convolutions， CVPR 2015， 2015.
［SZSBEGF13］Christian Szegedy，Wojciech Zaremba，Ilya Sutskever， Joan Bruna，Dumitru Erhan，Ian J．Goodfellow，and Rob Fergus，

Intriguing properties of neural networks, CoRR abs/1312.6199 (2013).

目 [WB15a] Thomas Wiatowski and Helmut Bölcskei, Deep convolutional neural networks based on semi-discrete frames, Proc. of IEEE International Symposium on Information Theory (ISIT), June 2015, pp. 1212-1216.
圊 [WB15b]Thomas Wiatowski and Helmut Bölcskei, A mathematical theory of deep convolutional neural networks for feature extraction, IEEE Transactions on Information Theory (2015).

