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The Phase Retrieval Problem
.

Phase Retrieval

The phase retrieval problem

Hilbert space H = C", H = H/T?!, frame F = {fi, -+, f} C C" and
measurements
e =0, )P +vk , 1< k<m.

The frame is said phase retrievable (or that it gives phase retrieval) if
%= (|(x, fi)|)1<k<m is injective.

The general phase retrieval problem a.k.a. phaseless reconstruction:
Decide when a given frame is phase retrievable, and, if so, find an

algorithm to recover x from y = (yk)k up to a global phase factor.

Our problem today: A reconstruction algorithm.

Radu Balan (UMD) Homotopy Method 16 Aug. 2017



Existing Algorithms
0

General Purpose Algorithms

Unstructured Frames. Unstructured Data

© lterative Algorithms:

o Gerchberg-Saxton [Gerchberg&all]
o Wirtinger flow - gradient descent [CLS14]
o IRLS [B13]

@ Rank 1 Tensor Recovery:

o Phaselift; PhaseCut [CSV12]; [WdAM12]
e Higher-Order Tensor Recovery [B09]
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Existing Algorithms
oce

Specialized Algorithms

Structured Frames and/or Structured Data

@ Structured Frames:

o Fourier Frames: 4n-4 [BH13]; Masking DFT [CLS13];
STFT/Spectograms [B.][Eldar&all][Hayes&all]; Alternating Projections
[GriffinLim][Fannjiang]; Hybrid I-O [Fienup82]

o Polarization: 3-term [ABFM12], masking [BCM]

o Shift-Invariant Spaces: Bandlimited [Thakurll]; Filterbanks/Circulant
Matrices [IVW2]; Other spaces [Chen&all]

e X-Ray Crystallography — over 100 years old, lots of Nobel prizes ...

@ Special Signals:

o Sparse general case: GESPAR[SBE14];
o Specialized: sparse [IVW1]; speech [ARF03]

. and others — "phase retrieval” in title: 2680 papers
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The Homotopy Method
©0000000000000000

Graduation Method. Homotopic Continuation
First Motivation

Our algorithm (IRLS and variants) belongs to the class of Graduation
Methods , or Homotopic Continuations.
Idea:
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Graduation Method. Homotopic Continuation
First Motivation

Our algorithm (IRLS and variants) belongs to the class of Graduation
Methods , or Homotopic Continuations.

Idea:

Our target is to optimize a complicated (possibly non-convex)
optimization criterion J(x), argminyepJ(x).

However we know how to optimize a closely related criterion Jp(x),
argminyep,Jo(x).

Then we introduce a monotonic sequence 0 < t, < 1 with to = 1 and
t, — 0 and solve iteratively

n+1

X = argminyep, F(tn, J(x), Jo(x))

using x" as starting point. Here F is a continue function so that
F(1,J(x), Jo(x)) = Jo(x) and F(0, J(x), Jo(x)) = J(x).
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Graduation Method. Homotopic Continuation

First Motivation

M.C.Escher (1937) - Metamorphosis |
online at: http://www.mcescher.com/gallery/
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Graduation Method. Homotopic Continuation
Second Motivation: LARS Algorithm

Least Angle Regression (LARS) [EHJT04] designed to solve LASSO, or
variants:
argmin|ly — Ax]|3 + Al|x|ly
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Graduation Method. Homotopic Continuation
Second Motivation: LARS Algorithm

Least Angle Regression (LARS) [EHJT04] designed to solve LASSO, or

variants:
argminy|ly — AXH% + Allx|ly

It is proved the optimizer xopr = x(A) is a continuous and piecewise
differentiable function of A (linear, in the case of LASSO).
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Graduation Method. Homotopic Continuation
Second Motivation: LARS Algorithm

Least Angle Regression (LARS) [EHJT04] designed to solve LASSO, or
variants:

argminy|ly — Ax|[3 + l|xl;
It is proved the optimizer xopr = x(A) is a continuous and piecewise
differentiable function of A (linear, in the case of LASSO).
Method: Start with A = A\g = m and the optimal solution is x° = 0.
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Graduation Method. Homotopic Continuation
Second Motivation: LARS Algorithm

Least Angle Regression (LARS) [EHJT04] designed to solve LASSO, or
variants:

argminy|ly — Ax5 + Allx[l;
It is proved the optimizer xopr = x(A) is a continuous and piecewise
differentiable function of A (linear, in the case of LASSO).
Method: Start with A = A\g = m and the optimal solution is x° = 0.

Then LARS finds monotonically
decreasing A values where the slope
(and support) of x(\) changes. The
algorithm ends at the desired value
of A\ = A (see also Hierarchical
Decompositions of Tadmor&all).

min - [
argminy,y s lly= Axl
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Homotopy Method
Our Main Problem

The ultimate goal is to find the global minimum of the following
functional:

1<) = vk = [{x, f) P2
=1

over x € C", given the set of real numbers y1,-- -, ym and frame vectors
fi, -+, fm € C". The problem is hard because the criterion is non-convex
(it is a quartic multivariate polynomial).
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1<) = vk = [{x, f) P2
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over x € C", given the set of real numbers y1,-- -, ym and frame vectors
fi, -+, fm € C". The problem is hard because the criterion is non-convex
(it is a quartic multivariate polynomial). Denote X this global optimum,

and assume it is unique up to a global phase.
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Homotopy Method

Our Main Problem

The ultimate goal is to find the global minimum of the following
functional:

= lyk — I{x, f) PP
=1

over x € C", given the set of real numbers y1,-- -, ym and frame vectors
fi, -+, fm € C". The problem is hard because the criterion is non-convex
(it is a quartic multivariate polynomial). Denote X this global optimum,

and assume it is unique up to a global phase. Let J(x, \) denote the
regularized form:

A
J(x: M) Z i = 1{x, ) P2 + §H><||2
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Homotopy Method

Quartic Criteria: The Convex Regime

A
J(x ) Zm Oes i) 217 + 11117
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Homotopy Method

Quartic Criteria: The Convex Regime

A
J(x ) Z\yk Oes i) 217 + 11117

Since

m

1 m
z xRl (O~ Rojxox) + 5 2
k=1

with Ry = >"4L ykfify, it follows for A > X\g = Amax(Ro) the criterion is
strongly convex and x = 0 is the global minimum.
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Homotopy Method

Quartic Criteria: The Convex Regime

A
J(x ) Z\yk Oes i) 217 + 11117

Since

m

1 m
z xRl (O~ Rojxox) + 5 2
k=1

with Ry = >"4L ykfify, it follows for A > X\g = Amax(Ro) the criterion is
strongly convex and x = 0 is the global minimum.

A good candidate for the homotopy method is to start with J(x; Ao — ¢)
whose global minimum is along the principal eigenvector of Ry, and then
decrease A until desired value (e.g. 0).
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Homotopy Method

Characteristic Equation

At each A > 0 consider the set of critical points: V,J(x;A\) =0. To
illustrate the method, restrict to the real case. The characteristic equation
(of critical points) is given by:

m

D (0% )2 = i) (x, fi) i+ Ax = 0
k=1

or
R(x)x + (M — Ro)x =0 (3.1)
where Ro = 71 yifife and R(x) = X7 [(x, i) PFeFy.
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Homotopy Method

Characteristic Equation

At each A > 0 consider the set of critical points: V,J(x;A\) =0. To
illustrate the method, restrict to the real case. The characteristic equation
(of critical points) is given by:

D (0% )2 = i) (x, fi) i+ Ax = 0
k=1

R(x)x + (M — Ry)x =0 (3.1)

where Ry = Y1ty yifufy and R(x) = Sy [{x, f)|*fc Ff.

Note, (3.1) is a system of cubic equations in n variables. Assume the
number of roots is always finite (true, unless a degenerate case).
Then the number of critical points is at most 3”.
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Homotopy Method

Bifurcation Diagrams

An example of A-dependent characteristic roots:

Figure: Plot of x; = x1()) in a low-dimensional case n =3, m=5. Ao = 55.84
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Homotopy Method

Bifurcation Diagrams

An example of A-dependent characteristic roots:

Figure: Plot of x; = x1()) in a low-dimensional case n =3, m=5. Ao = 55.84
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Homotopy Method

Bifurcation Diagrams

Strategy: Start with

J(x; A) Z\yk = |0x, fi) P2 + HXH2

at (Ao — &, s()ep) and then contlnuaIIy track the critical point branch,

while decreasing the criterion.
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Homotopy Method

Bifurcation Diagrams

Strategy: Start with
J(x; ) Z\yk = |(x: i) P2 + HXH2

at (Ao — &, s()ep) and then contlnuaIIy track the critical point branch,
while decreasing the criterion. Thus:

1 m
fZ]xfk\“ )\I—Ro)xx—l— Zyk—J(x)\)<J(0)\0) SNk
k 1 k=1
Thus m
Dk i) |* < 2{(Ro — M)x, x)

k=1
Let axs = min, =1 || Tx[[, > 0. We obtain:

VIRl — A

2
%4

I} <
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Homotopy Method

Gradient Level Set

Consider a parametrization of the characteristic curves
(A= A(t), x = x(1)):

Vo J(x(£): M(t)) = 0 & R(x(£))x(t) + (A\(£)] — Ro)x(t) = 0

Differentiate to obtain:

dx

[ x 1 H(x,A) ] & ] =0 (Diff.Sys.)

dt

with the Hessian H(x, ) = 3R(x) + Al — Ro.
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Homotopy Method

Gradient Level Set

Consider a parametrization of the characteristic curves
(A= A(t), x = x(1)):

Vo J(x(£): M(t)) = 0 & R(x(£))x(t) + (A\(£)] — Ro)x(t) = 0

Differentiate to obtain:

dx

[ x 1 H(x,A) ] & ] =0 (Diff.Sys.)

dt

with the Hessian H(x, ) = 3R(x) + Al — Ro.
If Hessian nonsingular, we can parametrize x = x(\) and

dx

o (H(x,\)) ' x.
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The IRLS Algorithm

IRLS Algorithm

The Iterative Regularized Least-Squares Algorithm attempts to find the
global minimum of the non-convex problem

m
argminy Z vk — 10, )PP+ 200 Ix 3
k=1
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The IRLS Algorithm

IRLS Algorithm

The Iterative Regularized Least-Squares Algorithm attempts to find the
global minimum of the non-convex problem

m
argminy Z vk — 10, )PP+ 200 Ix 3
k=1

using a sequence of iterative least-squares problems:

m
, 2
XU = argmine > Iy = [(x, i) P2+ 2l x5 + pellx — x|
k=1
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The IRLS Algorithm

IRLS Algorithm

The Iterative Regularized Least-Squares Algorithm attempts to find the
global minimum of the non-convex problem

m
argminy Z vk — 10, )PP+ 200 Ix 3
k=1

using a sequence of iterative least-squares problems:
- 2
X = argmine 3~ Ik — [(x, i) P+ 2XelIx (3 + pellx = x|
k=1

together with a polarization relaxation:

|(x, fio)|? ~ ;(<X7 fi) (Fis x9) + (<D, ) (i, X))
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The IRLS Algorithm

Main Optimization

The optimization problem:

m

Xt = argminxz
k=1

2 2
FAlIXI + pellx = X + A x5
= argmin, J(x,x®; \ p)

2

2000 ) oo x D) + (49 Ry ()| +

)/k—2
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The IRLS Algorithm

Main Optimization

The optimization problem:

m

Xt = argminxz
k=1

2 2
FAlIXI + pellx = X + A x5
= argmin, J(x,x®; \ p)

2

2000 ) oo x D) + (49 Ry ()| +

)/k—2

Note:
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The IRLS Algorithm

Main Optimization

The optimization problem:

m

Xt = argminxz
k=1

2

2000 ) oo x D) + (49 Ry ()| +

)/k—2

2 2
FAlIXI + pellx = X + A x5
= argmin, J(x,x®; \ p)

Note:

e J(x,.;.,.) is quadratic in x = hence a least-squares problem!
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The IRLS Algorithm

Main Optimization

The optimization problem:

m

Xt = argminxz
k=1

2 2
FAlIXI + pellx = X + A x5
= argmin, J(x,x®; \ p)

2

2000 ) oo x D) + (49 Ry ()| +

)/k—2

Note:
e J(x,.;.,.) is quadratic in x = hence a least-squares problem!
o J(x, ;A 1) = X1 vk — [(x, i) P + 2)||x||5 = Fixed points of
IRLS are local minima of the original problem.
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The IRLS Algorithm

Second Motivation: Relaxation of Constraints

Another motivation: seek X = xx* that solves

m

: B oo
XZO’&'E(X):I I; i = (X, ffi Y sl ™ + 2Atrace(X).

Radu Balan (UMD) Homotopy Method 16 Aug. 2017



The Homotopy Method
00000000000800000

The IRLS Algorithm

Second Motivation: Relaxation of Constraints

Another motivation: seek X = xx* that solves
m

: B oo
XZO’&'E(X):I I; i = (X, ffi Y sl ™ + 2Atrace(X).

PhaseLift algorithm removes the condition rank(X) =1 and shows (for
large \) this produces the desired result with high probability.
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The IRLS Algorithm

Second Motivation: Relaxation of Constraints

Another motivation: seek X = xx* that solves

m

: B oo
XZO’&'E(X):I I; i = (X, ffi Y sl ™ + 2Atrace(X).

PhaseLift algorithm removes the condition rank(X) =1 and shows (for
large \) this produces the desired result with high probability.

Another way to relax the problem is to search for X in a larger space. The
IRLS is essentially equivalent to optimize a convex functional of X on the
larger space

SM = {T=T*cC™", T has at most one positive eigenvalue

and at most one negative eigenvalue}.
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The IRLS Algorithm

Second Formulation

Consider the following three convex criteria:

AXAp) = gjl i~ (X B sl 200+ )X, — 2utrace(X)

L(X;Ap) = i vk = (X, il s | + 2N eigmax (X) — (24 + 4p1) eigmin(X)
k=1

AXGA) = kﬁ i (X, ) sl? + 21Xy — Apeigmn(X)

which coincide on S1:1.
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The IRLS Algorithm

Second Formulation

Consider the following three convex criteria:

AXAp) = gjl i~ (X B sl 200+ )X, — 2utrace(X)

L(X;Ap) = i vk = (X, il s | + 2N eigmax (X) — (24 + 4p1) eigmin(X)
k=1

AXGA) = kﬁ i (X, ) sl? + 21Xy — Apeigmn(X)

which coincide on S'1. Consider the optimization problem

Jopt, X) = min J(X;Ap) , 1<k<3
(Jopt, X) = min Ju(X; X, 1)
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The IRLS Algorithm

Second Formulation -2

The following are true:
@ Optimization in SH1:

Jin Je(Xi A p) = min, S(u,vi A, )

><>

and (
oo

o, v
sk

) denote optimizers so that imag((&1, ¥)) = 0, then
+ 00

If
X% ).
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The IRLS Algorithm

Second Formulation -2

The following are true:
@ Optimization in SH1:

Jin Je(Xi A p) = min, S(u,vi A, )

If X and (&, ¥') denote optimizers so that imag((&, 7)) = 0, then

X = (a0 + 0u).
@ Optimization in S10;

in J(X; A, 1) = min J(x, x; A,
i Se(Xi A, ) = min J0x,x; A, o)

If X and %X denote optimizers, then X = %%*. S10 = {xx*}.
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The IRLS Algorithm

Initialization

For A > eigmax(R(y)), where R(y) = > 1L vk ffy,

JOGA) =501 vk — [{x, fi)[2]2 + 2X|x||3 is convex. The unique global
minimum is x° = 0.
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The IRLS Algorithm

Initialization

For A > eigmax(R(y)), where R(y) = > 1L vk ffy,

JOGA) =501 vk — [{x, fi)[2]2 + 2X|x||3 is convex. The unique global
minimum is x° = 0.

Initialization Procedure:

@ Solve the principal eigenpair (e, eigmax) of matrix R(y) using e.g. the
power method;

@ Set
. €€igmax
Ao = (1—¢)ei XV = =2
0= (L= e)elgmax X" = [Swm g EvE

Here € > 0 is a parameter that depends on the frame set as well as
the spectral gap of R(y).

@ Set pg = Mg and t = 0.
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The IRLS Algorithm

Iterations

Repeat the following steps until stopping:

@ Optimization: Solve the least-square problem:

m 2

XD = argmin, Z Vi — %((x, F) (B, xXOY + (O£ (F, x|+
k=1

2 2
el I3+ pellx = x5 + Aex
= argminy J(X’X(t); A, 1)

e Update: A\ri1 = YAs, pier1 = max(ypue, p™"), t = t + 1. Here v is
the learning rate, and ™" is related to performance.
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The IRLS Algorithm

Performance

Let yx = |(x, fi)|? + vk. Assume the algorithm is stopped at some T so
that

I TN 1) < J(x, %3 A, po).
Denote X = %(X(T)X(T_l)* + x(T=Dx(M*) and 28* = P,(X).
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The IRLS Algorithm

Performance

Let yx = |(x, fi)|? + vk. Assume the algorithm is stopped at some T so
that

I TN 1) < J(x, %3 A, po).
Denote X = %(X(T)X(T_l)* + x(T=Dx(M*) and 28* = P,(X).
Then the following hold true:

@ Matrix norm error:

o, A
IX =2y < =+ VGl

@ Natural distance:

~ 3 % . )\ x 2
D(%,x)* = [|X — 50| + | eigmin(X +\/>|| ||+|| v Alx|

24

where Cp is a frame dependent constant (lower Lipschitz constant in S11)
Radu Balan (UMD)
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Numerical Simulations
Setup

The algorithm requires O(m) memory. Simulations with m = Rn (complex
case) with n = 1000 and R € {4,6,8,12}. Frame vectors corresponding to
masked (windowed) DFT:

-1 i omik(I—1)/n ,
finth = VRn (er >0§I§n71 lsjsRlsksn
DFT, O 0
i oo fu|=| Diag(w!) - Diagw®) || o . o
0 0 DFT,

Parameters: ¢ = 0.1, v = 0.95, umi” = ’1‘—8. Power method tolerance: 108
Conjugate gradient tolerance: 10714,
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Numerical Simulations
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