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Phase Retrieval
The phase retrieval problem

Hilbert space H = Cn, Ĥ = H/T 1, frame F = {f1, · · · , fm} ⊂ Cn and
measurements

yk = |〈x , fk〉|2 + νk , 1 ≤ k ≤ m.

The frame is said phase retrievable (or that it gives phase retrieval) if
x̂ 7→ (|〈x , fk〉|)1≤k≤m is injective.

The general phase retrieval problem a.k.a. phaseless reconstruction:
Decide when a given frame is phase retrievable, and, if so, find an
algorithm to recover x from y = (yk)k up to a global phase factor.

Our problem today: A reconstruction algorithm.
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General Purpose Algorithms
Unstructured Frames. Unstructured Data

1 Iterative Algorithms:
Gerchberg-Saxton [Gerchberg&all]
Wirtinger flow - gradient descent [CLS14]
IRLS [B13]

2 Rank 1 Tensor Recovery:
PhaseLift; PhaseCut [CSV12]; [WdAM12]
Higher-Order Tensor Recovery [B09]

Radu Balan (UMD) Homotopy Method 16 Aug. 2017



The Phase Retrieval Problem Existing Algorithms The Homotopy Method Numerical Results

Specialized Algorithms
Structured Frames and/or Structured Data

1 Structured Frames:
Fourier Frames: 4n-4 [BH13]; Masking DFT [CLS13];
STFT/Spectograms [B.][Eldar&all][Hayes&all]; Alternating Projections
[GriffinLim][Fannjiang]; Hybrid I-O [Fienup82]
Polarization: 3-term [ABFM12], masking [BCM]
Shift-Invariant Spaces: Bandlimited [Thakur11]; Filterbanks/Circulant
Matrices [IVW2]; Other spaces [Chen&all]
X-Ray Crystallography – over 100 years old, lots of Nobel prizes ...

2 Special Signals:
Sparse general case: GESPAR[SBE14];
Specialized: sparse [IVW1]; speech [ARF03]

... and others – ”phase retrieval” in title: 2680 papers
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Graduation Method. Homotopic Continuation
First Motivation

Our algorithm (IRLS and variants) belongs to the class of Graduation
Methods , or Homotopic Continuations.
Idea:

Our target is to optimize a complicated (possibly non-convex)
optimization criterion J(x), argminx∈DJ(x).
However we know how to optimize a closely related criterion J0(x),
argminx∈D0J0(x).
Then we introduce a monotonic sequence 0 ≤ tn ≤ 1 with t0 = 1 and
tn → 0 and solve iteratively

xn+1 = argminx∈Dn F (tn, J(x), J0(x))

using xn as starting point. Here F is a continue function so that
F (1, J(x), J0(x)) = J0(x) and F (0, J(x), J0(x)) = J(x).
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Graduation Method. Homotopic Continuation
First Motivation

M.C.Escher (1937) - Metamorphosis I
online at: http://www.mcescher.com/gallery/
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Graduation Method. Homotopic Continuation
Second Motivation: LARS Algorithm

Least Angle Regression (LARS) [EHJT04] designed to solve LASSO, or
variants:

argminx‖y − Ax‖22 + λ‖x‖1

It is proved the optimizer xopt = x(λ) is a continuous and piecewise
differentiable function of λ (linear, in the case of LASSO).
Method: Start with λ = λ0 = 2

‖AT y‖2
and the optimal solution is x0 = 0.

Then LARS finds monotonically
decreasing λ values where the slope
(and support) of x(λ) changes. The
algorithm ends at the desired value
of λ = λ∞ (see also Hierarchical
Decompositions of Tadmor&all).
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Homotopy Method
Our Main Problem

The ultimate goal is to find the global minimum of the following
functional:

I(x) =
m∑

k=1
|yk − |〈x , fk〉|2|2

over x ∈ Cn, given the set of real numbers y1, · · · , ym and frame vectors
f1, · · · , fm ∈ Cn. The problem is hard because the criterion is non-convex
(it is a quartic multivariate polynomial).

Denote x̂ this global optimum,
and assume it is unique up to a global phase. Let J(x , λ) denote the
regularized form:

J(x ;λ) = 1
4

m∑
k=1
|yk − |〈x , fk〉|2|2 + λ

2 ‖x‖
2
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Homotopy Method
Quartic Criteria: The Convex Regime

J(x ;λ) = 1
4

m∑
k=1
|yk − |〈x , fk〉|2|2 + λ

2 ‖x‖
2

Since

J(x ;λ) = 1
4

m∑
k=1
|〈x , fk〉|4 + 1

2〈(λI − R0)x , x〉+ 1
4

m∑
k=1

y2
k

with R0 =
∑m

k=1 yk fk f ∗k , it follows for λ > λ0 = λmax (R0) the criterion is
strongly convex and x = 0 is the global minimum.
A good candidate for the homotopy method is to start with J(x ;λ0 − ε)
whose global minimum is along the principal eigenvector of R0, and then
decrease λ until desired value (e.g. 0).
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Homotopy Method
Characteristic Equation

At each λ ≥ 0 consider the set of critical points: ∇x J(x ;λ) = 0. To
illustrate the method, restrict to the real case. The characteristic equation
(of critical points) is given by:

m∑
k=1

(|〈x , fk〉|2 − yk)〈x , fk〉fk + λx = 0

or
R(x)x + (λI − R0)x = 0 (3.1)

where R0 =
∑m

k=1 yk fk f ∗k and R(x) =
∑m

k=1 |〈x , fk〉|2fkF ∗k .

Note, (3.1) is a system of cubic equations in n variables. Assume the
number of roots is always finite (true, unless a degenerate case).
Then the number of critical points is at most 3n.
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Homotopy Method
Bifurcation Diagrams

An example of λ-dependent characteristic roots:

Figure: Plot of x1 = x1(λ) in a low-dimensional case n = 3, m = 5. λ0 = 55.84

y =

∣∣∣∣∣∣∣∣∣∣∣


1 0 0
0 1 0
0 0 1
1 2 1
1 −1 1.01


 1

1.5
−1


∣∣∣∣∣∣∣∣∣∣∣

2
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Homotopy Method
Bifurcation Diagrams

Strategy: Start with

J(x ;λ) = 1
4

m∑
k=1
|yk − |〈x , fk〉|2|2 + λ

2 ‖x‖
2

at (λ0 − ε, s(ε)e0) and then continually track the critical point branch,
while decreasing the criterion.

Thus:
1
4

m∑
k=1
|〈x , fk〉|4+1

2〈(λI − R0)x , x〉+1
4

m∑
k=1

y2
k = J(x ;λ) ≤ J(0, λ0) = 1

4

m∑
k=1

y2
k

Thus m∑
k=1
|〈x , fk〉|4 ≤ 2〈(R0 − λI)x , x〉

Let a24 = min‖x‖2=1 ‖Tx‖4 > 0. We obtain:

‖x‖ ≤
√
‖R0‖ − λ

a2
24
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Homotopy Method
Gradient Level Set

Consider a parametrization of the characteristic curves
(λ = λ(t), x = x(t)):

∇x J(x(t);λ(t)) = 0⇔ R(x(t))x(t) + (λ(t)I − R0)x(t) = 0

Differentiate to obtain:[
x

... H(x , λ)
] [ dλ

dt
dx
dt

]
= 0 (Diff .Sys.)

with the Hessian H(x , λ) = 3R(x) + λI − R0.

If Hessian nonsingular, we can parametrize x = x(λ) and

dx
dλ = − (H(x , λ))−1 x .
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The IRLS Algorithm
IRLS Algorithm

The Iterative Regularized Least-Squares Algorithm attempts to find the
global minimum of the non-convex problem

argminx

m∑
k=1
|yk − |〈x , fk〉|2|2 + 2λ∞‖x‖22

using a sequence of iterative least-squares problems:

x (t+1) = argminx

m∑
k=1
|yk − |〈x , fk〉|2|2 + 2λt‖x‖22 + µt‖x − x (t)‖2

together with a polarization relaxation:

|〈x , fk〉|2 ≈
1
2(〈x , fk〉〈fk , x (t)〉+ 〈x (t), fk〉〈fk , x〉)
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The IRLS Algorithm
Main Optimization

The optimization problem:

x (t+1) = argminx

m∑
k=1

∣∣∣∣yk −
1
2(〈x , fk〉〈fk , x (t)〉+ 〈x (t), fk〉〈fk , x〉)

∣∣∣∣2 +

+λt‖x‖22 + µt‖x − x (t)‖22 + λt‖x (t)‖22
= argminx J(x , x (t);λ, µ)

Note:
J(x , .; ., .) is quadratic in x ⇒ hence a least-squares problem!
J(x , x ;λ, µ) =

∑m
k=1 |yk − |〈x , fk〉|2|2 + 2λ‖x‖22 ⇒ Fixed points of

IRLS are local minima of the original problem.
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J(x , x ;λ, µ) =
∑m

k=1 |yk − |〈x , fk〉|2|2 + 2λ‖x‖22 ⇒ Fixed points of
IRLS are local minima of the original problem.
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The IRLS Algorithm
Main Optimization
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The IRLS Algorithm
Second Motivation: Relaxation of Constraints

Another motivation: seek X = xx∗ that solves

min
X≥0,rank(X)=1

m∑
k=1
|yk − 〈X , fk f ∗k 〉HS |

2 + 2λtrace(X ).

PhaseLift algorithm removes the condition rank(X ) = 1 and shows (for
large λ) this produces the desired result with high probability.
Another way to relax the problem is to search for X in a larger space. The
IRLS is essentially equivalent to optimize a convex functional of X on the
larger space

S1,1 = {T = T ∗ ∈ Cn×n , T has at most one positive eigenvalue
and at most one negative eigenvalue}.
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The IRLS Algorithm
Second Formulation

Consider the following three convex criteria:

J1(X ;λ, µ) =
m∑

k=1
|yk − 〈X , fk f ∗k 〉HS |

2 + 2(λ+ µ)‖X‖1 − 2µtrace(X )

J2(X ;λ, µ) =
m∑

k=1
|yk − 〈X , fk f ∗k 〉HS |

2 + 2λeigmax (X )− (2λ+ 4µ)eigmin(X )

J3(X ;λ, µ) =
m∑

k=1
|yk − 〈X , fk f ∗k 〉HS |

2 + 2λ‖X‖1 − 4µeigmin(X )

which coincide on S1,1.

Consider the optimization problem

(Jopt,X ) = min
X∈S1,1

Jk(X ;λ, µ) , 1 ≤ k ≤ 3
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The IRLS Algorithm
Second Formulation -2

The following are true:
1 Optimization in S1,1:

min
X∈S1,1

Jk(X ;λ, µ) = min
u,v∈Cn

J(u, v ;λ, µ)

If X̂ and (û, v̂) denote optimizers so that imag(〈û, v̂〉) = 0, then
X̂ = 1

2(ûv̂∗ + v̂ û∗).

2 Optimization in S1,0:

min
X∈S1,0

Jk(X ;λ, µ) = min
x∈Cn

J(x , x ;λ, µ)

If X̂ and x̂ denote optimizers, then X̂ = x̂ x̂∗. S1,0 = {xx∗}.
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2(ûv̂∗ + v̂ û∗).
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The IRLS Algorithm
Initialization

For λ ≥ eigmax (R(y)), where R(y) =
∑m

k=1 yk fk f ∗k ,
J(x ;λ) =

∑m
k=1 |yk − |〈x , fk〉|2|2 + 2λ‖x‖22 is convex. The unique global

minimum is x0 = 0.

Initialization Procedure:

Solve the principal eigenpair (e, eigmax ) of matrix R(y) using e.g. the
power method;
Set

λ0 = (1− ε)eigmax , x0 =
√

εeigmax∑m
k=1 |〈e, fk〉|4

e.

Here ε > 0 is a parameter that depends on the frame set as well as
the spectral gap of R(y).
Set µ0 = λ0 and t = 0.
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The IRLS Algorithm
Iterations

Repeat the following steps until stopping:
Optimization: Solve the least-square problem:

x (t+1) = argminx

m∑
k=1

∣∣∣∣yk −
1
2(〈x , fk〉〈fk , x (t)〉+ 〈x (t), fk〉〈fk , x〉)

∣∣∣∣2 +

+λt‖x‖22 + µt‖x − x (t)‖22 + λt‖x (t)‖22
= argminx J(x , x (t);λ, µ)

Update: λt+1 = γλt , µt+1 = max(γµt , µ
min), t = t + 1. Here γ is

the learning rate, and µmin is related to performance.

Radu Balan (UMD) Homotopy Method 16 Aug. 2017



The Phase Retrieval Problem Existing Algorithms The Homotopy Method Numerical Results

The IRLS Algorithm
Performance

Let yk = |〈x , fk〉|2 + νk . Assume the algorithm is stopped at some T so
that

J(x (T ), x (T−1);λ, µ) ≤ J(x , x ;λ, µ).

Denote X̂ = 1
2(x (T )x (T−1)∗ + x (T−1)x (T )∗) and x̂ x̂∗ = P+(X̂ ).

Then the following hold true:
1 Matrix norm error:

‖X̂ − xx∗‖1 ≤
λ

C0
+
√

C0‖ν‖

2 Natural distance:

D(x̂ , x)2 = ‖X̂ − xx∗‖1 +|eigmin(X̂ )| ≤ λ

C0
+
√

C0‖ν‖+ ‖ν‖
2

4µ + λ‖x‖2

2µ

where C0 is a frame dependent constant (lower Lipschitz constant in S1,1).
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Numerical Simulations
Setup

The algorithm requires O(m) memory. Simulations with m = Rn (complex
case) with n = 1000 and R ∈ {4, 6, 8, 12}. Frame vectors corresponding to
masked (windowed) DFT:

fjn+k = 1√
Rn

(
w j

l e2πik(l−1)/n
)

0≤l≤n−1
, 1 ≤ j ≤ R, 1 ≤ k ≤ n

[
f1 f2 · · · fm

]
=
[

Diag(w1) · · · Diag(wR)
]  DFTn 0 0

0 . . . 0
0 0 DFTn


Parameters: ε = 0.1, γ = 0.95, µmin = µ0

10 . Power method tolerance: 10−8

Conjugate gradient tolerance: 10−14.
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Numerical Simulations
MSE Plots
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Numerical Simulations
Performance - 2
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