Geometric and Analytic Properties of Positive Semi-Definite Matrices

Radu Balan

University of Maryland
Department of Mathematics and the Norbert Wiener Center
College Park, Maryland rvbalan@umd.edu
June 24, 2022
Dedicated to Hans Feichtinger for his 70th Birthday

Norbert Wiener Center

 for Harmonic Analysis and ApplicationsThéorie
Analytique de la Chaleur
bp
Jean TBaptiste Joseph 1Fourier

Forgolen Pheofis

Acknowledgments

This material is based upon work partially supported by the National Science Foundation under grant no. DMS-2108900 and Simons Foundation. "Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation."
Collaborators:
Kasso Okoudjou (Tufts), Anirudha Poria(Bar-llan U.), Michael Rawson (UMD), Yang Wang (HKUST), Rui Zhang (HKUST)

Works:

(1) R. Balan, K.A. Okoudjou, M. Rawson, Y. Wang, R. Zhang, Optimal I1 Rank One Matrix Decomposition, in "Harmonic Analysis and Applications", Rassias M., Ed. Springer (2021)
(2) R. Balan, K. Okoudjou, A. Poria, On a Feichtinger Problem, Operators and Matrices vol. 12(3), 881-891 (2018) http://dx.doi.org/10.7153/oam-2018-12-53

Problem Formulation

Let $\operatorname{Sym}^{+}\left(\mathbb{C}^{n}\right)=\left\{A \in \mathbb{C}^{n \times n}, A^{*}=A \geq 0\right\}$. For $A \in \operatorname{Sym}^{+}\left(\mathbb{C}^{n}\right)$,

$$
\gamma_{+}(A):=\inf _{A=\sum_{k \geq 1} x_{x} x_{k}^{*}} \sum_{k}\left\|x_{k}\right\|_{1}^{2}
$$

The matrix conjecture: There is a universal constant C_{0} such that, for every $n \geq 1$ and $A \in \operatorname{Sym}^{+}\left(\mathbb{C}^{n}\right)$,

$$
\gamma_{+}(A) \leq C_{0}\|A\|_{1}:=C_{0} \sum_{k, l=1}^{n}\left|A_{k, l}\right|
$$

Motivation

A Feichtinger Problem

At a 2004 Oberwolfach meeting, H.F. asked the following question: (Q1) Given a positive semi-definite trace-class operator $T: L^{2}\left(\mathbb{R}^{d}\right) \rightarrow L^{2}\left(\mathbb{R}^{d}\right)$, $T f(x)=\int K(x, y) f(y) d y$, with $K \in M^{1}\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right)$, and its spectral factorization, $T=\sum_{k}\left\langle\cdot, h_{k}\right\rangle h_{k}$, must it be $\sum_{k}\left\|h_{k}\right\|_{M^{1}}^{2}<\infty$?

A modified version of the question is: (Q2) Given T as before ($T=T^{*} \geq 0$, $K \in M^{1}\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right)$), is there a factorization $T=\sum_{k}\left\langle\cdot, g_{k}\right\rangle g_{k}$ such that $\sum_{k}\left\|g_{k}\right\|_{M^{1}}^{2}<\infty ?$

Using (Heil,Larson '08) and some functional analysis arguments:

Proposition

If (Q2) is answered affirmatively, then the matrix conjecture must be true.

Current Status of the Matrix Conjecture

The infimum is achieved:

$$
\gamma_{+}(A):=\inf _{A=\sum_{k \geq 1} x_{x} x_{k}^{*}} \sum_{k}\left\|x_{k}\right\|_{1}^{2}=\min _{A=\sum_{k=1}^{n} x_{x} x_{k}^{*}} \sum_{k}\left\|x_{k}\right\|_{1}^{2} .
$$

Upper bounds:

$$
\gamma_{+}(A) \leq n \operatorname{trace}(A) \leq n\|A\|_{1}:=n \sum_{k, j}\left|A_{k, j}\right|
$$

Lower bounds:

$$
\|A\|_{1}=\min _{A=\sum_{k \geq 1} x_{x} y_{k}^{*}} \sum_{k}\left\|x_{k}\right\|_{1}\left\|y_{k}\right\|_{1} \leq \gamma_{+}(A)
$$

Convexity: for $A, B \in \operatorname{Sym}^{+}\left(\mathbb{C}^{n}\right)$ and $t \geq 0$,

$$
\gamma_{+}(A+B) \leq \gamma_{+}(A)+\gamma_{+}(B), \quad \gamma_{+}(t A)=t \gamma_{+}(A)
$$

Current Status of the Matrix Conjecture

Lower bound is achieved:
(1) If $A=x x^{*}$ is of rank one, then $\gamma_{+}(A)=\|x\|_{1}^{2}=\|A\|_{1}$.
(2) If $A \geq 0$ is diagonally dominant matrix, then $\gamma_{+}(A)=\|A\|_{1}$.

Continuity:
(1) Let $\operatorname{Sym}^{++}\left(\mathbb{C}^{n}\right)=\left\{A=A^{*}>0\right\}$. Then $\gamma_{+} \mid$Sym $^{++}: \operatorname{Sym}^{++}\left(\mathbb{C}^{n}\right) \rightarrow \mathbb{R}$ is continuous.
(2. If $A, B \in \operatorname{Sym}^{+}\left(\mathbb{C}^{n}\right)$, $\operatorname{trace}(A)$, $\operatorname{trace}(B) \leq 1$ and $A, B \geq \delta /$ then

$$
\left|\gamma_{+}(A)-\gamma_{+}(B)\right| \leq\left(\frac{n}{\delta^{2}}+n^{2}\right)\|A-B\|_{O_{p}}
$$

hence Lipschitz continuous.
Maximum of $\sum_{k}\left\|x_{k}\right\|_{1}^{2} /\|A\|_{1}$ over 30 random noise realizations, where $x_{k}^{\prime} s$ are obtained from the eigendecomposition, or the LDL factorization.

First New Result: Measure Optimization

Let $S_{1}=\left\{x \in \mathbb{C}^{n},\|x\|_{1}=1\right\}$ denote the compact unit sphere with respect to the I^{1} norm, and let $\mathcal{B}\left(S_{1}\right)$ denote the set of Borel measures over S_{1}. For $A \in \operatorname{Sym}\left(\mathbb{C}^{n}\right)^{+}\left(\mathbb{C}^{n}\right)$ consider the optimization problem:

$$
\left(p^{*}, \mu^{*}\right)=\inf _{\mu \in \mathcal{B}\left(S_{1}\right): \int_{S_{1}} x x^{*} d \mu(x)=A} \mu\left(S_{1}\right) \quad(M)
$$

Theorem (Optimal Measure)

For any $A \in \operatorname{Sym}^{+}\left(\mathbb{C}^{n}\right)$ the optimization problem (M) is convex and its global minimum is achieved by

$$
p^{*}=\gamma_{+}(A), \quad \mu^{*}(x)=\sum_{k=1}^{m} \lambda_{k} \delta\left(x-g_{k}\right)
$$

where $A=\sum_{k=1}^{m}\left(\sqrt{\lambda_{k}} g_{k}\right)\left(\sqrt{\lambda_{k}} g_{k}\right)^{*}$ is an optimal decomposition that achieves $\gamma_{+}(A)=\sum_{k=1}^{m} \lambda_{k}$.

Super-resolution and Convex Optimizations

$$
\begin{aligned}
& \gamma_{+}(A)=\min _{x_{1}, \ldots, x_{m}}: A=\sum_{k} x_{k} x_{k}^{*} \\
& \sum_{k=1}^{m}\left\|x_{k}\right\|_{1}^{2}, m=n^{2} \\
& p^{*}=\inf _{\mu \in \mathcal{B}\left(S_{1}\right): A=\int_{S_{1}} x x^{*} d \mu(x)} \int_{S_{1}} d \mu(x) \quad(M)
\end{aligned}
$$

Remarks

(1) The optimization problem (P) is non-convex, but finite-dimensional. The optimization problem (M) is convex, but infinite-dimensional.
(2) If $g_{1}, \ldots, g_{m} \in S_{1}$ in the support of μ^{*} are known so that
$\mu^{*}=\sum_{k=1}^{m} \lambda_{k} \delta\left(x-g_{k}\right)$, then the optimal $\lambda_{1}, \ldots, \lambda_{m} \geq 0$ are determined by a linear program. More general, (M) is an infinite-dimensional linear program.
(3) Finding the support of μ^{*} is an example of a super-resolution problem. One possible approach is to choose a redundant dictionary (frame) that includes the support of μ^{*}, and then solve the induced linear program.

Second New Result: The Continuity Property

Theorem (The Continuity Property)

The map $\gamma_{+}:\left(\operatorname{Sym}^{+}\left(\mathbb{C}^{n}\right),\|\cdot\|\right) \rightarrow \mathbb{R}$ is continuous.

Remarks

(1) This statement extends the continuity result from

$$
\operatorname{Sym}^{++}\left(\mathbb{C}^{n}\right)=\left\{A=A^{*}>0\right\} \text { to } \operatorname{Sym}^{+}\left(\mathbb{C}^{n}\right)=\left\{A=A^{*} \geq 0\right\}
$$

(2) The proof is based on (possibly new) operator comparison results.

Proof: The Optimal Measure Result

Recall: we want to show the following problems admit same solution:

$$
\begin{align*}
\gamma_{+}(A) & =\min _{x_{1}, \ldots, x_{m}}: \min _{A=\Sigma_{k} x_{k} k_{k}^{*}} \sum_{k=1}^{m}\left\|x_{k}\right\|_{1}^{2}, m=n^{2} \tag{P}\\
p^{*} & ={ }_{\mu \in \mathcal{B}\left(S_{1}\right)} \inf _{A=S_{S_{1}} \times x^{*} d \mu(x)} \int_{S_{1}} d \mu(x) \quad(M)
\end{align*}
$$

a. Assume $A=\sum_{k=1}^{m} x_{k} x_{k}^{*}$ is a global minimum for (P). Then $\mu(x)=\sum_{k=1}^{m}\left\|x_{k}\right\|_{1}^{2} \delta\left(x-\frac{x_{k}}{\left\|x_{k}\right\|_{1}}\right)$ is a feasible solution for (M). This shows $p^{*} \leq \gamma_{+}(A)$.
b. For reverse: Let μ^{*} be an optimal measure in (M). Fix $\varepsilon>0$. Construct a disjoint partition $\left(U_{l}\right)_{1 \leq I \leq L}$ of S_{1} so that each U_{l} is included in some ball $B_{\varepsilon}\left(z_{l}\right)$ of radius ε with $\left\|z_{l}\right\|_{1}=1$. Thus $U_{l} \subset B_{\varepsilon}\left(z_{l}\right) \cap S_{1}$.
For each I, compute $x_{l}=\frac{1}{\mu^{*}\left(U_{l}\right)} \int_{U_{l}} x d \mu^{*}(x) \in B_{\varepsilon}\left(z_{l}\right)$. Let $g_{l}=\sqrt{\mu^{*}\left(U_{l}\right)} x_{l}$.

Proof: The Optimal Measure Result (cont)

Key inequality:

$$
0 \leq R_{l}:=\int_{U_{l}}\left(x-x_{l}\right)\left(x-x_{l}\right)^{*} d \mu^{*}(x)=\int_{U_{l}} x x^{*} d \mu^{*}(x)-\mu^{*}\left(U_{l}\right) x_{l} x_{l}^{*}
$$

Sum over I and with $R=\sum_{l=1}^{L} R_{l}$ get

$$
A=\int_{S_{1}} x x^{*} d \mu^{*}(x) \leq \sum_{l=1}^{L} g_{l} g_{l}^{*}+R
$$

By sub-additivity and homogeneity:

$$
\gamma_{+}(A) \leq \sum_{l=1}^{L}\left\|g_{l}\right\|_{1}^{2}+\gamma_{+}(R) \leq \sum_{l=1}^{L} \mu^{*}\left(U_{l}\right)\left\|x_{l}\right\|_{1}^{2}+n \operatorname{trace}(R)
$$

But $\left\|x_{l}-z_{l}\right\|_{1} \leq \varepsilon$ and $\left\|x-x_{l}\right\|_{1} \leq 2 \varepsilon$ for every $x \in U_{l}$. Hence $\left\|x_{l}\right\|_{1} \leq 1+\varepsilon$ and $\operatorname{trace}\left(R_{l}\right) \leq 4 \mu^{*}\left(U_{l}\right) \varepsilon^{2}$.

Proof: The Optimal Measure Result (end)

Thus:

$$
\gamma_{+}(A) \leq \mu^{*}\left(S_{1}\right)+\left(2 \varepsilon+\varepsilon^{2}+4 n \varepsilon^{2}\right) \mu^{*}\left(S_{1}\right)
$$

Since $\varepsilon>0$ is arbitrary, it follows

$$
\gamma_{+}(A) \leq \mu^{*}\left(S_{1}\right)=p^{*}
$$

This ends the proof of the measure result. \square

The Continuity Property

The proof is based on the following two lemmas:

Lemma (L1)

Let $A \in \operatorname{Sym}^{+}\left(\mathbb{C}^{n}\right)$ of rank $r>0$. Let $\lambda_{r}>0$ denote the $r^{\text {th }}$ eigenvalue of A, and let $P_{A, r}$ denote the orthogonal projection onto the range of A. For any $0<\varepsilon<1$ and $B \in \operatorname{Sym}^{+}\left(\mathbb{C}^{n}\right)$ such that $\|A-B\|_{O_{p}} \leq \frac{\varepsilon \lambda_{r}}{1-\varepsilon}$, the following holds true:

$$
\begin{equation*}
A-(1-\varepsilon) P_{A, r} B P_{A, r} \geq 0 \tag{1}
\end{equation*}
$$

Lemma (L2)

Let $B \in \operatorname{Sym}^{+}\left(\mathbb{C}^{n}\right)$ of rank $r>0$. Let $\lambda_{r}>0$ denote the $r^{\text {th }}$ eigenvalue of B. For any $0<\varepsilon<\frac{1}{2}$ and $A \in \operatorname{Sym}^{+}\left(\mathbb{C}^{n}\right)$ such that $\|A-B\|_{O p} \leq \varepsilon \lambda_{r}$, the following holds true:

$$
\begin{equation*}
A-(1-\varepsilon) P_{A, r} B P_{A, r} \geq 0 \tag{2}
\end{equation*}
$$

where $P_{A, r}$ denotes the orthogonal projection onto the top r eigenspace of A.

Proof of Continuity of γ_{+}

Fix $A \in \operatorname{Sym}^{+}\left(\mathbb{C}^{n}\right)$. Let $\left(B_{j}\right)_{j \geq 1}, B_{j} \in \operatorname{Sym}^{+}\left(\mathbb{C}^{n}\right)$, be a convergent sequence to A. We need to show $\gamma_{+}\left(B_{j}\right) \rightarrow \gamma_{+}(A)$.
Let $A=\sum_{k=1}^{n^{2}} x_{k} x_{k}^{*}$ be the optimal decomposition of A such that
$\gamma_{+}(A)=\sum_{k=1}^{n^{2}}\left\|x_{k}\right\|_{1}^{2}$.
If $A=0$ then $\gamma_{+}(A)=0$ and

$$
0 \leq \gamma_{+}\left(B_{j}\right) \leq n \operatorname{trace}\left(B_{j}\right) \leq n^{2}\left\|B_{j}\right\|_{O_{P}} .
$$

Hence $\lim _{j} \gamma_{+}\left(B_{j}\right)=0$.
Assume $\operatorname{rank}(A)=r>0$ and let $\lambda_{r}>0$ denote the smallest strictly positive eigenvalue of A. Let $\varepsilon \in\left(0, \frac{1}{2}\right)$ be arbitrary. Let $J=J(\varepsilon)$ be so that $\left\|A-B_{j}\right\|_{O_{p}}<\varepsilon \lambda_{r}$ for all $j>J$. Let $B_{j}=\sum_{k=1}^{n^{2}} y_{j, k} y_{j, k}^{*}$ be the optimal
decomposition of B_{j} such that $\gamma_{+}\left(B_{j}\right)=\sum_{k=1}^{n^{2}}\left\|y_{j, k}\right\|_{1}^{2}$.
Let $\Delta_{j}=A-(1-\varepsilon) P_{A, r} B_{j} P_{A, r}$. By Lemma L1, for any $j>J$,
$\gamma_{+}(A) \leq(1-\varepsilon) \gamma_{+}\left(P_{A, r} B_{j} P_{A, r}\right)+\gamma_{+}\left(\Delta_{j}\right) \leq(1-\varepsilon) \sum_{k=1}^{n^{2}}\left\|P_{A, r} y_{j, k}\right\|_{1}^{2}+n \operatorname{trace}\left(\Delta_{j}\right)$

Proof of Continuity of γ_{+}(cont)

Pass to a subsequence j^{\prime} of j so that $y_{j^{\prime}, k} \rightarrow y_{k}$, for every $k \in\left[n^{2}\right]$, and $\gamma_{+}\left(B_{j^{\prime}}\right) \rightarrow \liminf _{j} \gamma_{+}\left(B_{j}\right)$. Then $\lim _{j^{\prime}} P_{A, r} y_{j^{\prime}, k}=P_{A, r} y_{k}=y_{k}$ and

$$
\lim _{j^{\prime}} \sum_{k=1}^{n^{2}}\left\|P_{A, r} y_{j^{\prime}, k}\right\|_{1}^{2}=\lim _{j^{\prime}} \sum_{k=1}^{n^{2}}\left\|y_{j^{\prime}, k}\right\|_{1}^{2}=\lim _{j} \inf ^{\prime} \gamma_{+}\left(B_{j}\right)
$$

On the other hand, $\lim _{j} \operatorname{trace}\left(\Delta_{j}\right)=\varepsilon \operatorname{trace}(A)$. Hence:

$$
\gamma_{+}(A) \leq(1-\varepsilon) \liminf _{j} \gamma_{+}\left(B_{j}\right)+\varepsilon \operatorname{trace}(A)
$$

Since $\varepsilon>0$ is arbitrary, it follows $\gamma_{+}(A) \leq \liminf \gamma_{j} \gamma_{+}\left(B_{j}\right)$.
The inequality $\lim \sup _{j} \gamma_{+}\left(B_{j}\right) \leq \gamma_{+}(A)$ follows from Lemma L 2 similarly. This ends the proof of continuity. \square

Thank you!

Thank you for listening! HAPPY BIRTHDAY HANS!

