Low-rank matrix estimation and rank-one matrix decompositions: when nonlinear analysis meets statistics

Radu Balan

Department of Mathematics, CSCAMM and NWC University of Maryland, College Park, MD

March 8, 2018 Communication, Control & Signal Processing Seminar

(日) (四) (문) (문) (문)

"This material is based upon work partially supported by the National Science Foundation under Grant No. DMS-1413249, and ARO under grant W911NF-16-1-0008. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation."

Table of Contents:

- Framework
- 2 \hat{H} Metric Space
- 3 BiLipschitz PR
- Proofs
- 5 Matrix Distances
- 6 BiLipschitz QT
- Matrix Decompositions

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

GIVEN: We are given a set of measurements $y = (y_k)_k$ associated to a positive semidefinite matrix $X = X^* \ge 0$.

WANT: We want to estimate/reconstruct the operator X from these measurements.

3

(日)

GIVEN: We are given a set of measurements $y = (y_k)_k$ associated to a positive semidefinite matrix $X = X^* \ge 0$.

WANT: We want to estimate/reconstruct the operator X from these measurements.

Different variations of this problem assume different hypotheses:

э

GIVEN: We are given a set of measurements $y = (y_k)_k$ associated to a positive semidefinite matrix $X = X^* \ge 0$.

WANT: We want to estimate/reconstruct the operator X from these measurements.

Different variations of this problem assume different hypotheses:

- "CMNS" angle: Phase Retrieval, Quantum Tomography
- "School of Engineering" angle: Source separation/estimation problems

э

GIVEN: We are given a set of measurements $y = (y_k)_k$ associated to a positive semidefinite matrix $X = X^* \ge 0$.

WANT: We want to estimate/reconstruct the operator X from these measurements.

Different variations of this problem assume different hypotheses:

- "CMNS" angle: Phase Retrieval, Quantum Tomography
- "School of Engineering" angle: Source separation/estimation problems

Problems to consider:

- What do we measure (model) ?
- What do we know about X (prior) ?
- How do we want to estimate X (principle) ?

Framework	\hat{H} Metric Space	BiLipschitz - PR	Proofs	Matrix Distances	BiLipschitz QT	Decompositi
0000000			000000000000000000000000000000000000000			

Phase Retrieval X-Ray Chrystallography

 $I(k) = C \left| \int e^{2\pi i \langle k, r \rangle} \rho(r) dr \right|^2$ Unknown: ρ , the electron density. Measurement: I(k), diffraction pattern intensity at wavevector k.

(from http://en.wikipedia.org/wiki/X-ray_crystallography)

Framework	\hat{H} Metric Space	BiLipschitz - PR	Proofs	Matrix Distances	BiLipschitz QT	Decompositi
0000000						

Phase Retrieval X-Ray Chrystallography

² Unknown: ρ , the electron density. Measurement: I(k), diffraction pattern intensity at wavevector k. Discretized form, $\rho \mapsto x$, $I \mapsto y$:

(from http://en.wikipedia.org/wiki/X-ray_crystallography)

Framework	\hat{H} Metric Space	BiLipschitz - PR	Proofs	Matrix Distances	BiLipschitz QT	Decomposit
0000000						

Phase Retrieval X-Ray Chrystallography

² Unknown: ρ , the electron density. Measurement: I(k), diffraction pattern intensity at wavevector k. Discretized form, $\rho \mapsto x$, $I \mapsto y$:

$$y_k = \left| \sum_{j=1}^n \Delta r \ e^{2\pi i \omega_k r_j} x_j \right|^2.$$

Abstract form:

(from http://en.wikipedia.org/wiki/X-ray_crystallography)

 $y_k = |\langle x, f_k \rangle|^2$, $1 \le k \le m$.

Quantum Mechanics:

• Observables are represented by self-adjoint operators, e.g. position x, momentum $P = i\hbar \frac{d}{dx}$, spin Σ , energy H, total angular momentum J, etc.

э

Quantum Mechanics:

- Observables are represented by self-adjoint operators, e.g. position x, momentum $P = i\hbar \frac{d}{dx}$, spin Σ , energy H, total angular momentum J, etc.
- Quantum States: Two types: pure states, associated to a wave function Ψ. Mixed states, denoted M.

Quantum theory postulates that, in a *pure state* Ψ , an observable, say Σ , may take one of the values in its spectrum, say s, with probability $p_{\Sigma}(s) = |\langle \Psi, f_s \rangle|^2$, where f_s is the normalized eigenfunction $\Sigma f_s = sf_s$. In particular, the average (expected value) of Σ is

$$\mathbb{E}[\Sigma] = \sum sp_{\Sigma}(s) = \langle \Sigma \Psi, \Psi \rangle$$

Quantum Mechanics:

- Observables are represented by self-adjoint operators, e.g. position x, momentum $P = i\hbar \frac{d}{dx}$, spin Σ , energy H, total angular momentum J, etc.
- Quantum States: Two types: pure states, associated to a wave function Ψ . Mixed states, denoted M.

Quantum theory postulates that, in a *pure state* Ψ , an observable, say Σ , may take one of the values in its spectrum, say s, with probability $p_{\Sigma}(s) = |\langle \Psi, f_s \rangle|^2$, where f_s is the normalized eigenfunction $\Sigma f_s = sf_s$. In particular, the average (expected value) of Σ is

$$\mathbb{E}[\Sigma] = \sum \textit{sp}_{\Sigma}(s) = \langle \Sigma \Psi, \Psi \rangle = \textit{trace}(\Sigma \Psi \Psi^*).$$

Quantum Mechanics:

- Observables are represented by self-adjoint operators, e.g. position x, momentum $P = i\hbar \frac{d}{dx}$, spin Σ , energy H, total angular momentum J, etc.
- Quantum States: Two types: pure states, associated to a wave function Ψ . Mixed states, denoted M.

Quantum theory postulates that, in a *pure state* Ψ , an observable, say Σ , may take one of the values in its spectrum, say s, with probability $p_{\Sigma}(s) = |\langle \Psi, f_s \rangle|^2$, where f_s is the normalized eigenfunction $\Sigma f_s = sf_s$. In particular, the average (expected value) of Σ is

$$\mathbb{E}[\Sigma] = \sum \textit{sp}_{\Sigma}(s) = \langle \Sigma \Psi, \Psi \rangle = \textit{trace}(\Sigma \Psi \Psi^*).$$

In a mixed state M, the expectation is replaced with $\mathbb{E}[\Sigma] = trace(M\Sigma)$.

Quantum Tomography Problem

Given a quantum system in (mixed) quantum state M, and a set of observables Y_1, \dots, Y_m that can be measured simultaneously, assume we know

$$y_k = trace(MY_k)$$
, $1 \le k \le m$.

The problem is to estimate (compute) the PSD M that has to satisfy additionally trace(M) = 1.

Quantum Tomography Problem

Given a quantum system in (mixed) quantum state M, and a set of observables Y_1, \dots, Y_m that can be measured simultaneously, assume we know

$$y_k = trace(MY_k)$$
, $1 \le k \le m$.

The problem is to estimate (compute) the PSD M that has to satisfy additionally trace(M) = 1.

To make this problem more tractable we shall assume rank(M) is small. (*M* has low rank)

Framework 0000●000	Ĥ Metric Space	BiLipschitz - PR	Proofs 00000000000000000000000000000000000	Matrix Distances	BiLipschitz QT	Decomposit i
Setup						

Notations

 $H = \mathbb{R}^n$ or $H = \mathbb{C}^n$, finite dimensional Euclidean space.

•
$$Sym(\mathbb{R}^n) = \{T \in \mathbb{R}^{n \times n}, T = T^T\}$$
 or
 $Sym(\mathbb{C}^n) = \{T \in \mathbb{C}^{n \times n}, T = T^*\}$

• Convex cone of PSD: $Sym^+(H) = \{T \in Sym(H), T = T^* \ge 0\}$

(日)

3

Framework	\hat{H} Metric Space	BiLipschitz - PR	Proofs	Matrix Distances	BiLipschitz QT	Decompositi
00000000						

Setup Notations

 $H = \mathbb{R}^n$ or $H = \mathbb{C}^n$, finite dimensional Euclidean space.

•
$$Sym(\mathbb{R}^n) = \{T \in \mathbb{R}^{n \times n}, T = T^T\}$$
 or
 $Sym(\mathbb{C}^n) = \{T \in \mathbb{C}^{n \times n}, T = T^*\}$

- Convex cone of PSD: $Sym^+(H) = \{T \in Sym(H) , T = T^* \ge 0\}$
- Quantum states: $St(H) = \{T \in Sym^+(H) , trace(T) = 1\}$
- Cone of mixed signatures matrices:

 $S^{p,q}$ { $T \in Sym(H)$, T has at most p positive and q negative eigenvalu

◆ロ ▶ ◆母 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへで

In particular $\mathcal{S}^{1,0} = \{xx^* \ , \ x \in H\}$, set of rank (at most) one PSDs.

• Low-rank quantum states $St^r(H) = \{T \in Sym^+(H) , trace(T) = 1, rank(T) \le r\}$

Problem Formulation Models

Measurement maps:

$$\alpha: Sym^{+}(H) \to \mathbb{R}^{m} , \quad (\alpha(X))_{k} = \sqrt{trace(XF_{k})}$$
$$\beta: Sym^{+}(H) \to \mathbb{R}^{m} , \quad (\beta(X))_{k} = trace(XF_{k})$$
where $F_{1}, \dots, F_{m} \in Sym^{+}(H)$ are fixed PSD matrices.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

3

Problem Formulation Models

Measurement maps:

$$lpha: Sym^+(H)
ightarrow \mathbb{R}^m$$
 , $(lpha(X))_k = \sqrt{trace(XF_k)}$

$$\beta: Sym^+(H) \to \mathbb{R}^m$$
, $(\beta(X))_k = trace(XF_k)$

where $F_1, \dots, F_m \in Sym^+(H)$ are fixed PSD matrices.

Prior Information: Assume the unknown matrix X belongs to a class of PSD matrices S:

• Phase Retrieval: $S = S^{1,0} = \{xx^*, x \in H\}.$

• Quantum Tomography:

$$\mathcal{S} = St^r(H) = \{X = X^* \geq 0 \ , \ trace(X) = 1 \ , \ rank(X) \leq r\}.$$

3

Problem Formulation Models

Measurement maps:

$$lpha : Sym^+(H) o \mathbb{R}^m$$
, $(lpha(X))_k = \sqrt{trace(XF_k)}$

$$\beta: Sym^+(H) \to \mathbb{R}^m$$
, $(\beta(X))_k = trace(XF_k)$

where $F_1, \dots, F_m \in Sym^+(H)$ are fixed PSD matrices.

Prior Information: Assume the unknown matrix X belongs to a class of PSD matrices S:

- Phase Retrieval: $\mathcal{S} = \mathcal{S}^{1,0} = \{xx^* \ , \ x \in H\}.$
- Quantum Tomography:

$$\mathcal{S} = St^r(H) = \{X = X^* \ge 0 \ , \ \textit{trace}(X) = 1 \ , \ \textit{rank}(X) \le r\}.$$

Matrix Estimation Problem: Estimate X given $y = \alpha(X) + \nu$ or $y = \beta(X) + \nu$ and knowing à priorly that $X \in S$.

Problem Formulation The phase retrieval problem

• Hilbert space $H = \mathbb{C}^n$, $\hat{H} = H/T^1$, frame $\mathcal{F} = \{f_1, \cdots, f_m\} \subset \mathbb{C}^n$ and

$$\alpha: \hat{H} \to \mathbb{R}^m$$
, $\alpha(x) = (|\langle x, f_k \rangle|)_{1 \le k \le m}$.

$$\beta: \hat{H} \to \mathbb{R}^m$$
, $\beta(x) = \left(|\langle x, f_k \rangle|^2 \right)_{1 \le k \le m}$

The frame is said *phase retrievable* (or that it gives phase retrieval) if α (or β) is injective.

 The general phase retrieval problem a.k.a. phaseless reconstruction: Decide when a given frame is phase retrievable, and, if so, find an algorithm to recover x from y = α(x) (or from y = β(x)) up to a global phase factor.

Problem Formulation Lipschitz Reconstruction

Assume \mathcal{F} is phase retrievable. Our Problems Today:

- Are the nonliner maps α, β bi-Lipschitz with respect to appropriate metrics?
- 2 Do they admit left inverses that are globally Lipschitz?
- What are the Lipschitz constants? What is the structure of local Lipschitz bounds?
- What is the average performance of any reconstruction scheme (Cramer-Rao Lower Bounds)?
- 1-3: Worst Case Performance
- 4: Average Case Performance

Metric Space Structures on \hat{H} Topological Structures

Let $H = \mathbb{C}^n$. The quotient space $\hat{H} = \mathbb{C}^n/T^1$, with classes induced by $x \sim y$ if there is real φ with $x = e^{i\varphi}y$. Topologically:

$$\hat{\mathbb{C}}^n = \{0\} \cup \left((0,\infty) \times \mathbb{CP}^{n-1}\right)$$

with

$$\mathring{\mathbb{C}^n} = \hat{\mathbb{C}^n} \setminus \{0\} = (0,\infty) \times \mathbb{CP}^{n-1}$$

a real analytic manifold of real dimension 2n - 1. Another embedding is into the space of symmetric matrices $Sym(\mathbb{C}^n)$. Specifically let

 $\mathcal{S}^{p,q}(H) = \{T \in Sym(H), T \text{ has at most } p \text{ pos.eigs. and } q \text{ neg.eigs}\}$

Then:

$$\kappa_{\beta}: \hat{H} \to \mathcal{S}^{1,0}$$
, $\hat{x} \mapsto = xx^*$, is an embedding.

Metric Space Structures on \hat{H} The matrix norm-induced metric structure

Fix $1 \le p \le \infty$. The matrix-norm induced distance

$$d_{p}: \hat{H} \times \hat{H} \to \mathbb{R} \ , \ d_{p}(\hat{x}, \hat{y}) = \|xx^{*} - yy^{*}\|_{p}$$

with the *p*-norm of the singular values. In the case p = 2 we obtain

$$d_2(x,y) = \sqrt{\|x\|^4 + \|y\|^4 - 2|\langle x, y \rangle|^2}$$

Lemma (BZ15)

• $(d_p)_{1 \le p \le \infty}$ are equivalent metrics and the identity map $i : (\hat{H}, d_p) \to (\hat{H}, d_q), i(x) = x$ has Lipschitz constant

$$Lip_{p,q,n}^{d} = \max(1, 2^{\frac{1}{q} - \frac{1}{p}}).$$

Control The metric space (\hat{H}, d_p) is isometrically isomorphic to $S^{1,0}$ endowed with the p-norm via $\kappa_{\beta} : \hat{H} \to S^{1,0}$, $x \mapsto \kappa_{\beta}(x) = xx^*$. Radu Balan (UMD) Lipschitz, Cramer-Rao, Grothendieck

Metric Space Structures The natural metric structure

Fix $1 \le p \le \infty$. The natural metric

$$D_{p}: \hat{H} imes \hat{H}
ightarrow \mathbb{R} \ , \ D_{p}(\hat{x}, \hat{y}) = \min_{arphi} \|x - e^{iarphi}y\|_{p}$$

with the usual *p*-norm on \mathbb{C}^n . In the case p = 2 we obtain

$$D_2(\hat{x},\hat{y}) = \sqrt{\|x\|^2 + \|y\|^2 - 2|\langle x,y
angle|}$$

Lemma (BZ15)

• $(D_p)_{1 \le p \le \infty}$ are equivalent metrics and the identity map $i : (\hat{H}, D_p) \to (\hat{H}, D_q), i(x) = x$ has Lipschitz constant

$$Lip_{p,q,n}^{D} = \max(1, n^{\frac{1}{q} - \frac{1}{p}}).$$

2 The metric space (\hat{H}, D_2) is Lipschitz isomorphic to $\mathcal{S}^{1,0}$ endowed with the 2-norm via $\kappa_{\alpha} : \hat{H} \to \mathcal{S}^{1,0}$, $x \mapsto \kappa_{\alpha}(x) = \frac{1}{\|x\|} x x^*$.

Metric Space Structures Distinct Structures

Two different structures: topologically equivalent, BUT the metrics are NOT equivalent:

Lemma (BZ15)

The identity map $i : (\hat{H}, D_p) \to (\hat{H}, d_p), i(x) = x$ is continuous but it is not Lipschitz continuous. Likewise, the identity map $i : (\hat{H}, d_p) \to (\hat{H}, D_p), i(x) = x$ is continuous but it is not Lipschitz continuous. Hence the induced topologies on (\hat{H}, D_p) and (\hat{H}, d_p) are the same, but the corresponding metrics are not Lipschitz equivalent.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Main Results Lipschitz inversion: α

Theorem (BZ15)

Assume \mathcal{F} is a phase retrievable frame for H. Then:

The map α : (Ĥ, D₂) → (ℝ^m, || · ||₂) is bi-Lipschitz. Let √A₀, √B₀ denote its Lipschitz constants: for every x, y ∈ H:

$$A_0 \min_{\varphi} \left\| x - e^{i\varphi} y \right\|_2^2 \leq \sum_{k=1}^m \left\| \langle x, f_k \rangle \right\| - \left\| \langle y, f_k \rangle \right\|^2 \leq B_0 \min_{\varphi} \left\| x - e^{i\varphi} y \right\|_2^2.$$

2 There is a Lipschitz map $\omega : (\mathbb{R}^m, \|\cdot\|_2) \to (\hat{H}, D_2)$ so that: (i) $\omega(\alpha(x)) = x$ for every $x \in \hat{H}$, and (ii) its Lipschitz constant is $Lip(\omega) \leq \frac{4+3\sqrt{2}}{\sqrt{A_0}} = \frac{8.24}{\sqrt{A_0}}.$

くロト く得ト くほト くほとう

э

Main Results Lipschitz inversion: β

Theorem (BZ15)

Assume \mathcal{F} is a phase retrievable frame for H. Then:

• The map $\beta : (\hat{H}, d_1) \to (\mathbb{R}^m, \|\cdot\|_2)$ is bi-Lipschitz. Let $\sqrt{a_0}, \sqrt{b_0}$ denote its Lipschitz constants: for every $x, y \in H$:

$$a_0 \|xx^* - yy^*\|_1^2 \le \sum_{k=1}^m \left| |\langle x, f_k
angle|^2 - |\langle y, f_k
angle|^2 \le b_0 \|xx^* - yy^*\|_1^2.$$

2 There is a Lipschitz map $\psi : (\mathbb{R}^m, \|\cdot\|_2) \to (\hat{H}, d_1)$ so that: (i) $\psi(\beta(x)) = x$ for every $x \in \hat{H}$, and (ii) its Lipschitz constant is $Lip(\psi) \leq \frac{4+3\sqrt{2}}{\sqrt{a_0}} = \frac{8.24}{\sqrt{a_0}}.$

< ロ > < 同 > < 回 > < 回 > .

э

Framewo 000000	ork <i>Ĥ</i> Metric Space	BiLipschitz - PR	Proofs	Matrix Distances	BiLipschitz QT 00	Decomposit i
Mai	n Results					

Statistical models

• A general noisy measurement process is given by:

$$y_k = |\langle x, f_k \rangle + \mu_k|^p + \nu_k \ , \ 1 \le k \le m,$$

where $(\mu_k)_k, (\nu_k)_k$ are two noise processes.

э

3 D (3 D)

Framework	\hat{H} Metric Space	BiLipschitz - PR	Proofs	Matrix Distances	BiLipschitz QT	Decomposit
		0000000				

Main Results Statistical models

• A general noisy measurement process is given by:

$$y_k = |\langle x, f_k \rangle + \mu_k |^p + \nu_k \ , \ 1 \le k \le m,$$

where $(\mu_k)_k, (\nu_k)_k$ are two noise processes.

• AWGN Model: $\mu_k = 0$, p = 2 and $\nu_k \sim \mathbb{N}(0, \sigma^2)$ i.i.d.

$$y_k = |\langle x, f_k \rangle|^2 + \nu_k$$
, $1 \le k \le m$.

Framework \hat{H} Metric Space	BiLipschitz - PR	Proofs	Matrix Distances	BiLipschitz QT	Decomposit
	0000000				

Main Results Statistical models

• A general noisy measurement process is given by:

$$y_k = |\langle x, f_k \rangle + \mu_k |^p + \nu_k \quad , \quad 1 \le k \le m,$$

where $(\mu_k)_k, (\nu_k)_k$ are two noise processes.

• AWGN Model: $\mu_k = 0$, p = 2 and $\nu_k \sim \mathbb{N}(0, \sigma^2)$ i.i.d.

$$y_k = |\langle x, f_k \rangle|^2 + \nu_k$$
, $1 \le k \le m$.

• Non-AWGN Model: $\mu_k \sim \mathbb{CN}(0, \rho^2)$, i.i.d. and $\nu_k = 0$, $y_k = |\langle x, f_k \rangle + \mu_k |^p$, $1 \le k \le m$.

00000000 0000 00000000 00000000000000	Framework	\hat{H} Metric Space	BiLipschitz - PR	Proofs	Matrix Distances	BiLipschitz QT	Decomposit
			0000000	000000000000000000000000000000000000000			

Main Results Statistical models

• A general noisy measurement process is given by:

$$y_k = |\langle x, f_k \rangle + \mu_k |^p + \nu_k \ , \ 1 \le k \le m,$$

where $(\mu_k)_k, (\nu_k)_k$ are two noise processes.

• AWGN Model: $\mu_k = 0$, p = 2 and $\nu_k \sim \mathbb{N}(0, \sigma^2)$ i.i.d.

$$y_k = |\langle x, f_k \rangle|^2 + \nu_k$$
, $1 \le k \le m$.

• Non-AWGN Model: $\mu_k \sim \mathbb{CN}(0, \rho^2)$, i.i.d. and $\nu_k = 0$,

$$y_k = |\langle x, f_k \rangle + \mu_k|^p$$
, $1 \le k \le m$.

Want:

- 1) Fisher Information Matrix $\mathbb{I} = \mathbb{E} \left[(\nabla_x \log p(y; x)) (\nabla_x \log p(y; x))^* \right].$
- 2) Cramer-Rao Lower Bounds for unbiased estimators.

Radu Balan (UMD)

Framework	\hat{H} Metric Space	BiLipschitz - PR	Proofs	Matrix Distances	BiLipschitz QT	Decompositi
		0000000				

Main Results Fisher Information Matrix

$$\mathbb{I}^{AWGN,real}(x) = \frac{4}{\sigma^2} \sum_{k=1}^m |\langle x, f_k \rangle|^2 f_k f_k^T = \frac{4}{\sigma^2} \sum_{k=1}^m (f_k f_k^T) x x^T (f_k f_k^T)$$
[Bal12].

<ロト < 同ト < 回ト < ヨト

æ

Framework	\hat{H} Metric Space	BiLipschitz - PR	Proofs	Matrix Distances	BiLipschitz QT	Decompositi
		0000000				

Main Results Fisher Information Matrix

$$\mathbb{I}^{AWGN,real}(x) = \frac{4}{\sigma^2} \sum_{k=1}^m |\langle x, f_k \rangle|^2 f_k f_k^T = \frac{4}{\sigma^2} \sum_{k=1}^m (f_k f_k^T) x x^T (f_k f_k^T)$$
[Bal12].
$$\mathbb{I}^{AWGN,cplx}(x) = \frac{4}{\sigma^2} \sum_{k=1}^m \Phi_k \xi \xi^* \Phi_k$$
[Bal13, BCMN13].

<ロト < 同ト < 回ト < ヨト

æ

Framework	\hat{H} Metric Space	BiLipschitz - PR	Proofs	Matrix Distances	BiLipschitz QT	Decompositi
		0000000				

Main Results Fisher Information Matrix

$$\mathbb{I}^{AWGN,real}(x) = \frac{4}{\sigma^2} \sum_{k=1}^m |\langle x, f_k \rangle|^2 f_k f_k^T = \frac{4}{\sigma^2} \sum_{k=1}^m (f_k f_k^T) x x^T (f_k f_k^T)$$
[Bal12].

$$\mathbb{I}^{AWGN,cplx}(x) = \frac{4}{\sigma^2} \sum_{k=1}^m \Phi_k \xi \xi^* \Phi_k$$
[Bal13, BCMN13].

$$\mathbb{I}^{nonAWGN,cplx}(x) = \frac{4}{\rho^4} \sum_{k=1}^m \left(G_1 \left(\frac{\langle \Phi_k \xi, \xi \rangle}{\rho^2} \right) - 1 \right) \Phi_k \xi \xi^* \Phi_k$$

$$= \frac{4}{\rho^2} \sum_{k=1}^m G_2 \left(\frac{\langle \Phi_k \xi, \xi \rangle}{\rho^2} \right) \frac{1}{\langle \Phi_k \xi, \xi \rangle} \Phi_k \xi \xi^* \Phi_k$$
[Bal15].

where

$$G_1(a) = \frac{e^{-a}}{8a^3} \int_0^\infty \frac{l_1^2(t)}{l_0(t)} t^3 e^{-\frac{t^2}{4a}} dt \quad , \quad G_2(a) = a(G_1(a) - 1).$$
Framework	\hat{H} Metric Space	BiLipschitz - PR	Proofs	Matrix Distances	BiLipschitz QT	Decompositi
		00000000				

Main Results AWGN vs. non-AWGN: Comparisons and Identifiability

Let B be the frame upper bound.

$$\begin{array}{l} \mathsf{Lemma} \\ \\ \frac{\sigma^2}{\rho^4} \left(G_1(\frac{B \|x\|^2}{\rho^2}) - 1 \right) \mathbb{I}^{AWGN, cplx}(x) \leq \mathbb{I}^{nonAWGN, cplx}(x) \leq \frac{\sigma^2}{\rho^4} \mathbb{I}^{AWGN, cplx}(x) \end{array}$$

Main Results AWGN vs. non-AWGN: Comparisons and Identifiability

Let B be the frame upper bound.

Lemma

$$\frac{\sigma^2}{\rho^4} \left(G_1(\frac{B\|x\|^2}{\rho^2}) - 1 \right) \mathbb{I}^{AWGN, cplx}(x) \leq \mathbb{I}^{nonAWGN, cplx}(x) \leq \frac{\sigma^2}{\rho^4} \mathbb{I}^{AWGN, cplx}(x)$$

Theorem

The following are equivalent:

1 The frame \mathcal{F} is phase retrievable;

2 For every $0 \neq x \in \mathbb{C}^n$, $rank(\mathbb{I}^{nonAWGN, cplx}(x)) = 2n - 1$;

3 For every $0 \neq x \in \mathbb{C}^n$, $rank(\mathbb{I}^{AWGN, cplx}(x)) = 2n - 1$;

< ロ > < 同 > < 回 > < 回 > < 回 > <

э

Framework	\hat{H} Metric Space	BiLipschitz - PR	Proofs	Matrix Distances	BiLipschitz QT	Decomposit
		00000000				

Main Results The Cramer-Rao Lower Bound

Fix
$$z_0 \in \mathbb{C}^n$$
, $||z_0|| = 1$, let $\zeta_0 = [real(z_0) \ imag(z_0)]^T$ and set
$$\Omega_{z_0} = \{\xi \in \mathbb{R}^{2n} , \ \langle \xi, \zeta_0 \rangle) \ge 0, \langle \xi, J\zeta_0 \rangle) = 0\}.$$

Let $\Pi_{z_0} = 1 - J\zeta_0\zeta_0^*J^*$ with J the symplectic form matrix. Theorem

Assume a measurement model $y_k = |\langle x, f_k \rangle + \mu_k|^p + \nu_k$ with $\xi = [real(x) imag(x)]^T \in \mathring{\Omega}_{z_0}$. Then the covariance of any unbiased estimator $\omega : \mathbb{R}^m \to \mathbb{C}^n$ is bounded below by

 $Cov[\omega(y);\xi] \geq (\prod_{z_0} \mathbb{I}(\xi) \prod_{z_0})^{\dagger}.$

If one chooses the global phase so that $\langle \omega(y), x \rangle \geq 0$ $(z_0 = x)$ then:

 $Cov[\omega(y);\xi] \geq (\mathbb{I}(\xi))^{\dagger}$.

イロト 不得 トイヨト イヨト 二日

Framework	\hat{H} Metric Space	BiLipschitz - PR	Proofs	Matrix Distances	BiLipschitz QT	Decomposit
		00000000				

Main Results The Cramer-Rao Lower Bound

Fix
$$z_0 \in \mathbb{C}^n$$
, $||z_0|| = 1$, let $\zeta_0 = [real(z_0) \ imag(z_0)]^T$ and set
 $\Omega_{z_0} = \{\xi \in \mathbb{R}^{2n}, \ \langle \xi, \zeta_0 \rangle) \ge 0, \langle \xi, J\zeta_0 \rangle) = 0\}.$

Let $\Pi_{z_0} = 1 - J\zeta_0\zeta_0^*J^*$ with J the symplectic form matrix. Theorem

Assume a measurement model $y_k = |\langle x, f_k \rangle + \mu_k|^p + \nu_k$ with $\xi = [real(x) \ imag(x)]^T \in \mathring{\Omega}_{z_0}$. Then the covariance of any unbiased estimator $\omega : \mathbb{R}^m \to \mathbb{C}^n$ is bounded below by

 $Cov[\omega(y);\xi] \geq (\prod_{z_0} \mathbb{I}(\xi) \prod_{z_0})^{\dagger}.$

If one chooses the global phase so that $\langle \omega(y), x \rangle \ge 0$ ($z_0 = x$) then:

 $Cov[\omega(y);\xi] \geq (\mathbb{I}(\xi))^{\dagger}$.

Is this the optimal bound?

イロト 不得 トイヨト イヨト 二日

Framework	\hat{H} Metric Space	BiLipschitz - PR	Proofs	Matrix Distances	BiLipschitz QT	Decomposit
		00000000				

Main Results Prior Works

Prior literature:

2012: B.: Cramer-Rao lower bound in the real case;
 Eldar&Mendelson : map α in the real case

$$\|\alpha(x) - \alpha(y)\| \ge C \|x - y\| \|x + y\|.$$

- 2013: Bandeira, Cahill, Mixon, Nelson: improved the estimate of C.
 B.: β bi-Lipschitz in real and complex case.
- 2014: B.&Yang: Find the exact Lipschitz constant for α in the real case the constants A₀, B₀; B.&Z.:constructed a Lipschitz left inverse for β.
- 2015: B.&Z.: Proved α is bi-Lipschitz in the complex case; constructed a Lipschitz left inverse. B.: lower Lipschitz constant A₀ connected to CRLB of a non-AWGN model.

Framework	\hat{H} Metric Space	BiLipschitz - PR	Proofs	Matrix Distances	BiLipschitz QT	Decompositi
		0000000				

Main Results Key relationship between deterministic and stochastic bounds

The central object: $\mathcal{R}(\xi) = \sum_{k=1}^{m} \Phi_k \xi \xi^T \Phi_k$.

3

글 🖌 🖌 글 🕨

Image: A matrix and a matrix

Framework	\hat{H} Metric Space	BiLipschitz - PR	Proofs	Matrix Distances	BiLipschitz QT	Decompositi
		0000000				

Main Results Key relationship between deterministic and stochastic bounds

The central object: $\mathcal{R}(\xi) = \sum_{k=1}^{m} \Phi_k \xi \xi^T \Phi_k$. The lower Lipschitz bound for β map is:

$$a_0 = \min_{\|\xi\|=1} \lambda_{2n-1}(\mathcal{R}(\xi)).$$

The Fisher information matrix for the AWGN model:

$$\mathbb{I}^{AWGN,cplx}(x) = \frac{4}{\sigma^2}\mathcal{R}(\xi).$$

Framework	\hat{H} Metric Space	BiLipschitz - PR	Proofs	Matrix Distances	BiLipschitz QT	Decomposit
		0000000				

Main Results Key relationship between deterministic and stochastic bounds

The central object: $\mathcal{R}(\xi) = \sum_{k=1}^{m} \Phi_k \xi \xi^T \Phi_k$. The lower Lipschitz bound for β map is:

$$a_0 = \min_{\|\xi\|=1} \lambda_{2n-1}(\mathcal{R}(\xi)).$$

The Fisher information matrix for the AWGN model:

$$\mathbb{I}^{AWGN,cplx}(x) = \frac{4}{\sigma^2}\mathcal{R}(\xi).$$

Best inversion scheme ψ that is lossless in the absence of noise achieves:

$$d_1(\psi(c),\psi(d))^2 \leq rac{68}{a_0} \|c-d\|_2^2.$$

An efficient estimator (i.e. unbiased that achieves CRLB) ω^0 achieves:

$$\mathbb{E}\left[\left\|\omega^{0}(y)-x\right\|_{2}^{2};x\right] \leq \frac{(2n-1)\sigma^{2}}{4a_{0}\|x\|^{2}} = \frac{2n-1}{4a_{0}SNR}.$$

Framework	Ĥ Metric Space	BiLipschitz - PR	Proofs • oooooooooooooooooooooooooooooooooooo	Matrix Distances	BiLipschitz QT	Decompositi 000
Proof	S					

Deterministic bounds: The proofs involve several steps (details in [BZ15]).

- Part 1: Injectivity → bi-Lipschitz: Upper bounds are not too hard; lower bounds: relatively easy for β (the "square" map), but relatively hard for α.
- **2** Part 2: Left inverse construction is done in three steps:
 - The left inverse is first extended to ℝ^m into Sym(H) using Kirszbraun's theorem;
 - **2** Then we show that $S^{1,0}(H)$ is a Lipschitz retract in Sym(H);
 - The proof is concluded by composing the two maps.

The stochastic bounds: Direct computations and a bit of luck! [Bal15]

Framework Ĥ	Metric Space	BiLipschitz - PR	Proofs	Matrix Distances	BiLipschitz QT	Decomposit
			000000000000000000000000000000000000000			

Proofs Part 1a: Bi-Lipschitzianity of α

$$\alpha: \hat{H} \to \mathbb{R}^m$$
, $\alpha(x) = (|\langle x, f_k \rangle|)_{1 \le k \le m}$

The homogeneity of α shows that

$$L(x,y) = \frac{\|\alpha(x) - \alpha(y)\|}{D_{\rho}(x,y)}$$

is homogeneous of degree 0: L(tx, ty) = L(x, y), for every t > 0. This reduces the problem to the unit ball: $1 = ||x|| \ge ||y||$. The upper bound was computed in [BCMN13]:

$$\sup_{x \neq y} \frac{\|\alpha(x) - \alpha(y)\|^2}{D_2(x, y)^2} = B \text{ (upper frame bound)}.$$

Framework	\hat{H} Metric Space	BiLipschitz - PR	Proofs	Matrix Distances	BiLipschitz QT	Decomposit
			000000000000000000000000000000000000000			

Proofs Part 1a: Bi-Lipschitzianity of α - cont'd

A compactness argument shows the lower bound is positive if and only if the local lower bound is positive:

$$\inf_{\|z\|=1} \lim_{r \to 0} \inf_{\substack{x,y \in \hat{H} \\ D_2(x,z) < r \\ D_2(y,z) < r}} \frac{\|\alpha(x) - \alpha(y)\|_2^2}{D_2(x,y)^2} > 0.$$

This bound is computed explicitly and shown positive: Computations involve the realification framework and other delicate nonlinear expansions.

Framework \hat{H} Metric Space BiLipschitz - PR Proofs Matrix Distances BiLipschitz QT Decomposition of the second second

Proofs Part 1b: Bi-Lipschitzianity of β

Key Remark (B.Bodmann,Casazza,Edidin - 2007): The nonlinear map β is the restriction of the linear map

$$\mathbb{A}: Sym(H) \to \mathbb{R}^m \ , \ \mathbb{A}(T) = (\langle Tf_k, f_k \rangle)_{1 \le k \le m}$$

Specifically: $\beta(x) = \mathbb{A}(xx^*) = (|\langle x, f_k \rangle|^2)_{1 \le k \le m}$.

$$\begin{aligned} \|\beta(x) - \beta(y)\| &= \|\mathbb{A}(xx^*) - \mathbb{A}(yy^*)\| &= \|\mathbb{A}(xx^* - yy^*)\| \\ &= \|xx^* - yy^*\|\|\mathbb{A}\left(\frac{xx^* - yy^*}{\|xx^* - yy^*\|}\right)\| \end{aligned}$$

$$a_0 = \min_{T \in \mathcal{S}^{1,1}, \|T\|_1 = 1} \|\mathbb{A}(T)\| > 0 \ , \ b_0 = \max_{T \in \mathcal{S}^{1,1}, \|T\|_1 = 1} \|\mathbb{A}(T)\|$$

< ロ > < 同 > < 回 > < 回 > < 回 > <

э

Framework	\hat{H} Metric Space	BiLipschitz - PR	Proofs	Matrix Distances	BiLipschitz QT	Decomposit
			000000000000000000000000000000000000000			

We know $\alpha : (\hat{H}, D_2) \to (\mathbb{R}^m, \|\cdot\|_2)$ is bi-Lipschitz:

$$A_0 D_1(x,y)^2 \le \|lpha(x) - lpha(y)\|^2 \le b_0 D_2(x,y)^2$$

Let $M = \alpha(\hat{H}) \subset \mathbb{R}^m$.

Framework	\hat{H} Metric Space	BiLipschitz - PR	Proofs	Matrix Distances	BiLipschitz QT	Decomposit
			000000000000000000000000000000000000000			

First identify \hat{H} with $\mathcal{S}^{1,0}(H)$.

Framework	\hat{H} Metric Space	BiLipschitz - PR	Proofs	Matrix Distances	BiLipschitz QT	Decomposit
			000000000000000000000000000000000000000			

Then construct the local left inverse $\omega_1: M \to \hat{H}$ with $Lip(\omega_1) = \frac{1}{\sqrt{A_0}}$.

Framework	\hat{H} Metric Space	BiLipschitz - PR	Proofs	Matrix Distances	BiLipschitz QT	Decomposit
			000000000000000000000000000000000000000			

Use Kirszbraun's theorem to extend isometrically $\omega_2 : \mathbb{R}^m \to Sym(H)$.

Framework	\hat{H} Metric Space	BiLipschitz - PR	Proofs	Matrix Distances	BiLipschitz QT	Decomposit
			000000000000000000000000000000000000000			

Construct a Lipschitz "projection" $\pi : Sym(H) \rightarrow S^{1,0}(H)$.

Framework	\hat{H} Metric Space	BiLipschitz - PR	Proofs	Matrix Distances	BiLipschitz QT	Decomposit
			000000000000000000000000000000000000000			

Compose the two maps to get $\omega : \mathbb{R}^m \to S^{1,0}$, $\omega = \pi \circ \omega_2$.

Framework	\hat{H} Metric Space	BiLipschitz - PR	Proofs	Matrix Distances	BiLipschitz QT	Decomposit
			000000000000000000000000000000000000000			

We know $\beta : (\hat{H}, d_1) \rightarrow (\mathbb{R}^m, \|\cdot\|_2)$ is bi-Lipschitz:

$$a_0 d_1(x,y)^2 \le \|\beta(x) - \beta(y)\|^2 \le b_0 d_1(x,y)^2.$$

Let $M = \beta(\hat{H}) \subset \mathbb{R}^m$.

Framework	\hat{H} Metric Space	BiLipschitz - PR	Proofs	Matrix Distances	BiLipschitz QT	Decomposit
			000000000000000000000000000000000000000			

First identify \hat{H} with $\mathcal{S}^{1,0}(H)$.

Framework	\hat{H} Metric Space	BiLipschitz - PR	Proofs	Matrix Distances	BiLipschitz QT	Decomposit
			000000000000000000000000000000000000000			

Then construct the local left inverse $\psi_1: M \to \hat{H}$ with $Lip(\psi_1) = \frac{1}{\sqrt{a_0}}$.

Framework	\hat{H} Metric Space	BiLipschitz - PR	Proofs	Matrix Distances	BiLipschitz QT	Decomposit
			000000000000000000000000000000000000000			

Use Kirszbraun's theorem to extend isometrically $\psi_2 : \mathbb{R}^m \to Sym(H)$.

Framework	\hat{H} Metric Space	BiLipschitz - PR	Proofs	Matrix Distances	BiLipschitz QT	Decomposit
			000000000000000000000000000000000000000			

Construct a Lipschitz "projection" $\pi : Sym(H) \rightarrow S^{1,0}(H)$.

Framework	\hat{H} Metric Space	BiLipschitz - PR	Proofs	Matrix Distances	BiLipschitz QT	Decomposit
			000000000000000000000000000000000000000			

Compose the two maps to get $\psi : \mathbb{R}^m \to \mathcal{S}^{1,0}$, $\psi = \pi \circ \psi_2$.

Radu Balan (UMD)

Framework	\hat{H} Metric Space	BiLipschitz - PR	Proofs	Matrix Distances	BiLipschitz QT	Decomposit
			000000000000000000000000000000000000000			

Proofs Part 2: $S^{1,0}(H)$ as Lipschitz retract in Sym(H)

Lemma

Consider the spectral decomposition of the self-adjoint operator A in Sym(H), $A = \sum_{k=1}^{d} \lambda_{m(k)} P_k$. Then the map

$$\pi: Sym(H) \rightarrow S^{1,0}(H) \ , \ \pi(A) = (\lambda_1 - \lambda_2)P_1$$

satisfies the following two properties:

• for $1 \le p \le \infty$, it is Lipschitz continuous from $(Sym(H), \|\cdot\|_p)$ to $(\mathcal{S}^{1,0}(H), \|\cdot\|_p)$ with Lipschitz constant less than or equal to $3 + 2^{1+\frac{1}{p}}$;

$$a (A) = A \text{ for all } A \in \mathcal{S}^{1,0}(H).$$

Proof uses Weyl's inequality and spectral formula on a complex integration contour by Zwald & Blanchard (2006).

Last week: Wenbo Li [AMSC/UMD] proved that $Lip(\pi) = 2$, for $p = \infty_{\text{Dec}}$

Framework *Ĥ* Metric Space BiLipschitz - PR Proofs Matrix Distances BiLipschitz QT Decomposit

Assume simple top eigenvalues (otherwise the bound is immediate): $\pi(A) = (\lambda_1 - \lambda_2)P_1, \ \pi(B) = (\mu_1 - \mu_2)Q_1.$ Then:

$$\begin{aligned} \|\pi(A) - \pi(B)\|_{\rho} &\leq (\lambda_{1} - \lambda_{2})\|P_{1} - Q_{1}\|_{\rho} + |\lambda_{1} - \mu_{1}| + |\lambda_{2} - \mu_{2}| \\ &\leq (\lambda_{1} - \lambda_{2})\|P_{1} - Q_{1}\|_{\rho} + 2\|A - B\|_{\rho}. \end{aligned}$$

$$\|P_{1} - Q_{1}\|_{p} \leq \frac{1}{2\pi} \int_{I} \|(R_{A} - R_{B})(\gamma(t))\|_{p} |\gamma'(t)| dt$$

$$R_{A}(z) = (A - zI)^{-1}, R_{B}(z) = (B - zI)^{-1}.$$

$$(R_{A} - R_{B})(z) = \sum_{n \geq 1} (-1)^{n} (R_{A}(z)(B - A))^{n} R_{A}(z).$$

$$(R_{A} - R_{B})(\gamma(t))\|_{p} \leq \sum_{n \geq 1} \|R_{A}(\gamma(t))\|_{\infty}^{n+1} \|A - B\|_{p}^{n}$$

$$= \frac{\|R_{A}(\gamma(t))\|_{\infty}^{2}\|A - B\|_{p}}{1 - \|R_{A}(\gamma(t))\|_{\infty}\|A - B\|_{p}} < \frac{\|A - B\|_{p}}{dist^{2}(\gamma(t), Spec(A))} \cdot$$

Framework	\hat{H} Metric Space	BiLipschitz - PR	Proofs	Matrix Distances	BiLipschitz QT	Decomposit
			000000000000000000000000000000000000000			

Proofs Part 1: Bi-Lipschitzianity of α -cont'd

The analysis requires a deeper understanding of local behavior.

• The global lower and upper Lipschitz bounds:

$$A_{0} = \inf_{x,y \in \hat{H}} \frac{\|\alpha(x) - \alpha(y)\|_{2}^{2}}{D_{2}(x,y)^{2}} , \ B_{0} = \sup_{x,y \in \hat{H}} \frac{\|\alpha(x) - \alpha(y)\|_{2}^{2}}{D_{2}(x,y)^{2}}$$

2 The type I local lower and upper Lipschitz bounds at $z \in \hat{H}$:

$$A(z) = \lim_{r \to 0} \inf_{\substack{x, y \in \hat{H} \\ D_2(x, z) < r \\ D_2(y, z) < r}} \frac{\|\alpha(x) - \alpha(y)\|_2^2}{D_2(x, y)^2}, \ B(z) = \lim_{r \to 0} \sup_{\substack{x, y \in \hat{H} \\ D_2(x, z) < r \\ D_2(y, z) < r}} \frac{\|\alpha(x) - \alpha(y)\|_2^2}{D_2(x, y)^2}$$

③ The type II local lower and upper Lipschitz bounds at $z \in \hat{H}$:

$$\tilde{A}(z) = \lim_{r \to 0} \inf_{\substack{x \in \hat{H} \\ D_2(x,z) < r}} \frac{\|\alpha(x) - \alpha(z)\|_2^2}{D_2(x,z)^2}, \quad \tilde{B}(z) = \lim_{r \to 0} \sup_{\substack{x \in \hat{H} \\ D_2(x,z) < r}} \frac{\|\alpha(x) - \alpha(z)\|_2^2}{D_2(x,y)^2}$$

Framework	\hat{H} Metric Space	BiLipschitz - PR	Proofs	Matrix Distances	BiLipschitz QT	Decomposit
			000000000000000000000000000000000000000			

Proofs Part 1: Bi-Lipschitzianity of α -cont'd

We need to analyze the real structure of \hat{H} . Let $\varphi_1, \dots, \varphi_m, \zeta \in \mathbb{R}^{2n}$, $\Phi_1, \dots, \Phi_m \in Sym(\mathbb{R}^{2n})$, $J \in \mathbb{R}^{2n \times 2n}$ defined by:

$$\Phi_{k} = \varphi_{k}\varphi_{k}^{T} + J\varphi_{k}\varphi_{k}^{T}J^{T}, \varphi_{k} = \begin{bmatrix} real(f_{k}) \\ imag(f_{k}) \end{bmatrix}, J = \begin{bmatrix} 0 & -I_{n} \\ I_{n} & 0 \end{bmatrix}, \zeta = \begin{bmatrix} real(z) \\ imag(z) \end{bmatrix}$$

Key relations: $\langle z, f_k \rangle = \langle \zeta, \varphi_k \rangle + i \langle \zeta, J \varphi_k \rangle$, $|\langle z, f_k \rangle| = \sqrt{\langle \Phi_k \zeta, \zeta \rangle}$. Consider the following objects:

$$\begin{aligned} \mathcal{R}: \mathbb{R}^{2n} \to Sym(\mathbb{R}^{2n}) \quad , \quad \mathcal{R}(\xi) &= \sum_{k=1}^{m} \Phi_k \xi \xi^T \Phi_k \; , \; \xi \in \mathbb{R}^{2n} \\ \mathcal{S}: \mathbb{R}^{2n} \to Sym(\mathbb{R}^{2n}) \quad , \quad \mathcal{S}(\xi) &= \sum_{k: \Phi_k \xi \neq 0} \frac{1}{\langle \Phi_k \xi, \xi \rangle} \Phi_k \xi \xi^T \Phi_k \; , \; \xi \in \mathbb{R}^{2n} \end{aligned}$$

Framework	\hat{H} Metric Space	BiLipschitz - PR	Proofs	Matrix Distances	BiLipschitz QT	Decomposit
			000000000000000000000000000000000000000			

Proofs Lipschitz bounds for α

Theorem (BZ15)

Assume \mathcal{F} is phase retrievable for $H = \mathbb{C}^n$ and A, B are its optimal frame bounds. Then:

- For every $0 \neq z \in \mathbb{C}^n$, $A(z) = \lambda_{2n-1}(\mathcal{S}(\zeta))$ (the next to the smallest eigenvalue);
- 2 $A_0 = A(0) > 0;$
- For every $z \in \mathbb{C}^n$, $\tilde{A}(z) = \lambda_{2n-1} \left(S(\zeta) + \sum_{k: \langle z, f_k \rangle = 0} \Phi_k \right)$ (the next to the smallest eigenvalue);
- $\tilde{A}(0) = A$, the optimal lower frame bound;
- For every $z \in \mathbb{C}^n$, $B(z) = \tilde{B}(z) = \lambda_1 \left(S(\zeta) + \sum_{k: \langle z, f_k \rangle = 0} \Phi_k \right)$ (the largest eigenvalue);
- $B_0 = B(0) = \tilde{B}(0) = B$, the optimal upper frame bound;

Framework	\hat{H} Metric Space	BiLipschitz - PR	Proofs	Matrix Distances	BiLipschitz QT	Decomposit
			00000000000000000000000			

Proofs Lipschitz bounds for β

Theorem (cont'd)

- For every 0 ≠ z ∈ Cⁿ, a(z) = ã(z) = λ_{2n-1}(R(ζ))/||z||² (the next to the smallest eigenvalue);
- For every $0 \neq z \in \mathbb{C}^n$, $b(z) = \tilde{b}(z) = \lambda_1(\mathcal{R}(\zeta))/||z||^2$ (the largest eigenvalue);
- $a_0 = \min_{\|\xi\|=1} \lambda_{2n-1}(\mathcal{R}(\xi))$ is also the largest constant to that $\mathcal{R}(\xi) \ge a_0(\|\xi\|^2 I J\xi\xi^T J^T);$

 $\begin{array}{l} \textcircled{0} \quad b(0) = \tilde{b}(0) = b_0 = \max_{\|\xi\|=1} \lambda_1(\mathcal{R}(\xi)) \text{ is also the } 4^{th} \text{ power of the } \\ \text{frame analysis operator norm } T : (\mathbb{C}^n, \|\cdot\|_2) \to (\mathbb{R}^m, \|\cdot\|_4): \\ b_0 = \|T\|_{B(l^2, l^4)}^4 = \max_{\|x\|_2=1} \sum_{k=1}^m |\langle x, f_k \rangle|^4; \end{array}$

1 $\tilde{a}(0)$ is given by $\tilde{a}(0) = \min_{\|z\|=1} \sum_{k=1}^{m} |\langle z, f_k \rangle|^4$.

< 日 > < 同 > < 回 > < 回 > < 回 > <

э

Quantum Tomography

Let's return to the Quantum Tomography problem: Measurement maps:

$$\alpha : Sym^{+}(H) \to \mathbb{R}^{m} , \ (\alpha(X))_{k} = \sqrt{trace(XF_{k})}$$
$$\beta : Sym^{+}(H) \to \mathbb{R}^{m} , \ (\beta(X))_{k} = trace(XF_{k})$$

where $F_1, \dots, F_m \in Sym^+(H)$ are fixed PSD matrices.

3

Quantum Tomography

Let's return to the Quantum Tomography problem: Measurement maps:

$$lpha: {\it Sym}^+({\it H}) o \mathbb{R}^m \;\;,\;\; (lpha({\it X}))_k = \sqrt{{\it trace}({\it XF}_k)}$$

$$eta: Sym^+(H) o \mathbb{R}^m \ , \ (eta(X))_k = trace(XF_k)$$

where $F_1, \dots, F_m \in Sym^+(H)$ are fixed PSD matrices.

Prior Information: Assume the unknown matrix X belongs to a class of PSD matrices S:

- Phase Retrieval: $S = S^{1,0} = \{xx^*, x \in H\}.$
- Quantum Tomography: $S = St^r(H) = \{X = X^* \ge 0, trace(X) = 1, rank(X) \le r\}.$

< ロ > < 同 > < 回 > < 回 > .

Metric Structures on \hat{H} and Sym(H)Norm Induced Metric

Fix $1 \le p \le \infty$. The matrix-norm induced distance on Sym(H):

$$d_p: Sym(H) imes Sym(H)
ightarrow \mathbb{R} \ , \ d_p(X,Y) = \|X - Y\|_p,$$

the *p*-norm of the singular values. On \hat{H} it induces the metric

$$d_{p}: \hat{H} imes \hat{H}
ightarrow \mathbb{R} \;, \; d_{p}(\hat{x}, \hat{y}) = \|xx^{*} - yy^{*}\|_{p}$$

In the case p = 2 we obtain

$$d_2(X,Y) = \|X - Y\|_F^2$$
, $d_2(x,y) = \sqrt{\|x\|^4 + \|y\|^4 - 2|\langle x,y \rangle|^2}$

Metric Structures on \hat{H} and Sym(H)Natural Metric

The natural metric

$$D_{p}: \hat{H} imes \hat{H} o \mathbb{R} \ , \ D_{p}(\hat{x}, \hat{y}) = \min_{\varphi} \|x - e^{i\varphi}y\|_{p}$$

with the usual *p*-norm on \mathbb{C}^n . In the case p = 2 we obtain

$$D_2(\hat{x}, \hat{y}) = \sqrt{\|x\|^2 + \|y\|^2 - 2|\langle x, y \rangle|}$$

On $Sym^+(H)$, the "natural" metric lifts to

$$D_p: Sym^+(H) imes Sym^+(H) o \mathbb{R}$$
, $D_p(X, Y) = \min_{\substack{VV^* = X \\ WW^* = Y}} ||V - WU||_p$.

Metric Structures on Sym(H)Natural metric vs. Bures/Helinger

Let $X, Y \in Sym^+(H)$. For the natural distance we choose p = 2:

$$egin{array}{lll} D_{natural}(X,Y) = & \min_{VV^* = X} & \|V-W\|_F \ & VW^* = Y \end{array}$$

Fact:

$$D_{natural}(X,Y) = \min_{U \in U(n)} \|X^{1/2} - Y^{1/2}U\|_F = \sqrt{\operatorname{tr}(X) + \operatorname{tr}(Y) - 2\|X^{1/2}Y^{1/2}\|_1}$$

くロト く得ト くほト くほとう

3

Metric Structures on Sym(H)Natural metric vs. Bures/Helinger

Let $X, Y \in Sym^+(H)$. For the natural distance we choose p = 2:

$$D_{natural}(X, Y) = \min_{\substack{VV^* = X \\ WW^* = Y}} \|V - W\|_F$$

Fact:

$$D_{natural}(X,Y) = \min_{U \in U(n)} \|X^{1/2} - Y^{1/2}U\|_F = \sqrt{\operatorname{tr}(X) + \operatorname{tr}(Y) - 2\|X^{1/2}Y^{1/2}\|_1}$$

Another distance: Bures/Helinger distance:

$$D_{Bures}(X,Y) = \|X^{1/2} - Y^{1/2}\|_F = d_2(X^{1/2},Y^{1/2})$$

э
Metric Structures on Sym(H)Natural metric vs. Bures/Helinger

Let $X, Y \in Sym^+(H)$. For the natural distance we choose p = 2:

$$egin{array}{lll} D_{natural}(X,Y) = & \min_{VV^* = X} & \|V-W\|_F \ & VW^* = Y \end{array}$$

Fact:

$$D_{natural}(X,Y) = \min_{U \in U(n)} \|X^{1/2} - Y^{1/2}U\|_F = \sqrt{\operatorname{tr}(X) + \operatorname{tr}(Y) - 2\|X^{1/2}Y^{1/2}\|_1}$$

Another distance: Bures/Helinger distance:

$$D_{Bures}(X,Y) = \|X^{1/2} - Y^{1/2}\|_F = d_2(X^{1/2},Y^{1/2})$$

A consequence of the Arithmetic-Geometric Mean Inequality [BK00]:

$$\frac{1}{2}D_{Bures}^{2}(X,Y) \leq D_{natural}^{2}(X,Y) \leq D_{Bures}^{2}(X,Y).$$

Radu Balan (UMD)

Stability Results in Quantum Tomography Bi-Lipschitz properties of α and β on Quantum States

Fix a closed subset $S \subset Sym^+(H)$. For instance S = St(H), or $St^r(H)$, or $S^{r,0}$.

Theorem

Assume $\mathcal{F} = \{F_1, \dots, F_m\} \subset Sym^+(H)$ so that $\alpha|_S$ and $\beta|_S$ are injective. Then there are constants $a_0, A_0, b_0, B_0 > 0$ so that for every $X, Y \in S$,

$$A_0 D_{natural}^2(X,Y) \leq \sum_{k=1}^m \left| \sqrt{\langle X,F_k \rangle} - \sqrt{\langle Y,F_k \rangle} \right|^2 \leq B_0 D_{natural}^2(X,Y)$$

$$a_0 ||X - Y||_F^2 \le \sum_{k=1}^m |\langle X, F_k \rangle - \langle Y, F_k \rangle|^2 \le b_0 ||X - Y||_F^2.$$

< ロ > < 同 > < 三 > < 三 >

Next Results Lipschitz inversion of α and β on Quantum States

Consider the measurement map

$$\beta: (St^r(H), d_1) \to (\mathbb{R}^m, \|\cdot\|_2) \ , \ \beta(T) = (tr(TF_k))_{1 \le k \le m}$$

where $St^{r}(H) = \{T = T^{*} \ge 0, tr(T) = 1, rank(T) \le r\}.$

If r = n := dim(H) then $St^n(H) = St(H)$ is a compact convex set, hence a Lipschitz retract.

Conjecture: If r < n then $St^r(H)$ is not contractible hence not a Lipschitz retract.

Next Results Lipschitz inversion of α and β on Quantum States

Consider the measurement map

$$\beta: (St^r(H), d_1) \to (\mathbb{R}^m, \|\cdot\|_2) \ , \ \beta(T) = (tr(TF_k))_{1 \le k \le m}$$

where $St^{r}(H) = \{T = T^{*} \ge 0, tr(T) = 1, rank(T) \le r\}.$

If r = n := dim(H) then $St^n(H) = St(H)$ is a compact convex set, hence a Lipschitz retract.

Conjecture: If r < n then $St^r(H)$ is not contractible hence not a Lipschitz retract.

If conjecture is true, it follows that even if β is injective on rank r quantum states, it cannot admit a Lipschitz (or even continuous) left inverse defined globally on \mathbb{R}^m .

Next Results Lipschitz inversion of α and β on Quantum States

Consider the measurement map

$$\beta: (St^r(H), d_1) \to (\mathbb{R}^m, \|\cdot\|_2) \ , \ \beta(T) = (tr(TF_k))_{1 \le k \le m}$$

where $St^{r}(H) = \{T = T^{*} \ge 0, tr(T) = 1, rank(T) \le r\}.$

If r = n := dim(H) then $St^n(H) = St(H)$ is a compact convex set, hence a Lipschitz retract.

Conjecture: If r < n then $St^r(H)$ is not contractible hence not a Lipschitz retract.

If conjecture is true, it follows that even if β is injective on rank r quantum states, it cannot admit a Lipschitz (or even continuous) left inverse defined globally on \mathbb{R}^m .

A similar result should hold true for

$$\alpha: (St^r(H), D_2) \to (\mathbb{R}^m, \|\cdot\|_2) \ , \ \alpha(T) = (\sqrt{tr(TF_k)})_{1 \le k \le m}.$$

< ロ > < 同 > < 回 > < 回 > < 回 > <

Consider $A \in \mathbb{C}^{n \times n}$. We seek "optimal" decompositions of A into a sum of rank-1 operators: $A = \sum_{k} u_k v_k^*$. Assume A to be positive semi-definite: $A = A^* \ge 0$ ("covariance"). Consider the following three optimization problems:

Consider $A \in \mathbb{C}^{n \times n}$. We seek "optimal" decompositions of A into a sum of rank-1 operators: $A = \sum_{k} u_k v_k^*$. Assume A to be positive semi-definite: $A = A^* \ge 0$ ("covariance"). Consider the following three optimization problems: Criterion 1:

$$J(A) = \inf_{A = \sum_{k=1}^{m} f_k f_k^*} \sum_{k=1}^{m} \|f_k\|_1^2.$$

Consider $A \in \mathbb{C}^{n \times n}$. We seek "optimal" decompositions of A into a sum of rank-1 operators: $A = \sum_{k} u_k v_k^*$. Assume A to be positive semi-definite: $A = A^* \ge 0$ ("covariance"). Consider the following three optimization problems: Criterion 1:

$$J(A) = \inf_{A = \sum_{k=1}^{m} f_k f_k^*} \sum_{k=1}^{m} \|f_k\|_1^2.$$

Criterion 2:

$$J_{0}(A) = \inf_{A = \sum_{k=1}^{m} \epsilon_{k} f_{k} f_{k}^{*}} \sum_{k=1}^{m} \|f_{k}\|_{1}^{2}$$

where $\epsilon_k \in \{+1, -1\}$.

Consider $A \in \mathbb{C}^{n \times n}$. We seek "optimal" decompositions of A into a sum of rank-1 operators: $A = \sum_{k} u_k v_k^*$. Assume A to be positive semi-definite: $A = A^* \ge 0$ ("covariance"). Consider the following three optimization problems: Criterion 1:

$$J(A) = \inf_{A = \sum_{k=1}^{m} f_k f_k^*} \sum_{k=1}^{m} \|f_k\|_1^2.$$

Criterion 2:

$$J_0(A) = \inf_{A = \sum_{k=1}^m \epsilon_k f_k f_k^*} \sum_{k=1}^m \|f_k\|_1^2$$

where $\epsilon_k \in \{+1, -1\}$. Criterion 3:

$$J_{\wedge}(A) = \inf_{A = \sum_{k=1}^{m} f_k g_k^*} \sum_{k=1}^{m} \|f_k\|_1 \|g_k\|_1$$

3

Framework <i>H</i> Metric Space	BiLipschitz - PR	Proofs	Matrix Distances	BiLipschitz QT	Decomposit
					000

What we know

$$J_{\wedge}(A) = \min_{A = \sum_{k=1}^{m} f_k g_k^*} \sum_{k=1}^{m} \|f_k\|_1 \|g_k\|_1$$
$$J_0(A) = \min_{A = \sum_{k=1}^{m} e_k f_k f_k^*} \sum_{k=1}^{m} \|f_k\|_1^2$$
$$J(A) = \min_{A = \sum_{k=1}^{m} f_k f_k^*} \sum_{k=1}^{m} \|f_k\|_1^2.$$

Radu Balan (UMD)

▲口 ▶ ▲圖 ▶ ▲ 圖 ▶ ▲ 圖 ▶ ...

æ

Framework <i>H</i> Metric Space	BiLipschitz - PR	Proofs	Matrix Distances	BiLipschitz QT	Decomposit
					000

What we know

$$J_{\wedge}(A) = \min_{A = \sum_{k=1}^{m} f_{k}g_{k}^{*}} \sum_{k=1}^{m} \|f_{k}\|_{1} \|g_{k}\|_{1}^{*}$$
$$J_{0}(A) = \min_{A = \sum_{k=1}^{m} \epsilon_{k}f_{k}f_{k}^{*}} \sum_{k=1}^{m} \|f_{k}\|_{1}^{2}$$
$$J(A) = \min_{A = \sum_{k=1}^{m} f_{k}f_{k}^{*}} \sum_{k=1}^{m} \|f_{k}\|_{1}^{2}.$$

For every $A \in Sym^+(\mathbb{C}^n)$,

$$\sum_{i,j} |A_{i,j}| =: \|A\|_{\wedge} = J_{\wedge}(A) \le J_0(A) \le J(A) \le n \|A\|_{\wedge}$$

æ

3) (3)

An Open Problem

A remaining open problem: Is there a universal constant $C_0 > 1$ so that for any $n \ge 1$ and every positive semidefinite $A \in \mathbb{C}^{n \times n}$,

$$J(A) = \min_{A = \sum_{k=1}^{m} f_k f_k^*} \|f_k\|_1^2 \le C_0 \sum_{i,j=1}^{n} |A_{i,j}|$$
 ?

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

3

An Open Problem

A remaining open problem: Is there a universal constant $C_0 > 1$ so that for any $n \ge 1$ and every positive semidefinite $A \in \mathbb{C}^{n \times n}$,

$$J(A) = \min_{A = \sum_{k=1}^{m} f_k f_k^*} \|f_k\|_1^2 \le C_0 \sum_{i,j=1}^{n} |A_{i,j}| \quad ?$$

Why we care?

If the answer is positive, it follows that, given a trace-class positive semidefinite operator $T: f \mapsto Tf(x) = \int K(x, y)f(y)dy$ the following two statements are equivalent:

 $I K \in M^1(\mathbb{R}^2).$

2 There are functions $g_k \in M^1(\mathbb{R})$ so that

$$T = \sum_{k \ge 0} \langle \cdot, g_k \rangle g_k$$

and $\sum_{k\geq 0} \|g_k\|_{M^1}^2 < \infty$.

Source Separation Problem: Finding a linear mixing model with minimal "blinding: spots.

Radu Balan (UMD)

References

- [BCE06] R. Balan, P. Casazza, D. Edidin, On signal reconstruction without phase, Appl.Comput.Harmon.Anal. **20** (2006), 345–356.
- [BBCE07] R. Balan, B. Bodmann, P. Casazza, D. Edidin, Painless reconstruction from Magnitudes of Frame Coefficients, J.Fourier Anal.Applic., 15 (4) (2009), 488–501.
- [B12] R. Balan, Reconstruction of Signals from Magnitudes of Frame Representations, arXiv submission arXiv:1207.1134
- [B13] R. Balan, Reconstruction of Signals from Magnitudes of Redundant Representations: The Complex Case, available online arXiv:1304.1839v1, Found.Comput.Math. 2015, http://dx.doi.org/10.1007/s10208-015-9261-0
- [BW14] R. Balan and Y. Wang, Invertibility and Robustness of Phaseless Reconstruction, available online arXiv:1308.4718v1, Appl. Comp. Harm. Anal., 38 (2015), 469–488.

- [BZ14] R. Balan, D. Zou, On Lipschitz inversion of nonlinear redundant representations, to appear in Contemporary Mathematics 2015.
- [BZ15] R. Balan, D. Zou, On Lipschitz Analysis and Lipschitz Synthesis for the Phase Retrieval Problem, available online arXiv 1506.02092v1 [mathFA], 6 June 2015; to appear in Lin. Alg. and Appl. 2016.
- [Bal15] R. Balan, The Fisher Information Matrix and the Cramer-Rao Lower Bound in a Non-Additive White Gaussian Noise Model for the Phase Retrieval Problem, proceedings of SampTA 2015.
- [BCMN13] A. S. Bandeira, J. Cahill, D. Mixon, A. A. Nelson, Saving phase: Injectivity and Stability for phase retrieval, arXiv submission, arXiv: 1302.4618, Appl. Comp. Harm. Anal. 37 (1) (2014), 106–125.

- [EM12] Y. C. Eldar, S. Mendelson, *Phase retrieval: Stability and recovery guarantees*, available online: arXiv:1211.0872, Appl. Comp. Harm. Anal. (2014), .
- [HG13] M.J. Hirn, E. Le Gruyer, A general theorem of existence of quasi absolutely minimal Lipschitz extensions, arXiv:1211.5700v2 [math.FA], 8 Aug 2013.
- [ZB06] L. Zwald, G. Blanchard, On the convergence of eigenspaces in kernel Principal Component Analysis, Proc. NIPS 05, vol. 18, 1649-1656, MIT Press, 2006.