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LINEAR INDEPENDENCE OF TIME FREQUENCY TRANSLATES

FOR SPECIAL CONFIGURATIONS

CIPRIAN DEMETER

Abstract. We prove that for any 4 points in the plane that belong to 2 parallel lines,
there is no linear dependence between the associated time-frequency translates of any
nontrivial Schwartz function. If mild Diophantine properties are satisfied, we also prove
linear independence in the category of L2(R) functions.

1. Introduction

The following conjecture, known as the HRT conjecture appears in [3]. See also [4] for
an ample discussion on the subject.

Conjecture 1.1. Let (tj , ξj)
n
j=1 be n ≥ 2 distinct points in the plane. Then there is no

nontrivial L2 function f : R → C satisfying a nontrivial linear dependence
n
∑

j=1

dif(x+ tj)e
2πiξjx = 0,

for a.e. x ∈ R.

The Conjecture was proved when (ti, ξi)
n
i=1 sit on a lattice [5]. See also [1], [2], for

alternative arguments. In particular, this is the case with any 3 points. The conjecture
also follows trivially when all points are collinear. No other cases seem to appear in the
literature. The following weaker conjecture has also been circulated (see for example [4]).

Conjecture 1.2. Let (tj , ξj)
n
j=1 be n ≥ 2 distinct points in the plane. Then there is no

nontrivial Schwartz function f : R → C satisfying a nontrivial linear dependence
n
∑

j=1

dif(x+ tj)e
2πiξjx = 0,

for a.e. x ∈ R.

In light of the discussion above, this conjecture also follows for the lattice and when
the points are collinear. No other result seems to have appeared in the direction of this
conjecture.

We will call an (n,m) configuration, any collection of n+m distinct points in the plane,
such that there exist 2 distinct parallel lines such that one of them contains exactly n of
the points, and the other one contains exactly m of the points. Our main results are:

Theorem 1.3. Conjecture 1.2 holds for all (1, 3) and (2, 2) configurations.

The author is supported by a Sloan Research Fellowship and by NSF Grants DMS-0742740 and
0901208.
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2 CIPRIAN DEMETER

Let ‖x‖ denote the distance of x to the nearest integer.

Theorem 1.4. Conjecture 1.1 holds for special (1, 3) configurations

(0, 0), (1, 0), (1, α), (1, β)

(a) if there exists γ > 1 such that

lim inf
n→∞

nγ min{‖n
β

α
‖, ‖n

α

β
‖} <∞

(b) if at least one of α, β is rational
In either case, no nontrivial solution f can exist satisfying minimal decay

lim
|n|→∞
n∈Z

|f(x+ n)| = 0, a.e. x

Theorem 1.5. Conjecture 1.1 holds for special (2, 2) configurations

(0, 0), (1, 0), (0, α), (1, β)

(a) if

lim inf
n→∞

n log nmin{‖n
β

α
‖, ‖n

α

β
‖} <∞

(b) if at least one of α, β is rational
In either case, no nontrivial solution f can exist satisfying minimal decay

lim
|n|→∞
n∈Z

|f(x+ n)| = 0, a.e. x

Unlike the approaches in [3], [5], [1], [2], the approach here is mostly number theoretical.
An old theorem of Khinchine guarantees that (Lebesgue) almost every x satisfies

lim inf
n→∞

n logn‖nx‖ <∞,

and thus (via metaplectic transforms) Conjecture 1.1 holds for ”almost every” (2, 2) con-
figuration. Note also that Theorem 1.4(b) answers Conjecture 9.2 (b) from [4].

Theorem 1.3 is proved by first reducing to special configurations. This is done via
applying the area preserving affine transformations -also called metaplectic transforms- of
the plane (such as translations, rotations, shears, and area one rescalings). See Section 2
in [3] for a discussion on this.

The key feature of any special (n,m) configuration of points, is the fact that any linear
dependence between the corresponding time frequency translates gives rise to a recurrence
along Z orbits x + Z. We use Diophantine approximation to identify appropriate scales.
For each fixed scale, we investigate the recurrence along finite portions of two carefully
chosen distinct orbits, with length comparable to the scale.

The (2-2) case is quite simple. The two rotations by α and β do not interact strongly,
and hence they can be dealt with by different methods. The two orbits are selected in such
a way that the trigonometric polynomials associated with α take conjugate values along
the two orbits. This means that in absolute value, the contributions coming from these
polynomials are identical, for the two orbits. We will refer to this as the conjugates trick.
The contributions coming from the polynomials associated with β are then compared via
diophantine approximation and Riemann sums, if β is irrational, and using a periodicity
argument, if β is rational.
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The (1,3) case is significantly harder, partly because the behavior of the relevant poly-
nomial p(x, y) = C0 +C1e(x) +C2e(y) near its zeros is more complicated. Our argument
relies in part on the almost periodicity for trigonometric polynomials. This in turn has
behind the existence of simultaneous approximants P ∈ R such that

P max{‖Pα‖, ‖Pβ‖} . 1.

The almost periods we get become better as α
β

gets less Diophantine (that is better

approximable by rationals). The main idea of this approach is to compare the products of
polynomials along the two orbits via estimates for their arithmetic means (see for example
Proposition 2.4). While the products along a fixed orbit can fluctuate a lot, and thus are
very difficult to control, proving upper bounds for their averages turns out to be a less
complicated proposal. This requires a deeper understanding of the geometry of the points
({nα}, {nβ}), as observed in the proof of Lemma 2.3 and Lemma 4.2. The key is that
the more Diophantine α

β
is, the more ”regular” is the counting measure of the points

({nα}, {nβ}), and this will serve as a compensation.

2. Proof of Theorem 1.3 for (1,3) configurations

Define [x], {x}, ‖x‖ to be the integer part, the fractional part and the distance to the
nearest integer of x. Let 〈x〉 denote the unique number in [−1/2, 1/2) such that x−〈x〉 is
an integer. For two quantities A, B that vary, we will denote by A . B or A = O(B) the
fact that A ≤ CB for some universal constant C, independent of A and B. In general,
A .p B means that the implicit constant is allowed to depend on the parameter p. If no
parameter is specified, the implicit constants are implicitly understood to depend on the
(harmless) fundamental parameters introduced in the beginning of the proof of Theorem
1.3. For a set A ⊂ R, we will denote by |A| its Lebesgue measure, and if the set is finite,
|A| will represent its cardinality. Finally, we define e(x) := e2πix.

We prove a few results that will contribute to the proof of Theorem 1.3.

Lemma 2.1. Let C0, C1, C2 ∈ C be some nonzero complex numbers. The polynomial

p(x, y) = C0 + C1e(x) + C2e(y) has at most two real zeros (γ
(j)
1 , γ

(j)
2 ) ∈ [0, 1)2, j ∈ {1, 2}.

There exists t = t(C0, C1, C2) ∈ R \ 0 such that

|p(x, y)| &C0,C1,C2 min
j
(‖x− γj1 + t〈y − γj2〉‖+ ‖x− γj1‖

2 + ‖y − γj2‖
2),

for each x, y ∈ R.

Proof If |C0|, |C1|, |C2| can not form a triangle, then |p(x, y)| &C0,C1,C2 1 and there is
nothing to prove. If |C0|, |C1|, |C2| can form a triangle, given that the side with length
|C0| is rigid, there are only two possible ways to construct the other two sides (the two
triangles will be symmetric with respect to the side with length |C0|). This justifies the
fact that there are at most 2 zeros.

Since p, ‖ · ‖ and 〈·〉 are 1 periodic, and since 〈y〉 = y and ‖y‖ = |y| near 0, it suffices
to prove that

|p(x, y)| &C0,C1,C2 |(x− γj1) + t(y − γj2)|, (1)

and

|p(x, y)| &C0,C1,C2 |x− γj1|
2 + |y − γj2|

2, (2)
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for (x, y) in a sufficiently small neighborhood (on R) of (γj1, γ
j
2).

We distinguish two cases. The non-degenerate case is when
C1e(γ

j
1)

C2e(γ
j
2)

is not a real number.

This is the same as saying that |C0|, |C1|, |C2| form a non-degenerate triangle. By using
a Taylor expansion we get

p(x, y)

2πi
=

C1e(γ
j
1)(x−γ

j
1+πi(x−γ

j
1)

2+O(|x−γj1|
3))+C2e(γ

j
2)((y−γ

j
2)+πi(y−γ

j
2)

2+O(|y−γj2|
3)).

Note that

|C1e(γ
j
1)(x− γj1) + C2e(γ

j
2)(y − γj2)| &C0,C1,C2 ((x− γj1)

2 + (y − γj2))
1/2,

and thus |p(x, y)| &C0,C1,C2 ((x−γ
j
1)

2+(y−γj2))
1/2 ≥ (x−γj1)

2+(y−γj2)
2, for |x−γj1|, |y−γ

j
2|

sufficiently small. Hence (1) also holds with, say, t = 1.
The degenerate case is when |C0|, |C1|, |C2| form a degenerate triangle. In this case there

is only one zero, call it (γ1, γ2). It follows that C0, C1e(γ1), C2e(γ2) are real multiples of
each other. Thus, there must exist two among these three numbers with a positive ratio.
There are two cases.

First let us assume t := C2e(γ2)
C1e(γ1)

> 0. Then, proceeding as before,

p(x, y)

2πiC1e(γ1)
= (x− γ1 + t(y − γ2) +O(|x− γ1|

3 + |y − γ2|
3))+

πi((x− γ1)
2 + t(y − γ2)

2 +O(|x− γj1|
3 + |y − γ2|

3))

where the first term is the real part, while the second term is the imaginary part. Since
t > 0,

(x− γ1)
2 + t(y − γ2)

2 &t (x− γ1)
2 + (y − γ2)

2 >> (|x− γ1|
3 + |y − γ2|

3),

for |x − γ1|, |y − γ2| sufficiently small. If |(x − γ1) + t(y − γ2)| ≥ (x − γ1)
2 + (y − γ2)

2,
then the real part is dominant, and thus |p(x, y)| & |(x − γ1) + t(y − γ2)|. If |(x −
γ1) + t(y − γ2)| ≤ (x − γ1)

2 + (y − γ2)
2, then the imaginary part is dominant, and thus

|p(x, y)| & (x− γ1)
2 + (y − γ2)

2.

The second possibility is that s := C1e(γ1)
C0

> 0. The case C2e(γ2)
C0

> 0 is completely
symmetric, so we omit it. Note that

|p(x, y)| = |C2 + C0e(−γ2)e(γ2 − y) + C1e(γ1 − γ2)e(x− γ1 − (y − γ2))| =

2π|C0e(−γ2)
(

(γ2 − y) + πi(γ2 − y)2 +O(|γ2 − y|3)
)

+

C1e(γ1 − γ2)
(

(x− γ1 − (y − γ2)) + πi(x− γ1 − (y − γ2))
2 +O(|x− γ1 − (y − γ2)|

3)
)

|

Thus,
|p(x, y)|

|2πC0e(−γ2)|
=

|
(

(γ2 − y) + s(x− γ1 − (y − γ2)) +Os(|γ2 − y|3 + |x− γ1|
3)
)

+

πi
(

(γ2 − y)2 + s(x− γ1 − (y − γ2))
2 +Os(|γ2 − y|3 + |x− γ1|

3)
)

|.

Using the fact that

(γ2−y)
2+s(x−γ1− (y−γ2))

2 &s (γ2−y)
2+(x−γ1− (y−γ2))

2 ≥
(γ2 − y)2 + (x− γ1)

2

4
,
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(1) and (2) follow as before, this time with t := −1+s
s
.

We will for the rest of the paper implicitly assume β > 0. The following result uses
simultaneous diophantine approximation to construct sharp almost periods. The require-
ment (i) will be needed later, in order to be able to place the generators x and x+ {Pk}
of the two orbits, in the (potentially very small) interval I where the ”solution” f is
guaranteed to be nonzero.

Lemma 2.2. Let α, β ∈ R be two nonzero numbers with α/β irrational. Let also 1 > s > 0
be fixed. Then there exists a constant 0 < D = D(s, α, β) < ∞ and a sequence Nk of
positive integers going to infinity such that for each k ≥ 1

(i) {Nk

β
} < s,

(ii) Nk‖Nk
α
β
‖ ≤ Dmin1≤n≤Nk

n‖nα
β
‖,

(iii) Nk‖Nk
α
β
‖ ≤ D

Proof We have two cases. If (call this the badly approximable regime)

lim inf
N→∞

N‖N
α

β
‖ > 0,

then let ǫ := minN∈NN‖N α
β
‖ > 0. Dirichlet’s Theorem implies that we can choose a

sequence N ′
k → ∞ such that N ′

k‖N
′
k
α
β
‖ ≤ 1 for each k. But then

N ′
k‖N

′
k

α

β
‖ ≤

1

ǫ
min
n∈N

n‖n
α

β
‖.

Finally, by pigeonholing, for each k there must exist some 1 ≤ mk ≤ 1/s such that
Nk := mkN

′
k satisfies (i). It is immediate that

Nk‖Nk
α

β
‖ ≤

1

s2ǫ
min
n∈N

n‖n
α

β
‖.

Assume next that we are in the well approximable regime, that is

lim inf
N→∞

N‖N
α

β
‖ = 0.

This is equivalent with saying the the sequence ak in the continued fraction of α/β is
unbounded. Let (pk, N

′
k) be the sequence of best approximants for α

β
, ordered such that

N ′
k is increasing. Thus

|
α

β
−
pk
N ′

k

| ≤
1

N ′
kN

′
k+1

.

Recall that N ′
k+1 ≥ akN

′
k, and thus sN ′

k+1 > N ′
k for each k ∈ E, where E is infinite. It is

known (see for example Theorem 7.13 in [6]) that for each k

N ′
k‖N

′
k

α

β
‖ = min

1≤n<N ′
k+1

n‖n
α

β
‖.

Let π : N → E be an increasing bijection. Choose as before 1 ≤ mk ≤ 1/s such that
Nk := mkN

′
π(k) satisfies (i). Note that Nk < N ′

π(k)+1, and thus (ii)-(iii) follow as before.

The next lemma will be needed in the proof of Proposition 2.4.
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Lemma 2.3. Let C0, C1, C2 ∈ C be some nonzero complex numbers. Let α, β be some
nonzero real numbers. Define

P (x) = C0 + C1e(αx) + C2e(βx).

Let (Nk) be a sequence such that (ii) and (iii) in Lemma 2.2 hold. Define 1
Mk

:=
Nk‖Nk

α
β
‖

D
,

and let Pk := Nk

β
. Then for each k and each δ > 0, there exists an exceptional set

Ek,δ ⊂ [0, 1] such that
|Ek,δ| < δ

and

1

MkPk

[Pk]−1
∑

n=0

1

|P (x+ n)|
.δ,C0,C1,C2,α,β logPk,

for each x ∈ [0, 1] \ Ek,δ.

Proof Let (γ1, γ2) ∈ [0, 1]2 be a real zero of the polynomial p(x, y) = C0+C1e(x)+C2e(y).
Define

An(x) := ‖α(x+ n)− γ1‖
2 + ‖β(x+ n)− γ2‖

2

By Lemma 2.1, it suffices to find an exceptional set with |Ek,δ| ≤
δ
2
, such that

1

PkMk

[Pk]−1
∑

n=0

1

An(x)
.δ,α,β logPk, (3)

for each x ∈ [0, 1]\Ek,δ. The heuristics behind the proof is that if α/β is less Diophantine,
then the estimate above holds because Mk is large, while if α/β is Diophantine, we win
because of extra regularity of the counting measure for the points (nα, nβ).

The key observation is that each strip

Sa := {(x, y) : a−
1

4MkPk
≤ βx− αy < a+

1

4MkPk
}

contains at most Oβ(1) points ({−nα + γ1}, {−nβ + γ2}), 0 ≤ n ≤ [Pk] − 1. Indeed,
assume for contradiction that some Sa contains both ({−nα + γ1}, {−nβ + γ2}) and
({−mα + γ1}, {−mβ + γ2}), with [Pk]−

1
β
> |m− n| > 2

β
. It follows that

|β([−nα + γ1]− [−mα + γ1])− α([−nβ + γ2]− [−mβ + γ2])| <
1

MkPk
.

Note that L := |[−nβ + γ2] − [−mβ + γ2]| 6= 0 and L ≤ | − nβ +mβ| + 1 ≤ Nk. The
above implies that ‖Lα

β
‖ < 1

MkPkβ
≤ 1

MkL
, which contradicts (ii) in Lemma 2.2.

Let C be the collection of all points {−nα + γ1} with 0 ≤ n ≤ [Pk]− 1. Let E ′
δ be the

set of x ∈ [0, 1) such that the distance from {αx} to C is less than δ|α|
20Pk

. Then |E ′
δ| < δ/10.

Let E ′′
δ consist of those x ∈ [0, 1) with min(‖αx‖, ‖βx‖) ≤ δ(|α|+|β|)

100
. Then |E ′′

δ | ≤
δ
10
.

Note that if u, v ∈ [0, 1) with ‖u‖ > ǫ for some ǫ > 0, then

‖u− v‖ &ǫ |u− v|. (4)

Split [0, 1) \ E ′′
δ in intervals H ∈ H, such that for each H , the integer parts [αx] and

[βx] are both constant, when x varies through H . Thus, the points ({αx}, {βx}), x ∈ H
sit on a fixed line βx− αy = cH . Note that H contains Oα,β(1) intervals.
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Let H ∈ H. Then, using (4),

∫

H\Eδ′

1

PkMk

[Pk]−1
∑

n=0

1

An(x)
d .α,β,δ

∫

H\Eδ′

1

PkMk

[Pk]−1
∑

n=0

1

|{αx} − {−nα + γ1}|2 + |{βx} − {−nβ + γ2}|2
dx.

The key observation implies that there are Oβ(1) points ({−nα + γ1}, {−nβ + γ2}) in
each strip Stj := {(x, y) : cH + j

2MkPk
≤ βx− αy < cH + j+1

2MkPk
}, with, say, −10MkPk ≤

j ≤ 10MkPk. Call Bj the set of n corresponding to these points. We first evaluate for
j /∈ {−1, 0},

∫

H

[Pk]−1
∑

n=0
n∈Bj

1

|{αx} − {−nα + γ1}|2 + |{βx} − {−nβ + γ2}|2
dx.

Since ({αx}, {βx})x∈H belong to a line segment, and since the points in Stj belong to a
strip parallel to and at distance at least |j|/2MkPk from this line segment, a simple change

of coordinates shows that the integral above is dominated by Oα,β(
∫ 1

0
1

x2+
(

|j|
MkPk

)2dx) =

Oα,β(
MkPk

|j| ). Of course, only at most Pk values of j can contribute, and thus

∫

H

1

MkPk

[Pk]−1
∑

n=0
n∈

⋃
j/∈{0,1} Bj

1

|{αx} − {−nα + γ1}|2 + |{βx} − {−nβ + γ2}|2
d .α,β

1

MkPk

∑

j /∈{0,1}
Stj 6=∅

MkPk

|j|
. logPk.

On the other hand, if n ∈ B0 ∪ B−1, then we use the fact that if x /∈ E ′
δ then

|{αx} − {−nα + γ1}|
2 + |{βx} − {−nβ + γ2}|

2 &
δ2|α|2

P 2
k

.

Using this, the fact that B0 ∪ B−1 contains Oβ(1) points and the fact that Mk ≥ 1, we
get via a change of variables that

∫

H\E′
δ

1

MkPk

[Pk]−1
∑

n=0
n∈B0∪B−1

1

|{αx} − {−nα + γ1}|2 + |{βx} − {−nβ + γ2}|2
dx

is dominated by 1
MkPk

O(
∫ 1

δ2|α|2

P2
k

1
x2dx)) = Oα,β(

Pk

δMkPk
) = Oα,β,δ(1). Thus

∫

[0,1)\(Eδ′∪E′′
δ )

1

MkPk

[Pk]−1
∑

n=0

1

|{αx} − {−nα + γ1}|2 + |{βx} − {−nβ + γ2}|2
dx =

∑

H∈H

∫

H\Eδ′

1

MkPk

[Pk]−1
∑

n=0

1

|{αx} − {−nα + γ1}|2 + |{βx} − {−nβ + γ2}|2
dx
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.α,β,δ logPk,

since there are Oα,β(1) intervals H . It follows that

|E ′′′
δ := {x ∈ [0, 1) \ (Eδ′ ∪ E

′′
δ ) :

1

MkPk

[Pk]−1
∑

n=0

1

|P (x+ n)|
≥ Cα,β,δ logPk}| ≤ δ/10,

if Cα,β,δ is chosen large enough. Finally, define Ek,δ := E ′
δ ∪ E

′′
δ ∪ E

′′′
δ .

The next proposition captures the almost orthogonality phenomenon. The idea is to
avoid estimating products along individual orbits (which seems nearly impossible), but
rather to compare products along two orbits.

Proposition 2.4. Let (Nk) be a sequence such that (ii) and (iii) in Lemma 2.2 hold,
and define Pk := Nk

β
. Let C0, C1, C2 ∈ C and α, β ∈ R be nonzero and define P (x) =

C0 + C1e(αx) + C2e(βx). Given δ > 0, there exists Ek,δ ⊂ [0, 1] such that |Ek,δ| ≤ δ,
and there exists a universal constant L = L(δ, C0, C1, C2, α, β) such that for each x, y
satisfying x ∈ [0, 1) \ Ek,δ and x = y + Pk, we have

|

[Pk]−1
∏

n=0

P (y + n)| ≤ PL
k |

[Pk]−1
∏

n=0

P (x+ n)|.

Proof Let as before
1

Mk
:=

Pk‖Pk
α
β
‖

D
< 1.

Then, we have

|e(αx)− e(αy)| = |e(Pkα)− 1| ≤
10D

PkMk
and |e(βx)− e(βy)| = |e(Pkβ)− 1| ≤

10D

PkMk
.

Thus, for each n ∈ N

|P (y + n)| ≤ |P (x+ n)|+
CD

MkPk
,

for some universal constant C := 100(|C1|+ |C2|).

Use the fact a + b ≤ ae
b
a for each a, b > 0 to get

|P (y + n)| ≤ |P (x+ n)|e
CD

MkPk|P (x+n)| ,

and thus

|

[Pk]−1
∏

n=0

P (y + n)| ≤ |

[Pk]−1
∏

n=0

P (x+ n)|e
CD

MkPk

∑[Pk]−1
n=0

1
|P (x+n)| .

The result now follows from Lemma 2.3.

Proof (of Theorem 1.3 for (1,3) configurations)
It was proved in [3] that the linear independence of the time-frequency translates is

preserved under area preserving affine transformations of the plane, both for L2 and for
Schwartz functions. Thus, it is easy to see that any (1,3) configuration can be reduced
to a special (1,3) configuration like (0, 0), (1, 0), (1, α), (1, β), for some nonzero α, β, with
α 6= β. Indeed, apply first a rotation, then a joint rescaling of the time and frequency
axes so that the distance between the line containing the 3 points and the remaining
point becomes 1, followed by a translate along the frequency axis and then by a vertical
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shear. It is also clear that it is precisely the (1, 3) configurations (and they only), that
can be reduced to the special configuration from above. This follows since any linear
transformation of the plane maps collinear points into collinear points.

We can also assume that the 4 points do not sit on a lattice, since that case is covered
by the work in [5]. In particular, we assume α/β is irrational.

Assume now for contradiction that there is some nontrivial Schwartz f : R → C such
that for a.e. x, for some fixed nonzero constants Ci ∈ C

f(x+ 1) = f(x)(C0 + C1e(αx) + C2e(βx)).

We denote as before P (x) = C0 + C1e(αx) + C2e(βx).
Let (I, S, d) be a triple such that d > 0, I ⊂ [0, 1) is an interval, S ⊂ I is a set with

full Lebesgue measure |I|, such that

lim
|n|→∞

n∈Z

|n|Cf(x+ n) = 0, for each x ∈ S and each C > 0, (5)

d < |f(x)| < d−1, for each x ∈ S ∪ S + 1, (6)

f(x+ 1) = f(x)(C0 + C1e(αx) + C2e(βx)), for each x ∈ S + Z. (7)

We will refer to C0, C1, C2, I, S, d, α, β as fundamental parameters. Implicit constants
in inequalities involving . are allowed to depend on these parameters, since they can be
thought of as being fixed for the rest of the argument.

Apply Lemma 2.2 with s := |I|/10, to get a constant D = D(|I|, α, β) > 0 and a
sequence Nk of positive integers going to infinity such that for each k ≥ 1

(i) {Pk :=
Nk

β
} < |I|/10,

(ii) Nk‖Nk
α
β
‖ ≤ Dmin1≤n≤Nk

n‖nα
β
‖,

(iii) Nk‖Nk
α
β
‖ ≤ D

By Proposition 2.4 with δ = |I|
100

, for each x ∈ [0, 1) \ Ek,δ and x = y + Pk we have

|

[Pk]−1
∏

n=0

P (y + n)| ≤ PL
k |

[Pk]−1
∏

n=0

P (x+ n)|. (8)

Note that (S \Ek,δ)∩ ({Pk}+S) 6= ∅, since the intersection of each of the 2 sets with I is
large. Pick any xk ∈ S \Ek,δ, such that also xk − {Pk} ∈ S. Define x′k := xk − {Pk}. We
will now argue that (5) can not hold for both xk (with n→ ∞) and x′k (with n→ −∞).
Let yk = x′k − [Pk] = xk − Pk. Note that

[Pk]−1
∏

n=0

P (yk + n) =

[Pk]
∏

n=1

P (x′k − n),

and thus, by (8) we get

|

[Pk]
∏

n=1

P (x′k − n)| ≤ PL
k |

[Pk]−1
∏

n=0

P (xk + n)|. (9)
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Recall that we have

f(xk + [Pk]) = f(xk)

[Pk]−1
∏

n=0

P (xk + n) (10)

f(x′k − [Pk]) = f(x′k)

[Pk]
∏

n=1

P (x′k − n). (11)

Using (6) and (9), we get that

|f(xk + [Pk])f(x
′
k − [Pk])| & P−L

k , (12)

with an implicit constant depending only on the fundamental parameters (in particular,
independent of k). This clearly contradicts (5), if we let k → ∞.

3. Proof of Theorem 1.3 for (2,2) configurations

The reader can easily check that the argument for (1, 3) configurations presented above
also works here. In particular, the existence of large P ∈ R satisfying

max{‖Pα‖, ‖Pβ‖} . 1/P

implies that one can run the almost periodicity argument.
We also present an alternative, simpler argument, which does not work in the (1,3)

case. As before, by using metaplectic transformations we can reduce to the case of special
(2,2) configurations. Assume there is a continuous function f : R → C such that f is
nonzero on some interval I ∈ [0, 1), satisfying a weaker assumption (minimal decay)

lim
|n|→∞

n∈Z

f(x+ n) = 0 (13)

for all x ∈ [0, 1], and

f(x+ 1)(A+Be(αx)) = f(x)(C +De(βx)), (14)

for all x ∈ R, for some fixed A,B,C,D ∈ C, α, β ∈ R, none of them zero. We can
also assume that α and β are rationally independent (β

α
6∈ Q), by otherwise invoking the

lattice case. Note that we assume far less, namely minimal (rather than Schwartz) decay.
Thus, the result we prove for special (2,2) configurations is in some sense best possible.

First, let us deal with the case when both α, β are irrational. We can trivially assume
A is real. Write

P (x) = A+Be(αx) and Q(x) = C +De(βx).

We first prove that |A| 6= |B|. Indeed, assume for contradiction that |A| = |B|. Then
P has real zeros of the form

xn = ω +
n

α
, n ∈ Z,

for some ω ∈ R. We split the argument in a few steps.

Step 1. Here we observe that Q must also have real zeros. If this is not the case, let n
be such that

xn > 0
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and (since 1
α
is irrational)

{xn} ∈ I, so f({xn}) 6= 0.

Since

f(xn + 1)P (xn) = f(xn)Q(xn)

we find that f(xn) = 0. Using the recurrence, and inductive argument shows that f(xn−
m) = 0 for each m ∈ N, leading to the contradiction f({xn}) = 0. This ends Step 1.

Step 2. Since we now know that Q has real zeros, they must be of the form

ym = ω′ +
m

β
, m ∈ Z,

for some ω′ ∈ R. If the zeros of P and Q never share a Z−orbit then we reason like in
Step 1 to reach a contradiction. Even stronger, if at most one xn shares a Z−orbit with
some ym, the argument in Step 1 still leads to a contradiction.

Step 3. We can thus assume for the rest of the argument that there are n 6= n′ and
m,m′ such that

xn − ym, xn′ − ym′ ∈ Z.

Taking the difference it follows that there are N,M, k ∈ Z so that

N

α
+
M

β
= k, (15)

Note that our original assumption that α, β are rationally independent does not prevent
this scenario from happening, so we must rule it out by a more careful analysis.

As both α and β are irrational, all N,M satisfying (15) must be of the form lN0, lM0

for some fixed N0,M0 ∈ Z \ {0} and arbitrary l ∈ Z. It further follows that all n,m
satisfying xn − ym ∈ Z are of the form

{

n = n0 + lN0

m = m0 + lM0,

for some fixed n0, m0, N0,M0 ∈ Z with N0,M0 6= 0 and arbitrary l ∈ Z. Note that for
each xn there is at most one ym such that xn, ym share an orbit. In the next step, we will
argue based on the ordering of 0, xn, ym to reach the final contradiction.

Step 4. Set A = ω + n0

α
, B = ω′ + m0

β
. Then the zero Xl := A + lN0

α
of P only shares

the orbit with one zero of Q, namely Yl := B + lM0

β
. Since N0

α
6= M0

β
, by choosing l either

positive or negative, we can ensure that one of the following three scenarios holds (the
analysis is driven by the comparison between the signs of N0

α
, M0

β
and their magnitudes)

• 0 < Xl < Yl (for all large enough or small enough l ∈ Z)
• Yl < 0 < Xl (for all large enough or small enough l ∈ Z)
• Xl < Yl < 0 (for all large enough or small enough l ∈ Z).
In each case, ar argument like in Step 1 applied to the orbit of Xl and Yl will force f

to be zero at vl = {Xl} = {Yl}. Let us see this in the first scenario. Fix such an l. By
ergodicity, we can also assume that

vl ∈ I.
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Using the recurrence and the fact that Q is nonzero on the orbit before Yl, we first find
that f(vl + 1) 6= 0, then f(vl + 2) 6= 0, all the way up to f(Xl) 6= 0. Using the recurrence
one more time leads to the contradiction

0 = f(Xl + 1)P (Xl) = f(Xl)Q(Xl) 6= 0.

Thus, we have proved that infx∈R |P (x)| > 0. Similarly, it follows that |C| 6= |D|, and
thus infx∈R |Q(x)| > 0. The functions ψ(x) = ln |A + Be(x)| and φ(x) = ln |C + De(x)|
are now guaranteed to be continuous on [0, 1).

Due to (13), it follows that for each x, z ∈ I

lim
N→∞

(

N
∑

n=1

φ(βx+ βn)−
N
∑

n=1

ψ(αx+ αn)

)

= −∞ (16)

and

lim
N→∞

( −1
∑

n=−N

φ(βz + βn)−
−1
∑

n=−N

ψ(αz + αn)

)

→ +∞ (17)

Let pk, qk relatively prime, qk → ∞ such that
∣

∣

∣

∣

β −
pk
qk

∣

∣

∣

∣

≤
1

q2k
.

Note that nβ is very regular, that is

|nβ −
npk
qk

| ≤
1

qk
, −qk ≤ n ≤ qk,

where (npk mod qk)
qk
n=1 cover all the residues mod qk. Using this and |φ′| & 1, we get

|

qk
∑

n=1

φ(βy + βn)− qk

∫ 1

0

φ| = O(1)

and

|
−1
∑

n=−qk

φ(βy + βn)− qk

∫ 1

0

φ| = O(1)

for each y ∈ [0, 1] (use Riemann sums). An immediate corollary is that for each x, z ∈ I

|

qk
∑

n=1

φ(βx+ βn)−
−1
∑

n=−qk

φ(βz + βn)| = O(1) (18)

Let B = re(θ), with r > 0. By invoking Birkhoff’s pointwise ergodic theorem for the
function 1I , there exists x ∈ I and some n′ ∈ N such that z := {−x − 2θ

α
+ n′α−1} ∈ I.

Let y := −x− 2θ
α
+ n′α−1 and m = y − z.

The point of this selection is that for each n, A+ Be(αy − nα) and A+ Be(αx+ nα)
are complex conjugates and thus

−1+m
∑

n=−N+m

ψ(αz + αn) =
N
∑

n=1

ψ(αx+ αn).
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This implies that for each N ,

|
−1
∑

n=−N

ψ(αz + αn)−
N
∑

n=1

ψ(αx+ αn)| = O(1). (19)

But now it immediately follows that (16)-(19) can not simultaneously hold.

If α is irrational and β ∈ Q, apply the conjugates trick to P as above, and use the
periodicity of Q, like in the proof of Theorem 1.5 (b) described in Section 5.

4. Proof of Theorem 1.4

Let us first prove part (a) of the theorem. Part (b) is proved in the end of this section.
The hardest case is if α

β
is Diophantine. This means that there exists γ > 1 and there

exists ǫ > 0 small enough to satisfy, say, ǫ
γ+ǫ−1

≤ 1
10
, such that

lim inf
n→∞

nγ‖n
α

β
‖ <∞ (20)

and in addition

inf
n∈N

nγ+ǫ‖n
α

β
‖ := Dǫ > 0. (21)

The easier case is when α
β
is Liouville, that is if for each η > 1

lim inf
n→∞

nη‖n
α

β
‖ <∞.

Lemma 4.1. Let x1, x2, . . . , xN be N not necessarily distinct real numbers. Then for
each N ∈ N and each δ > 0, there exists an exceptional set EN,δ ⊂ [0, 1] such that

|EN,δ| ≤ δ,

1

N

N
∑

n=1

1

‖x− xn‖
.δ logN, (22)

1

N2

N
∑

n=1

1

‖x− xn‖2
.δ 1, (23)

for each x ∈ [0, 1] \ EN,δ.

Proof Since y 7→ ‖y‖ is 1 periodic, we can assume all xi are in [0, 1]. Since ‖x − xi‖ &
min{|x−xi|, |x− (1−xi)|}, by doubling the number of points if necessary, we can replace
‖x− xi‖ with |x− xi|. Define

UN,δ :=

N
⋃

i=1

[xi −
δ

10N
, xi +

δ

10N
],

and note that
∫

[0,1]\UN,δ

N
∑

i=1

1

|x− xi|
d . N(logN + log

1

δ
),
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∫

[0,1]\UN,δ

N
∑

i=1

1

|x− xi|2
d . N2δ−1.

The result now follows from Cebysev’s inequality.

Lemma 4.2. Let α, β be some nonzero real numbers satisfying (21) above. Define also

M := N
(γ−1)(γ+ǫ)

γ+ǫ−1 D
1

γ+ǫ−1
ǫ . Then for each ξ ∈ R and N ∈ N

1

Nγ

N−1
∑

n=0
‖nα

β
−ξ‖≥ 1

M

1

‖nα
β
− ξ‖

.α,β,γ,ǫ 1.

Proof The crucial observation is that for each Dǫ

2γ+ǫ ≥ R ≥ 1
M
, the ‖ · ‖-ball

B(ξ, R) := {x : ‖x− ξ‖ < R}

contains at most N(R
Dǫ

)
1

γ+ǫ points nα
β
, with 0 ≤ n ≤ N −1. Indeed, assume for contradic-

tion that N(R
Dǫ

)
1

γ+ǫ + 1 such points are contained in the ball. Then, two of these points

would correspond to some 0 ≤ n < m ≤ N − 1 with |n−m| ≤ (Dǫ

R
)

1
γ+ǫ . Thus,

(m− n)γ+ǫ‖(m− n)
α

β
‖ ≤ Dǫ,

which contradicts (21).

In particular, for each Dǫ

2γ+ǫ ≥ 2−j ≥ 1
M

we have O(N( 1
2jDǫ

)
1

γ+ǫ ) points in the ball

Bj := B(ξ, 2−j). Define for such a j

Sj := {0 ≤ n ≤ N − 1 : n
α

β
∈ Bj+1 \Bj}.

Then, using the fact that there are at most N points outside the ball B(ξ, Dǫ

2γ+ǫ ), we get

1

Nγ

N−1
∑

n=0
‖nα

β
−ξ‖≥ 1

M

1

‖nα
β
− ξ‖

≤
1

Nγ







∑

Dǫ
2γ+ǫ ≥2−j≥ 1

M

∑

n∈Sj

1

‖nα
β
− ξ‖

+N
2γ+ǫ

Dǫ







.Dǫ,γ
1

Nγ

∑

2−j≥ 1
M

2jN(
1

2jDǫ
)

1
γ+ǫ .α,β,γ,ǫ 1.

We have the following analogue of Lemma 2.3

Lemma 4.3. Let C0, C1, C2 ∈ C and α, β be some nonzero numbers. Let γ satisfy (21)
if α/β is Diophantine and let γ = 2 if α/β is Liouville. Define

P (x) = C0 + C1e(αx) + C2e(βx).

Then for each N ∈ N and δ > 0, there exists an exceptional set EN,δ ⊂ [0, 1] such that

|EN,δ| < δ
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and
1

Nγ

N−1
∑

n=0

1

|P (x+ n)|
.δ,C0,C1,C2,α,β,ǫ 1,

for each x ∈ [0, 1] \ EN,δ.

Proof

Let (γ1, γ2) be a zero of the polynomial p(x, y) = C0 + C1e(x) + C2e(y), and let t be
the real number guaranteed by Lemma 2.1. Define

An(x) := ‖α(x+ n)− γ1 + t〈β(x+ n)− γ2〉‖+ ‖α(x+ n)− γ1‖
2 + ‖β(x+ n)− γ2‖

2

By Lemma 2.1, it suffices to find an exceptional set with |EN,δ| ≤
δ
2
, such that

1

Nγ

N−1
∑

n=0

1

An(x)
.δ,t,α,β 1, (24)

for each x ∈ [0, 1] \ EN,δ.
We first analyze the case when α/β is Diophantine. We distinguish two subcases. First,

let us analyze the case α + tβ 6= 0. In this case,

‖α(x+n)−γ1+t〈β(x+n)−γ2〉‖ = ‖(α+tβ)x+(α+tβ)n−γ1−tγ2−t[β(x+n)−γ2]+mt‖,

where m = −1 if {β(x+n)− γ2} > 1/2 and m = 0 otherwise. Note that the set of points

S :=

{(α+ tβ)n− γ1 − tγ2 − t[β(x+ n)− γ2] +mt : x ∈ [0, 1], 0 ≤ n ≤ N − 1, m ∈ {0,−1}}

has Oβ(N) elements. (22) implies the existence of EN,δ with |EN,δ| < δ/2 and

1

N

∑

y∈S

1

‖(α + tβ)x+ y‖
.δ,α,β logN

for each x ∈ [0, 1] \ EN,δ. Thus, (24) follows, even with N logN instead of Nγ in the
denominator.

Let us now analyze the subcase α + tβ = 0. Now,

‖α(x+ n)− γ1 + t〈β(x+ n)− γ2〉‖ = ‖ − γ1 − tγ2 +mt +
α

β
[β(x+ n)− γ2]‖,

where m is as before. Let ξ be either γ1 + tγ2 or γ1 + tγ2 + t. Let

M := (Nβ)
(γ−1)(γ+ǫ)

γ+ǫ−1 D
1

γ+ǫ−1
ǫ .

From Lemma 4.2 we have that for each x ∈ [0, 1)

1

Nγ

N−1
∑

n=0
‖α
β
[β(x+n)−γ2]−ξ‖≥ 1

M

1

‖α
β
[β(x+ n)− γ2]− ξ‖

.β
1

Nγ

Nβ
∑

n=0
‖α
β
n−ξ‖≥ 1

M

1

‖α
β
n− ξ‖

. 1.
(25)

Let S(ξ) be the set of those 0 ≤ n ≤ N − 1 such that ‖α
β
n − ξ‖ ≤ 1

M
. It was

proved in Lemma 4.2 that S(ξ) has at most N( 1
MDǫ

)
1

γ+ǫ points. This is Oα,β(N
1/10), since

ǫ
γ+ǫ−1

≤ 1
10
. Define

EN,δ := {x ∈ [0, 1] : ‖α(x+ n)− γ1‖ .α,β δN
− 1

10 for some n ∈ S(ξ)},
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and note that |EN,δ| ≤
δ
2
. For n ∈ S(ξ) we will use the alternative estimate

An(x) ≥ ‖α(x+ n)− γ1‖
2.

Thus, if x /∈ EN,δ, then An(x) & δ2N− 1
5 , and thus

1

Nγ

N−1
∑

n=0
n∈S(ξ)

1

An(x)
.α,β

1

Nγ
δ−2N

1
5N

1
10 .δ,α,β 1. (26)

The result now follows from (25) and (26).
Finally, assume that α/β is Liouville. Then the result follows right away from (23) and

the fact that An(x) ≥ ‖α(x+ n)− γ1‖
2.

We now begin the final part of the argument of part (a) of Theorem 1.4. Let now γ
satisfy (20) and (21) if α/β is Diophantine, and let γ = 2 if α/β is Liouville.

Let S ⊂ [0, 1) be a set that satisfies (5)-(7), where now C = 0 (thus minimal decay is
assumed). Note that since f is no longer assumed to be continuous, all we can guarantee
about S is that it has positive measure. This however is enough to guarantee -via a
classical result- that 1S ∗ 1−S(0) > 0. Since 1S ∗ 1−S is continuous, there must exist an
interval I centered at the origin and δ > 0, such that 1S ∗ 1−S(p) > δ on I. This implies
that for each p ∈ −I,

|{x ∈ S : x+ p ∈ S}| > δ.

It is automatic (by pigeonholing as before) that there exists a sequence of integers Nk → ∞
and D = D(α, β, s) ∈ (0,∞) such that

(i) {Pk :=
Nk

β
} < |I|/2,

(ii) Nγ
k ‖Nk

α
β
‖ ≤ D

Let E[Pk],δ be the exceptional set guaranteed by Lemma 4.3. This set will depend on
k, but this dependence will not be relevant. Then the set Sk := {x ∈ S : x − {Pk} ∈
S} ∩ ([0, 1] \ E[Pk],δ) is nonempty for each k ≥ 1. Pick some xk ∈ Sk, and finish the
argument exactly like in the proof of Theorem 1.3, by working on the orbits of xk and
xk − {Pk}. In particular, note that by the argument in Proposition 2.4,

|

[Pk]−1
∏

n=0

P (xk − Pk + n)| . |

[Pk]−1
∏

n=0

P (xk + n)|,

with an implicit constant depending only on the fundamental parameters.
We caution that some implicit constants will now also depend on γ, ǫ and δ. This is

tolerable, since these only depend on the fundamental parameters.
Part (b) of Theorem 1.4 is much simpler. Indeed, if say, α is rational, then

‖α(x+ n)− γ1‖ &δ,α 1

for each n ∈ N and each x outside some Eδ with measure ≤ δ. Lemma 2.1 implies that
|p(α(x+ n), β(x+ n))| &δ,α 1 for each x /∈ Eδ. In particular, the estimate in Lemma 2.3

1

N

N−1
∑

n=0

1

|P (x+ n)|
.δ,C0,C1,C2,α,β 1
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holds trivially (this time with γ = 1). The rest of the argument is the same as in the proof
of Theorem 1.3. One would have to apply the inequality above for N = Nk satisfying

sup
k
Nk‖Nk

α

β
‖ . 1.

5. Proof of Theorem 1.5

The proof of part (a) of Theorem 1.5 follows the same general pattern as the proof of
Theorem 1.4, but it is significantly simpler. We briefly sketch the details for part (a). As
before, given s > 0, there exists a sequence Nk → ∞ of positive integers satisfying

(i) {Pk :=
Nk

β
} < s,

(ii) supkNk logNk‖Nk
α
β
‖ . 1

We have the following analogue of Proposition 2.4.

Proposition 5.1. Let (Nk) be a sequence such that (ii) above holds, and define Pk :=
Nk

β
.

Let P (x) = A + Be(αx), Q(x) = C + De(βx), R(x) = P (x)
Q(x)

. Given δ > 0, there exists

Ek,δ ⊂ [0, 1] such that |Ek,δ| ≤ δ such that for each x, y satisfying x ∈ [0, 1) \ Ek,δ and
x = y + Pk, we have

|

[Pk]−1
∏

n=0

R(y + n)| .A,B,C,D,α,β,δ |

[Pk]−1
∏

n=0

R(x+ n)|.

Proof

Lemma 2.3 implies that there exists an exceptional set Ek,δ ⊂ [0, 1] such that

1

Nk

Nk
∑

n=0

1

|P (x+ n)|
+

1

Nk

Nk
∑

n=0

1

|Q(x+ n)|
.δ,α,β,A,B,C,D logNk, (27)

for each x ∈ [0, 1] \ Ek,δ. If x = y + Pk, we have

|e(αx)− e(αy)| = |e(Pkα)− 1| .
1

Pk logPk

|e(βx)− e(βy)| = |e(Pkβ)− 1| .
1

Pk logPk
.

Thus, for each n ∈ N

|P (y + n)| ≤ |P (x+ n)|+O(
1

Pk logPk

),

|Q(y + n)| ≥ |Q(x+ n)| − O(
1

Pk logPk
).

Use the fact a+ b ≤ ae
b
a for each a, b > 0 to get

|R(y + n)| ≤ |R(x+ n)|e
1

Pk logPk|P (x+n)|
+ 1

Pk logPk|Q(x+n)| .

The result now follows from (27).

The rest of the argument for part (a) is like in the proof of Theorem 1.4.
The almost periodicity argument is ineffective for part (b) of Theorem 1.5, because of

(33). Our argument combines instead the conjugates trick from the proof Theorem 1.3 for
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(2,2) configurations, with a periodicity argument. Assume there is a measurable function
f : R → C, some d ∈ (0,∞) and some S ⊂ [0, 1] with positive measure such that

d−1 < |f(x)| < d for almost every x ∈ S, (28)

and

lim
|n|→∞

n∈Z

f(x+ n) = 0, (29)

f(x+ 1)(A+Be(αx)) = f(x)(C +De(βx)),

for a.e. x, for some fixed A,B,C,D ∈ C, α, β ∈ R, none of them zero. Let as before

P (x) = A+Be(αx), Q(x) = C +De(βx).

Assume also that β = p
r
is rational. We can trivially assume A is real and (by removing

a countable set if necessary) that S + Z contains no zeros of P and Q.
Let B = re(θ), with r > 0. By invoking Birkhoff’s pointwise ergodic theorem for

the function 1S, there exists x ∈ S and some n′ ∈ N large enough such that z :=
{−x− 2θ

α
+n′α−1} ∈ S and such thatm := [−x− 2θ

α
+n′α−1] > 0. Let y := −x− 2θ

α
+n′α−1.

We point out that x, z,m are fixed for the rest of the argument, and thus they can be
thought of as being fundamental parameters. The point of this selection is that for each
n ∈ Z, A+Be(αy−nα) and A+Be(αx+nα) are complex conjugates and thus, for each
N

m
∏

n=−N+m

|P (z + n)| =
N
∏

n=0

|P (x+ n)|.

It follows that
n=−1
∏

−N+m

|P (z + n)| &m,A,B

N
∏

n=0

|P (x+ n)| (30)

Define T (x) = |Q(x)Q(x+ 1) . . . Q(x+ r − 1)|. We distinguish two cases.
If |T (x)| ≥ |T (z)|, then since Q is r- periodic and infk∈Z |Q(z + k)| > 0, we have

−1
∏

n=−N+m

|Q(z + n)| .m,x,z,C,D

N
∏

n=0

|Q(x+ n)|. (31)

Using the fact that for each N > m

|f(x+N + 1)| = |f(x)|

∏N
n=0 |Q(x+ n)|

∏N
n=0 |P (x+ n)|

|f(z −N +m)| = |f(z)|

∏n=−1
−N+m |P (z + n)|

∏n=−1
−N+m |Q(z + n)|

,

it follows that (28)-(31) can not hold simultaneously (just let N → ∞).
If |T (x)| ≤ |T (z)|, then since Q is r- periodic and infk∈Z |Q(z + k)| > 0, we have

−1
∏

n=−N+m

|Q(x+ n)| .m,C,D,x,z

N
∏

n=0

|Q(z + n)|.
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Note also that as before,

n=−1
∏

−N+m

|P (x+ n)| &m,A,B,x,z

N
∏

n=0

|P (z + n)|.

Using the fact that for each N ≥ m

|f(z +N + 1)| = |f(z)|

∏N
n=0 |Q(z + n)|

∏N
n=0 |P (z + n)|

|f(x−N +m)| = |f(x)|

∏n=−1
−N+m |P (x+ n)|

∏n=−1
−N+m |Q(x+ n)|

,

the contradiction is forced like in the previous case.

6. Open questions

The argument from Theorem 1.3 seems to be too weak to tackle (1, 4) configurations
like (0, 0), (1, 0), (1, α), (1, β), (1, γ). This is because the best one can guarantee in general
is the existence of arbitrarily large P such that max{‖Pα‖, ‖Pβ‖, ‖Pγ‖} . 1√

P
. It is not

clear whether working with 3 or more orbits would have more to say about this case.
One can wonder if continuity can be removed from the proof of Theorem 1.3 for special

(2,2) configurations. If yes, Conjecture 1.1 would follow right away for arbitrary (2,2)
configurations. If no continuity is assumed, then the following is a typical worst case
scenario

f(x+ 1)(1 + e(αx)) = f(x)(1 + e(βx)), (32)

with α, β distinct irrationals. The almost periodicity argument is ineffective in this case.
Indeed, it is easy to see that

lim
N→∞

inf
x∈[0,1]

1

N

N
∑

n=1

1

|1− e(x+ αn)|
= ∞. (33)

To see this, recall that by Dirichlet’s theorem, for each N there exists pN ∈ N and
1 ≤ mN ≤ N relatively prime, such that

|α−
pN
mN

| ≤
1

mNN
.

For each i ∈ {0, 1, . . . , mN − 1}, roughly N/mN of the points 1 ≤ n ≤ N satisfy

‖αn−
i

mN
‖ ≤

1

mN
.

Thus, for each x ∈ [0, 1]

1

N

N
∑

n=1

1

|1− e(x+ αn)|
&

mN
∑

i=1

1

i
∼ logmN .

Finally, note that the irrationality of α forces mN → ∞.
It would be very interesting to know if given α 6= β the recurrence (32) can even hold

along the orbit of a single point x0 ∈ [0, 1], in such a way that lim|N |→∞ f(x0 +N) = 0.
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