The examination consists of 10 short-answer questions. Choose any 10 questions to answer from the 12 questions given. Each question counts 10 points.

The exam is closed-book. You are permitted to consult (both sides of) a notebook-sheet of formulas, and you will be provided with two pages of relevant tables. Use a calculator wherever appropriate (especially wherever it is necessary to calculate precisely in order to find table entries).

MAIN TOPICS: (A) Central Limit Theorem and Poisson Limit of Binomial Probabilities, (B) Simple Linear Regression & Correlation, (C) Multinomial Random Variables, Goodness of fit tests, (D) Method of Maximum Likelihood, Goodness of fit with estimated parameters, (E) Hypothesis Testing & Confidence Intervals, one- and two-sample (F) \(t \), two-sample \(t \), ANOVA tests, Multiple Comparisons, (G) Law of large numbers, interpreting simulations, graphics including empirical distribution function, QQplot, histogram, boxplots.

(1). Suppose that we generate 300 independent Normal(6,4) random variables on a computer and store them in a 100 \(\times \) 3 matrix as \(Z_{i,j} \), \(i = 1, \ldots, 100 \), \(j = 1, 2, 3 \). Define

\[
\bar{Z}_i = \frac{1}{3}(Z_{i,1} + Z_{i,2} + Z_{i,3}), \quad S_i^2 = \frac{1}{2} \sum_{j=1}^{3} (Z_{i,j} - \bar{Z}_i)^2
\]

(a) What is the probability distribution of \(S_i^2 \)? What is the probability that \(S_i^2 \geq 3 \)?

(b) What is the probability that at most 6 of the variables \(S_i^2 \) (for \(i = 1, \ldots, 100 \)) exceed 3?

(2). Suppose that a random sample of data \(X_1, \ldots, X_{100} \) is assumed to come from the density \(f(x|\theta) = 2x/\theta^2 \) for \(0 \leq x \leq \theta \). Find the Method of Moments estimator \(\hat{\theta} \) of \(\theta \) based on these data, and give its variance if the correct value of \(\theta \) is 2.0.

(3). Independent observations \(Y_{i,j} \) for \(i = 1, \ldots, 3 \), \(j = 1, \ldots, 10 \) are assumed to be Normally distributed with means \(\mu_i \) depending upon \(i \) but
not \(j \), and constant variance \(\sigma^2 \). Suppose that for \(i = 1, 2, 3 \), the sample mean \(\bar{Y}_i \) and corresponding sample variance based on \(Y_{i,1}, \ldots, Y_{i,10} \) are respectively 10.7 and 4.2 for \(i = 1 \), 6.4 and 3.5 for \(i = 2 \), and 11.8 and 4.9 for \(i = 3 \).

(a) Find a 95% confidence interval for \(\mu_1 - \mu_3 \).

(b) Construct an ANOVA table, and test at level \(\alpha = 0.05 \) the hypothesis that all of the three means \(\mu_i \) are equal.

(4). Let \(S^2_Y \) be the sample variance based on 100 independent \(\mathcal{N}(2, 4) \) random variables \(Y_i \). Approximate as closely as you can the probability that \(|S^2_Y - 4| \geq 0.47 \).

(5). Observations were made on the number of ovaries formed in each of 1388 female fruit-flies in an experiment on induced sterility. The observed count of flies with 0 ovaries was 1212, with 1 ovary was 118, with the remaining 58 flies developing 2 ovaries. Test the hypothesis that each of 2 ovaries in each fly develops independently of the other ovary, with some probability \(p \) the same for all ovaries and all flies.

(6). A dataset of 21 normally distributed observations (with unknown mean \(\mu \) and variance \(\sigma^2 \)) yield sample mean 87.3, sample variance 14.7.

(a) Find a 90% two-sided confidence interval for each of \(\mu, \sigma^2 \).

(b) Based on the data given, bracket as closely as you can the p-value for the hypothesis test of \(H_0 : \mu = 95.0 \) versus the two-sided alternative.

(7). Suppose that \((N_1, N_2, N_3) \) is a multinomially distributed vector of random counts based on \(n \) trials and probabilities \((p, 2p, 1-3p) \). Find the Maximum Likelihood Estimator \(\hat{p} \) of \(p \), and give its asymptotic variance for large \(n \).

(8). Two samples of data each consist of the yield of corn from 15 plots, with corn raised by identical methods; the soil/fertilizer combination was identical within each sample of 15 plots, but different across the two samples. The data are summarized by: sample 1, sample mean and sample standard deviation (in bushels) were 20.5 and 3.3; in sample 2, sample mean and sample standard deviation were 23.5 and 2.5.

(a). Using the method of the two-sample t-test, test whether there is a difference in mean yields between the two types of plots (i.e., those in sample 1 versus sample 2).
(b). Using the method of ANOVA, test whether there is a difference in mean yields between the two types of plots (i.e., those in sample 1 versus sample 2).

(c). Did you require different assumptions in your answers to (a) and (b) ?

(9). Suppose that measurements of 81 independent random variables X_i with density $f_X(x) = \lambda^2 xe^{-\lambda x}$ for $x > 0$ yield sample average $\bar{X} = 0.25$. Give an approximate 95% confidence interval for the positive unknown parameter λ based on its maximum likelihood estimator.

(10) Suppose that independent discrete random variable values Y_i have been observed, for $i = 1, \ldots, 64$, and that of these 64 observations, 30 were equal to 0, 25 were equal to 1, and 9 were equal to 2. Find the chi-square statistic value and degrees of freedom for testing the goodness of fit of these data to the model $Y \sim \text{Binom}(2, p)$ for some p (where you must estimate p).

(11) Suppose that (W_j, V_j) for $j = 1, \ldots, 100$ are independent pairs of independent $\text{Uniform}[0, 1]$ random variables. Let M be the number of indices $j = 1, \ldots, 100$ for which simultaneously $W_j \geq 0.4$ and $V_j \leq 0.5$, and let L be the number of the W_j’s which are ≤ 0.05. Find the approximate probabilities that (a) $M \leq 38$, and (b) $L \leq 9$.

(12). One problem may well ask you to define terms like empirical d.f. or QQplot or histogram, or to interpret pictures of these types. Review the book material on interpreting plots!