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Handout on Empirical Distribution Function
and Descriptive Statistics

The purpose of this handout is to show you how all of the common (uni-
variate) descriptive statistics are computed and interpreted in terms of the
so-called empirical distribution function.

Suppose that we have a (univariate) dataset X1, X2, . . . , Xn consisting
of observed values of random variables that are iid or ‘independent identically
distributed’, i.e., are independent random variables all of which follow the
same probability law summarized by the

distribution function FX(t) = F (t) = P (X1 ≤ t)

Recall that a distribution function is a nondecreasing right-continuous func-
tion with values in the interval [0, 1] such that limt→−∞ F (t) = 0 and
limt→∞ F (t) = 1. This F (t) is a theoretical quantity, which we can
estimate in terms of data using the

empirical distribution function Fn(t) =
1

n

n
∑

i=1

I[Xi≤t] (1)

where IA is the so-called indicator random variable which is defined to
be equal to 1 when the property A holds, and equal to 0 otherwise.
Thus, while the distribution function gives as a function of t the probability
with which each of the random variables Xi will be ≤ t, the empirical
distribution function calculated from data gives the relative frequency with
which the observed values are ≤ t.

To understand why the empirical distribution function Fn(t) accurately
estimates the theoretical distribution F (t), we must appeal to the famous
Law of Large Numbers, which we next state in two versions (the second more
general that the first).
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Theorem 1 (Coin-Toss Law of Large Numbers) Suppose that a se-
quence of independent coin-tosses have values Zi given as 1 for Heads
and 0 for Tails, with the heads-probability p = P (Zi = 1) the same for all
i ≥ 1. Then as the total number n of tosses gets large, for each ǫ > 0,

P
(

| 1

n

n
∑

i=1

Zi − p| ≥ ǫ
)

→ 0

and with probability 1 the sequence of numbers Z̄ = n−1 ∑n
i=1 Zi converges

to p as n → ∞.

Theorem 2 (General Law of Large Numbers) Suppose that random
variables Xi for i ≥ 1 are independent and identically distributed with dis-
tribution function F , and that g(x) is any function such that E|g(X1)| =
∫ |g(x)| dF (x) < ∞. Then as n → ∞, for each ǫ > 0,

P
(

| 1

n

n
∑

i=1

g(Xi) − E(g(X1))| ≥ ǫ
)

→ 0

and with probability 1 the sequence of numbers n−1 ∑n
i=1 g(Xi) converges

to E(g(X1) =
∫

g(x) dF (x) as n → ∞.

In particular, based on large samples of data {Xi}n
i=1, if we fix t and de-

fine the random variable Zi = g(Xi) = I[Xi≤t], then Z̄ = n−1 ∑

i=1 g(Xi) =
Fn(t), and either of the two Theorems shows that Fn(t) has very high prob-
ability of being extremely close to

Eg(X1) =
∫ t

−∞

1 dF (x) +
∫

t
0 dF (x) = F (t)

(A slightly stronger form of the law of large numbers, called the Glivenko-
Cantelli Theorem, says that under the same hypotheses sup−∞<t<∞ |Fn(t)−
F (t)| converges to 0 with probability 1 as n → ∞.

These results tell us that the distribution function, which is generally
hypothetical and unknown, can be recovered very accurately with high prob-
ability based on a large sample of independent identically distributed obser-
vations following that distribution.

Now let us think about summary values describing the underlying dis-
tribution function F , and how these summary numbers translate into de-

scriptive statistics when we estimate them from the sample of data. The
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mean of the probability distribution function F (which may be thought to
have density F ′ = f) is

µ = µ1 = E(X1) =
∫ ∞

−∞

t f(t) dt =
∫ ∞

−∞

t dF (t)

while our usual estimate of it is

X̄ =
1

n

n
∑

i=1

Xi =
∫

t dFn(t)

which can be thought of as the mean value of the discrete probability
distribution of a randomly chosen member of the list {X1, X2, . . . , Xn}. The
index i of this randomly chosen member ofthe list is equally likely (i.e.,has
probability 1/n) to be any of the values 1, 2, . . . , n.

We recall also the formula for expectation of a discrete random variable,
or a function of such a discrete variable. If W is a discrete random variable
with k possible distinct values wj , and with probability mass function

pW (wj) = P (W = wj) = pj for j = 1, . . . , k , with
k

∑

j=1

pj = 1

then for any function h, the expectation of h(W ) is expressed as a
weighted average of the possible values h(wj) weighted by the probabilities
with which they occur,

E
(

h(W )
)

=
k

∑

j=1

h(wj) pj (2)

Think of the random variable W as the random index from {1, 2, . . . , n}
chosen equiprobably as the position in the data column {X1, . . . , Xn} from
which a random data point XW is drawn. (Here the number of distinct
possible values of W is k = n, and the probability masses pj = P (W =
j) = 1/n for j = 1, . . . , n. In the present paragraph, the values Xi are
viewed as fixed entries of the data column, not as random variables. The
random variable Then the distributional quantities associated with XW are
called empirical , a terminology which makes sense because the distribution
function of XW is (for fixed {X1, . . . , Xn})

P (XW ≤ t) = P (W ∈ {i : 1 ≤ i ≤ n, Xi ≤ t}) =
1

n

n
∑

j=1

I[Xj≤t] = Fn(t)
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is just the empirical distribution function we defined before.

But now we can go further to obtain a unified understanding of descrip-
tive statistics: the sample moments and quantities derived from them are
obtained by finding the moments from the empirical distribution function,
and the sample quantiles are simply defined as the quantiles from the em-
pirical distribution function.

For simplicity and uniformity of notation, suppose that the underlying
distribution function F is differentiable, with derivative F ′ = f . Then the
moments and quantiles of the theoretical distribution F are defined, for
integers r ≥ 1 and probabilities p ∈ (0, 1), by

µr = rth moment = E(Xr
1) =

∫

xr f(x) dx

xp = pth quantile =

{

F−1(p) if F (x) = p has unique sol’n x
otherwise, midpoint of interval of solutions

The r = 1 moment is simply the mean or expectation. The variance σ2

has a well-known simple expression in terms of the first and second moments,

Var(X1) = E(X1 − µ1)
2 = E(X2

1 ) − 2 E(X1) µ1 + µ2
1 = µ2 − µ2

1

and the standard deviation σ is defined as the square root of the variance.
The skewness of a random variable X1 is a measure of the asymmetry of
the random variable’s distribution, defined as the expectation

skewness = E
(

(X1 − µ1)/σ
)3

= (µ3 − µ3
1 − 3 µ1σ

2)/σ3

Finally, the kurtosis of X1 is a measure of the heaviness of the tails of the
density f of X1, defined by

kurtosis of X1 = E
(

(X1 − µ1)/σ
)4 − 3

The skewness and kurtosis were invented to compare distributional shape
with the standard-normal or ‘bell curve’ density. Both skewness and kurtosis
are easily checked to be 0 for the normal. We consider the values for two other
familiar distributions, the tk with k degrees of freedom and the Gamma(k, 1)
with shape parameter k. Both of these distributions are close to normally
distributed when k is large. The tk is symmetric and has skewness 0 for all
values of k, while the Gamma(k, 1) has skewness 2/

√
k. The kurtosis is ∞

for tk for k ≤ 4, but for larger values of k is given as follows:
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Kurtosis

k= 5 6 7 8 10 20 80

t-dist (k df) 6 3 2 1.5 1 .375 .017

The quantiles of a distribution with density which is strictly positive
on an interval and 0 outside that interval are just the inverse distribution
function values, xp = F−1(p). The p’th quantile is also called the 100p’th

percentile, and several quantiles have special names: the 1/2 quantile is the
median, the 1/4 quantile is the lower quartile (designated Q1 in SAS),
and the 3/4 quantile is the upper quartile (designated Q3).

Finally, we briefly summarize the definitions and computing formulas for
the sample moments and quantiles. The rth sample moment is the rth

moment of the discrete random variable XW (where the Xi data values are
again regarded as fixed) is given by

µ̂r = E(Xr
W ) =

n
∑

i=1

P (W = i) Xr
i =

1

n

n
∑

i=1

Xr
i

The r = 1 sample moment is the sample mean, µ̂1 = X̄. However,
the variance of XW differs from the usual definition of sample variance

S2 = (n − 1)−1 ∑n
i=1 (Xi − X̄)2, by the factor n/(n − 1), since it is easy to

check that

Var(XW ) =
1

n

n
∑

i=1

(Xi − X̄)2 =
n − 1

n
S2

(The reason this factor is introduced is to make the estimator S2 an unbiased
estimator of σ2, a correction that does matter in small data samples but does
not really concern us here.) Finally, the sample skewness and kurtosis are
obtained from the plug-in formulas

sample skewness = (µ̂3 + 2 X̄3 − 3 X̄ µ̂2)/(µ̂2 − X̄2)3/2

sample kurtosis = (µ̂4 − 4X̄µ̂3 + 6X̄2µ̂2 − 3X̄3)/(µ̂2 − X̄2)2

Sample quantiles x̂p are obtained by the same rule used to calculate
quantiles, but using the empirical distribution function inverse. The main
difference is that it quite often happens in the discrete empirical distribution
that there is a whole interval [c, d) of values (between successive ordered
values of Xi observations) on which the empirical distribution has the con-
stant value p, and in this case the second part of our definition gives
x̂p = (c + d)/2.

5


