
From Monte Carlo Simulation to Bootstrap
Eric Slud, Mathematics Department, UMCP

Objective: to explain an ”experimental” approach to

Probability & Statistics via Simulation

Outline

O. Definition of Probability & Simulation

I. Simulation-based estimation of Probabilities

II. Simulation in relation to Data: Histograms and Densities

III. Resampling from Data: Why Do It ?
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What is Probability ?

• A rule for assigning numbers between 0 and 1 to Events

• Obeys combination rules the same as Relative Frequencies

1 = certain to occur

Prob’s add for unions of disjoint events

• Definition of Relative Frequency: if a Random

Experiment is replicated a large number N times,

independently (with mutual non-interference)

by same mechanism, and event E occurs nE times,

its relative frequency of occurrence is nE/N .
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Probability as Limiting Relative Frequency

Probability axioms are obeyed by relative frequencies.

Formal mathematics definition of Probability as Set-Function
plus def’n of independent identical-mechanism replications

E1, E2, . . . , EN :

{
P(Ei) same for all i , and for j’s distinct

P(Ej1 ∩ Ej2 ∩ · · · ∩ Ejk
) = P(Ej1) · · ·P(Ejk

)

leads to mathematical theorem Law of Large Numbers saying:

as N → ∞,
1

N

N∑

j=1

I[Ej] → P(E1)

We want to implement this computationally !
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What is Monte Carlo Simulation ?

Ingredient #1: Dynamical Random Number Generator

• Recursive rule xn+1 = f(xn) operating on fixed-length
vectors xn of integers, plus simple mapping g : xn 7→ Un

so that U1, U2, . . . , UN behaves like independent identically
distributed Uniform[0,1] random variables

Classic example: xn = 0, . . . ,231 − 1 Un = xn/231

• Linear Congruential: xn+1 = a · xn + b mod m

a = 75 , b = 0 , m = 231 − 1

(Park & Miller, Trans. ACM. 1988)
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Defining ‘Simulation’, cont’d

Ingredient #2: Expression of desired data structure:
Data as function of Building Block Uniform(0,1) r.v.’s

Examples: (a) Drawing from a list 1 . . .23 with replacement
Uvec = runif(100) gives 100-vector Uvec
which can be treated as indep. Unif[0,1]

Xvec = trunc(23*Uvec) + 1

X = 1 + greatest integer <= 23*U

(b) How would you code 100 independent random selections
from 1 . . .230 with replacement ?

(c) Selections of 100 from 1 . . .230 without replacement ?
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More on Defining ‘Simulation’

Ingredient 2, cont’d: coding ‘data’ from indep. Un

(d) 5-card poker hands: 5 w.o. replacement from 1 . . .52

Xvec = trunc(52*Uvec)+1 > Poker

Xnew = unique(Xvec)[1:5] Clubs Diam Heart Spad

Cards = 1+(Xvec-1) %% 13 "2.Cl" "2.Di" "2.He" "2.Sp"

Hand = Poker[Xnew] "3.Cl" "3.Di" "3.He" "3.Sp"

Pairs = sum(table(Cards)==2) "4.Cl" "4.Di" "4.He" "4.Sp"

...

In Hand of 5 cards, tabulate # pairs among card values 2. . .A
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‘Simulation’, Ingredient 3

Question or Event specification or Variable to Average.

(e) Geometric Probability: what fraction of random points
in the Unit Square fall in Inscribed Circle ?

Coding: Uvec, Vvec vectors of X and Y coordinates

Variable: DistSq = (Uvec− .5)2 + (Vvec− .5)2

Question: InCirc = ( DistSq < 1/4 )

Proportion in Circle = Area = π/4 = .78540

Average Dist2 =
∫ 1
0

∫ 1
0

{
(u − .5)2 + (v − .5)2

}
du dv = 1/6
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Data from Examples

Poker: Question is prob of 2 pairs, xxyyz

Combinatorial answer is: 1

(52
5 )

(
13
2

)(
4
2

)(
4
2

)
44 = 0.047539

3 Runs, each with 10^5 simulated hands:

Run 1: 4793 of 1e5 had 2 pairs: estimated prob = .04793

Run 2: Tally of # pairs is : 0 1 2

52669 42504 4827

Run 3: Tally of # pairs is : 0 1 2

52880 42341 4779
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Data from Geom. Prob Example

In successive runs of N randomly generated points in Unit Square:

Run# N Radius InCirc AvDistSq

1 1e5 .5 0.7871300 0.1662735

2 1e5 .5 0.7855700 0.1664821

3 1e6 .5 0.7849080 0.1668259

4 1e6 1/3 0.3491230 0.1667787

5 1e6 1/3 0.349002 0.166720

Worksheet Questions. #1. Find a single best estimate from
these Data for the probability of a random point falling in the
Inscribed Circle, of radius 1/2 about (1/2,1/2) ?

#2. Can you account for the relative frequencies with which
random points fall in the circle of radius 1/3 about (1/2, 1/2) ?
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Conditional Prob’s via Simulation

Conditional questions come up naturally:

condition determines denominator !

Example. Conditional prob. X ∈ (.2, .6) given Y ∈ (.3, .8) :

(A) if (X,Y) random in the square

(B) if (X,Y) random in the circle (X − .5)2 + (Y − .5)2 < 0.25

(C) if (X,Y) random in the triangle X < Y

Simulations show the difference ! CondProb Demo
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Further Worksheet Questions

#3. What is the exact conditional probability of

(or relative area of region with)

X ∈ (.2, .6) given Y ∈ (.3, .8) for a random point

(X, Y ) in the triangular region 0 ≤ X < Y ≤ 1 ?

#4. Since all of these simulations must be programmed:

how might one tell that there are errors in the program,

or that the random number generator is not behaving

properly ?

This is a probability related question: but we have not

touched on the theoretical idea yet: that comes next.
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Law of Large Numbers

If X1, X2, . . . , XN are bounded random variables, independent

and identically distributed, then

P (|(X1 + · · · + XN)/N − E(X1)| > ε) → 0

as N → ∞, for each ε > 0.

Key example: Xi = {0,1} indicator that event E occurs in i’th

replicated dataset. Then E(X1) = P(E), heads probability .

So the LLN lets us make a prediction: if we think a simulation

is erratic because of inadequate sample size, then it ought to

settle down to stable results with larger N.
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Large N Behavior of Estimate p̂

Picture in CumPoker Demo

shows estimated fraction of points

falling within circle of radius 1/9 about (1/2, 1/2)

as number of points N in unit square grows.

To get quantitative idea of errors & variability

in simulation averages for a particular N ,

we next appeal to the Central Limit Theorem.
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(DeMoivre-Laplace) Central Limit Theorem

For fixed heads-probability p and number of independent
identical-mechanism coin tosses, the random number
of heads Sn among the first n tosses has Binomial(n, p)

prob. distribution: P(Sn = k) =
(
n
k

)
pk (1 − p)n−k , 0 ≤ k ≤ n

For fixed heads-probability p and interval (a, b), as n → ∞:

P(a <
Sn − np√
np(1 − p)

< b) →
∫ b

a
e−x2/2 dx√

2π
≡ Φ(b) − Φ(a)

Therefore with prob. Φ(b) − Φ(a), p̂n ≡ Sn
n lies between

1
n (np + a

√
np(1 − p)) = p + a

√
p(1−p)

n and p + b

√
p(1−p)

n
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Precision Bounds for Relative Frequencies

So if we simulate N replications E1, . . . , En of event E

and use relative frequency p̂N = 1
N

∑N
i=1 I[Ei occurs ]

to estimate p = P(E) , then

|p̂N − p|√
p(1 − p)

is bounded by





1.96/
√

N w.p. 0.95
2.576/

√
N w.p. 0.99

3.291/
√

N w.p. 0.999

Even when true p is unknown, w.p. ≥ .999, successive p̂N

from separate simulation batches of size N cannot be

farther apart than
√

4p(1 − p) · 3.291/
√

N ≤ 3.291/
√

N

(This relates to Worksheet Question #4 above.)
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Application of Precision Bounds

Recall data from 3 runs of 105 simulated Poker Hands:

Run 1 p̂ = .04793; Run 2 p̂ = .04827; Run 3 p̂ = .04779

With true p ≈ .048, find 99% precision bounds

2.576
√

(.048)(.952)/1e5 = 0.00174

(Multiply by
√

2 to bracket pairwise differences.)

Combine all three runs (N=3e5) by averaging, to get .04800

with .999 precision bound 3.291
√

(.048)(.952)/3e5 = .00128.

Exact 2-pair prob. = 0.047539, well within bounds.

(.04800-.047539)/sqrt((.048)*(.952)/3e5) = 1.181

is a perfectly unexceptional normal deviate.
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Definitions: Density & Histogram

Probability Density: function f ≥ 0, with
∫∞
−∞ f(x) dx = 1

With random variable following density f

Area under f over (a,b] =
∫ b

a
f(x) dx = P(a < X ≤ b)

Scaled Rel. Freq. Histogram: based on counts n1, n2, . . . , nL

of numbers of variable values X1, X2, . . . , XN resp. falling into

(equal-length) intervals (jh, (j + 1)h].

Histogram: g(x) =
nj

Nh
for jh < x ≤ (j + 1)h

(Scaling makes total area under g equal to 1 .)
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Relationship: Density vs. Histogram

Suppose X1, . . . , XN data points, tallied for histogram,

with nj values falling between jh, (j + 1)h.

If f is true density for the X’s, then LLN says for large N :

nj

N
≈ P(jh < X1 ≤ (j + 1)h) =

∫ (j+1)h

jh
f(x)dx

But the j’th Scaled Histogram Bar is then

nj

Nh
≈

1

h

∫ (j+1)h

jh
f(x)dx = Avg.Density Height in Cell

which is close to f(jh) when h is small !
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Further Worksheet Problems

#5. Suppose we do a simulation with N = 2000 iterations to
evaluate a probability p which (an initial few simulations
show) is in the neighborhood of 0.2. What is the 99%
precision bound for the estimate (i.e., the upper bound on
p̂ − p which holds with approximate probability 0.99 ) ?

#6. A certain type of density g is positive only on the interval
[0,1] and has a constant value gj ≤ 3 on each of the inter-
vals (j/20, (j + 1)/20]. Random variable values Y1, . . . , YN

are observed, with N = 1000. How accurate are the his-
togram bar heights as estimates of gj, if you can tolerate
a probability of error of 0.01 in your precision bounds ?
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Permutational Hypothesis Tests

Student 1908 dataset: 20 values of shoe wear, in 2 groups.

Want to see if observed difference 0.41 of GroupB-GroupA
averages is meaningfully large.

In the combined group of 20 shoe-wear values, there are
(
20
10

)
=

184756 ways to assign a subset of 10 as an artificial group B*
with A* as its complement. Out of all ways, we want to know
proportion giving

abs(B* mean - A* mean) > 0.41.

In this example could be found by enumeration, but generally
only by sampling.

In Demo PermShoe.txt , we sample 20,000.
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Efron’s Nonparametric Bootstrap

Illustrate another setting for randomly sampling from data.

Dataset of values of km/sec velocities of 82 galaxies.

Want to find IQR Interquartile range [61’st smallest minus 21’st

smallest] and know its Standard Deviation (= square root of

Variance) for this moderate sample from this distribution.

Histogram and results from 10,000 with-replacement samples of

82 values each from the same Galaxies dataset shown next:
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Histogram of 82 Galaxies,  IQR = 3385 
 Std. Dev. of 1e4 IQR's from Sample With Rep = 405.81
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