From Monte Carlo Simulation to Bootstrap

 Eric Slud, Mathematics Department, UMCPObjective: to explain an "experimental" approach to Probability \& Statistics via Simulation Outline
O. Definition of Probability \& Simulation
I. Simulation-based estimation of Probabilities
II. Simulation in relation to Data: Histograms and Densities
III. Resampling from Data: Why Do It ?

What is Probability ?

- A rule for assigning numbers between 0 and 1 to Events
- Obeys combination rules the same as Relative Frequencies $1=$ certain to occur
Prob's add for unions of disjoint events
- Definition of Relative Frequency: if a Random Experiment is replicated a large number N times, independently (with mutual non-interference) by same mechanism, and event E occurs n_{E} times, its relative frequency of occurrence is n_{E} / N.

Probability as Limiting Relative Frequency

Probability axioms are obeyed by relative frequencies.
Formal mathematics definition of Probability as Set-Function plus def'n of independent identical-mechanism replications
$E_{1}, E_{2}, \ldots, E_{N}:\left\{\begin{array}{l}P\left(E_{i}\right) \text { same for all } i, \text { and for j’s distinct } \\ P\left(E_{j_{1}} \cap E_{j_{2}} \cap \cdots \cap E_{j_{k}}\right)=P\left(E_{j_{1}}\right) \cdots P\left(E_{j_{k}}\right)\end{array}\right.$
leads to mathematical theorem Law of Large Numbers saying:

$$
\text { as } N \rightarrow \infty, \quad \frac{1}{N} \sum_{j=1}^{N} I\left[E_{j}\right] \rightarrow P\left(E_{1}\right)
$$

We want to implement this computationally!

What is Monte Carlo Simulation ?

Ingredient \#1: Dynamical Random Number Generator

- Recursive rule $x_{n+1}=f\left(x_{n}\right)$ operating on fixed-length vectors x_{n} of integers, plus simple mapping $g: x_{n} \mapsto U_{n}$ so that $U_{1}, U_{2}, \ldots, U_{N}$ behaves like independent identically distributed Uniform[0,1] random variables

Classic example: $x_{n}=0, \ldots, 2^{31}-1 \quad U_{n}=x_{n} / 2^{31}$

- Linear Congruential: $\quad x_{n+1}=a \cdot x_{n}+b \bmod m$

$$
a=7^{5}, b=0, m=2^{31}-1
$$

(Park \& Miller, Trans. ACM. 1988)

Demo 1A \& B \& C
$\mathrm{x}(\mathrm{n}) \longrightarrow \mathrm{x}(\mathrm{n}+1)$

S

Defining 'Simulation', cont'd

Ingredient \#2: Expression of desired data structure:
Data as function of Building Block Uniform $(0,1)$ r.v.'s
Examples: (a) Drawing from a list $1 \ldots 23$ with replacement Uvec $=$ runif (100) gives 100-vector Uvec which can be treated as indep. Unif[0,1]

```
Xvec = trunc(23*Uvec) + 1
X = 1 + greatest integer <= 23*U
```

(b) How would you code 100 independent random selections from $1 \ldots 230$ with replacement?
(c) Selections of 100 from $1 \ldots 230$ without replacement ?

More on Defining 'Simulation'

Ingredient 2, cont'd: coding 'data' from indep. U_{n}
(d) 5-card poker hands: 5 w.o. replacement from $1 \ldots 52$

| Xvec = trunc(52*Uvec)+1 | > Poker | | | |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Xnew = unique (Xvec) [1:5] | Clubs | Diam | Heart | Spad |
| Cards = 1+(Xvec-1) \%\% 13 | "2.Cl" | "2.Di" | "2.He" | "2.Sp" |
| Hand = Poker [Xnew] | "3.Cl" | "3.Di" | "3.He" | "3.Sp" |
| Pairs = sum(table(Cards)==2) | "4.Cl" | "4.Di" | "4.He" | "4.Sp" |

In Hand of 5 cards, tabulate \# pairs among card values 2...A

'Simulation', Ingredient 3

Question or Event specification or Variable to Average.
(e) Geometric Probability: what fraction of random points in the Unit Square fall in Inscribed Circle ?

Coding: Uvec, Vvec vectors of X and Y coordinates
Variable: DistSq $=(\text { Uvec }-.5)^{2}+(\text { Vvec }-.5)^{2}$
Question: InCirc $=($ DistSq $<1 / 4)$
Proportion in Circle $=$ Area $=\pi / 4=.78540$
Average Dist $^{2}=\int_{0}^{1} \int_{0}^{1}\left\{(u-.5)^{2}+(v-.5)^{2}\right\} d u d v=1 / 6$

Data from Examples

Poker: Question is prob of 2 pairs, xxyyz
Combinatorial answer is: $\quad \frac{1}{\binom{52}{5}}\binom{13}{2}\binom{4}{2}\binom{4}{2} 44=0.047539$
3 Runs, each with $10^{\wedge} 5$ simulated hands:

Run 1: 4793 of $1 e 5$ had 2 pairs: estimated prob $=.04793$

Run 2: Tally of \# pairs is :	0	1	2	
		52669	42504	4827
Run 3: Tally of \# pairs is :	0	1	2	
		52880	42341	4779

Data from Geom. Prob Example

In successive runs of N randomly generated points in Unit Square:

Run\#	N	Radius	InCirc	AvDistSq
1	1 e 5	.5	0.7871300	0.1662735
2	1 e 5	.5	0.7855700	0.1664821
3	1 e 6	.5	0.7849080	0.1668259
4	1 e 6	$1 / 3$	0.3491230	0.1667787
5	1 e 6	$1 / 3$	0.349002	0.166720

Worksheet Questions. \#1. Find a single best estimate from these Data for the probability of a random point falling in the Inscribed Circle, of radius $1 / 2$ about $(1 / 2,1 / 2)$?
\#2. Can you account for the relative frequencies with which random points fall in the circle of radius $1 / 3$ about $(1 / 2,1 / 2) ?$

Conditional Prob's via Simulation

Conditional questions come up naturally: condition determines denominator !

Example. Conditional prob. $X \in(.2, .6)$ given $Y \in(.3, .8)$:
(A) if (X, Y) random in the square
(B) if (X, Y) random in the circle $(X-.5)^{2}+(Y-.5)^{2}<0.25$
(C) if (X, Y) random in the triangle $X<Y$

Simulations show the difference!
CondProb Demo

Further Worksheet Questions

\#3. What is the exact conditional probability of (or relative area of region with) $X \in(.2, .6)$ given $Y \in(.3, .8)$ for a random point (X, Y) in the triangular region $0 \leq X<Y \leq 1$?
\#4. Since all of these simulations must be programmed: how might one tell that there are errors in the program, or that the random number generator is not behaving properly ?

This is a probability related question: but we have not touched on the theoretical idea yet: that comes next.

Law of Large Numbers

If $X_{1}, X_{2}, \ldots, X_{N}$ are bounded random variables, independent and identically distributed, then

$$
P\left(\left|\left(X_{1}+\cdots+X_{N}\right) / N-E\left(X_{1}\right)\right|>\epsilon\right) \rightarrow 0
$$

as $N \rightarrow \infty$, for each $\epsilon>0$.

Key example: $X_{i}=\{0,1\}$ indicator that event E occurs in i 'th replicated dataset. Then $E\left(X_{1}\right)=P(E)$, heads probability.

So the LLN lets us make a prediction: if we think a simulation is erratic because of inadequate sample size, then it ought to settle down to stable results with larger N .

Large N Behavior of Estimate \widehat{p}

Picture in CumPoker Demo
shows estimated fraction of points
falling within circle of radius $1 / 9$ about ($1 / 2,1 / 2$) as number of points N in unit square grows.

To get quantitative idea of errors \& variability in simulation averages for a particular N, we next appeal to the Central Limit Theorem.

(DeMoivre-Laplace) Central Limit Theorem

For fixed heads-probability p and number of independent identical-mechanism coin tosses, the random number of heads S_{n} among the first n tosses has Binomial (n, p) prob. distribution: $P\left(S_{n}=k\right)=\binom{n}{k} p^{k}(1-p)^{n-k} \quad, 0 \leq k \leq n$

For fixed heads-probability p and interval (a, b), as $n \rightarrow \infty$:

$$
P\left(a<\frac{S_{n}-n p}{\sqrt{n p(1-p)}}<b\right) \rightarrow \int_{a}^{b} e^{-x^{2} / 2} \frac{d x}{\sqrt{2 \pi}} \equiv \Phi(b)-\Phi(a)
$$

Therefore with prob. $\Phi(b)-\Phi(a), \quad \hat{p}_{n} \equiv \frac{S_{n}}{n}$ lies between $\frac{1}{n}(n p+a \sqrt{n p(1-p)})=p+a \sqrt{\frac{p(1-p)}{n}}$ and $p+b \sqrt{\frac{p(1-p)}{n}}$

Precision Bounds for Relative Frequencies

So if we simulate N replications E_{1}, \ldots, E_{n} of event E and use relative frequency $\quad \hat{p}_{N}=\frac{1}{N} \sum_{i=1}^{N} I\left[E_{i}\right.$ occurs]
to estimate $p=P(E)$, then

$$
\frac{\left|\widehat{p}_{N}-p\right|}{\sqrt{p(1-p)}} \quad \text { is bounded by } \quad\left\{\begin{array}{l}
1.96 / \sqrt{N} \\
2.576 / \sqrt{N} \\
\text { w.p. } 0.95 \\
3.291 / \sqrt{N} \\
\text { w.p. } 0.99 \\
\hline
\end{array}\right.
$$

Even when true p is unknown, w.p. $\geq .999$, successive \hat{p}_{N} from separate simulation batches of size N cannot be farther apart than $\sqrt{4 p(1-p)} \cdot 3.291 / \sqrt{N} \leq 3.291 / \sqrt{N}$
(This relates to Worksheet Question \#4 above.)

Application of Precision Bounds

Recall data from 3 runs of 10^{5} simulated Poker Hands:
Run $1 \hat{p}=.04793 ;$ Run $2 \hat{p}=.04827 ;$ Run $3 \hat{p}=.04779$
With true $p \approx .048$, find 99% precision bounds

$$
2.576 \sqrt{(.048)(.952) / 1 e 5}=0.00174
$$

(Multiply by $\sqrt{2}$ to bracket pairwise differences.)
Combine all three runs ($\mathrm{N}=3 \mathrm{e} 5$) by averaging, to get .04800 with .999 precision bound $3.291 \sqrt{(.048)(.952) / 3 e 5}=.00128$.
Exact 2-pair prob. $=0.047539$, well within bounds.

$$
(.04800-.047539) / \operatorname{sqrt}((.048) *(.952) / 3 e 5)=1.181
$$

is a perfectly unexceptional normal deviate.

Definitions: Density \& Histogram

Probability Density: function $f \geq 0$, with $\int_{-\infty}^{\infty} f(x) d x=1$ With random variable following density f

$$
\text { Area under } \mathrm{f} \text { over }(\mathrm{a}, \mathrm{~b}]=\int_{a}^{b} f(x) d x=P(a<X \leq b)
$$

Scaled Rel. Freq. Histogram: based on counts $n_{1}, n_{2}, \ldots, n_{L}$ of numbers of variable values $X_{1}, X_{2}, \ldots, X_{N}$ resp. falling into (equal-length) intervals $(j h,(j+1) h$.

Histogram: $\quad g(x)=\frac{n_{j}}{N h}$ for $\quad j h<x \leq(j+1) h$
(Scaling makes total area under g equal to 1.)

Plot of Single-Cell Histogram Bar \& Density Seqment over the interval (0.4, 0.6]

Relationship: Density vs. Histogram

Suppose X_{1}, \ldots, X_{N} data points, tallied for histogram, with n_{j} values falling between $j h,(j+1) h$.

If f is true density for the X 's, then LLN says for large N :

$$
\frac{n_{j}}{N} \approx P\left(j h<X_{1} \leq(j+1) h\right)=\int_{j h}^{(j+1) h} f(x) d x
$$

But the j 'th Scaled Histogram Bar is then

$$
\frac{n_{j}}{N h} \approx \frac{1}{h} \int_{j h}^{(j+1) h} f(x) d x=\text { Avg.Density Height in Cell }
$$

which is close to $f(j h)$ when \mathbf{h} is small!

Further Worksheet Problems

\#5. Suppose we do a simulation with $N=2000$ iterations to evaluate a probability p which (an initial few simulations show) is in the neighborhood of 0.2 . What is the 99% precision bound for the estimate (i.e., the upper bound on $\hat{p}-p$ which holds with approximate probability 0.99)?
\#6. A certain type of density g is positive only on the interval $[0,1]$ and has a constant value $g_{j} \leq 3$ on each of the intervals $(j / 20,(j+1) / 20]$. Random variable values Y_{1}, \ldots, Y_{N} are observed, with $N=1000$. How accurate are the histogram bar heights as estimates of g_{j}, if you can tolerate a probability of error of 0.01 in your precision bounds ?

Permutational Hypothesis Tests

Student 1908 dataset: 20 values of shoe wear, in 2 groups.
Want to see if observed difference 0.41 of GroupB-GroupA averages is meaningfully large.

In the combined group of 20 shoe-wear values, there are $\binom{20}{10}=$ 184756 ways to assign a subset of 10 as an artificial group B^{*} with A^{*} as its complement. Out of all ways, we want to know proportion giving

```
abs(B* mean - A* mean) > 0.41.
```

In this example could be found by enumeration, but generally only by sampling.

In Demo PermShoe.txt, we sample 20,000.

Efron's Nonparametric Bootstrap

Illustrate another setting for randomly sampling from data.
Dataset of values of $\mathrm{km} / \mathrm{sec}$ velocities of 82 galaxies.

Want to find IQR Interquartile range [61'st smallest minus 21'st smallest] and know its Standard Deviation (= square root of Variance) for this moderate sample from this distribution.

Histogram and results from 10,000 with-replacement samples of 82 values each from the same Galaxies dataset shown next:

Histogram of 82 Galaxies, IQR = 3385
Std. Dev. of 1e4 IQR's from Sample With Rep = 405.81

References

Google Random Number Generation

http://en.wikipedia.org/wiki/Random_number_generator

Diaconis, P. \& Efron, B. (1983). Computer-intensive methods in statistics. Scientific American May, 116-130.

Lecture slides at: http://www.math.umd.edu/ evs/MMIslides.pdf .

Visit the R project website http://www.r-project.org/ for freely downloadable software !

Scripts for R code in demos at:
http://www.math.umd.edu/ evs/MMIscriptR.txt

