How Monte Carlo Sampling Contributes to Data Analysis

Eric Slud, Mathematics Department, UMCP

Objective: to explain an "experimental" approach to Probability & Statistics via Simulation

Outline

- I. Definition of Probability & Simulation
- II. Simulation-based estimation of Probabilities
- III. Simulation in relation to Data: Histograms and Densities
- IV. Resampling from Data: Why Do It ?

What is Probability ?

- A rule for assigning numbers between 0 and 1 to *Events*
- Obeys combination rules same as Relative Frequencies

 means "certain to occur"
 Prob's add for unions of disjoint events
- Definition of Relative Frequency:

for Random Experiment repeated N times, independently (*with mutual non-interference*) by same mechanism, and event E occurs n(E) times,

its **relative frequency** of occurrence is n(E)/N.

Example: Dice-Throwing

'Experiment' : tossing pair of dice independently

On 1 toss, 36 outcomes $(1,1), (2,1), \ldots, (6,1), (1,2), \ldots, (6,6)$

'Event' $E = A \cup B$: sum of dots 7 or 11

7 dots : $A = \{(1,6), (2,5), \dots, (5,2), (6,1)\}$

11 dots :
$$B = \{(5,6), (6,5)\}$$

$$P(7 \text{ or } 11) = P(A \cup B) = P(A) + P(B)$$

$$= 6/36 + 2/36$$

Use independently repeated experiments, to reach clear predictions.

Probability as Limiting Relative Frequency

Probability axioms are obeyed by relative frequencies.

Formal mathematics definition of Probability as Set-Function plus def'n of **independent identical-mechanism replications**

$$E_1, E_2, \dots, E_N : \begin{cases} P(E_i) \text{ same for all } i \text{ , and for j's distinct} \\ P(E_{j_1} \cap E_{j_2} \cap \dots \cap E_{j_k}) = P(E_{j_1}) \cdots P(E_{j_k}) \end{cases}$$

leads to mathematical theorem Law of Large Numbers saying:

as
$$N \to \infty$$
, $\frac{1}{N} \sum_{j=1}^{N} I[E_j] \to P(E_1)$

We want to implement this computationally !

What is Monte Carlo Simulation ?

Ingredient #1: **Dynamical Random Number Generator**

• Recursive rule $x_{n+1} = f(x_n)$ operating on fixed-length vectors x_n of integers, plus simple mapping $g : x_n \mapsto U_n$ so that U_1, U_2, \ldots, U_N behaves like independent identically distributed random variables Uniformly distributed in (0, 1)

Classic example:
$$x_n = 0, ..., 2^{31} - 1$$
 $U_n = x_n/2^{31}$

• Linear Congruential: $x_{n+1} = a \cdot x_n + b \mod m$

$$a = 7^5, b = 0, m = 2^{31} - 1$$

(Park & Miller, Trans. ACM. 1988)

Demo 1A & B & C

Defining 'Simulation', cont'd

Ingredient #2: Expression of desired data structure: Data as function of Building Block Uniform(0,1) r.v.'s

Examples: (a) Drawing from a list 1...23 with replacement
Uvec = runif(100) gives 100-vector Uvec
which can be treated as indep. Unif[0,1]

```
Xvec = trunc(23*Uvec) + 1
X = 1 + greatest integer <= 23*U</pre>
```

(b) How would you code 100 independent random selections from 1...230 with replacement ?

(c) Selections of 100 from 1...230 without replacement ?

More on Defining 'Simulation'

Ingredient 2, cont'd: coding 'data' from indep. U_n

(d) **5-card poker hands:** 5 w.o. replacement from 1...52

Xvec = trunc(52*Uvec)+1	> Poker			
<pre>Xnew = unique(Xvec)[1:5]</pre>	Clubs	Diam	Heart	Spad
Cards = 1+(Xvec-1) %% 13	"2.Cl"	"2.Di"	"2.He"	"2.Sp"
Hand = Poker[Xnew]	"3.Cl"	"3.Di"	"3.He"	"3.Sp"
<pre>Pairs = sum(table(Cards)==2)</pre>	"4.Cl"	"4.Di"	"4.He"	"4.Sp"

• • •

In Hand of 5 cards, tabulate # pairs among card values 2...A

'Simulation', Ingredient 3

Question or Event specification or Variable to Average.

(e) **Geometric Probability:** what fraction of random points in the Unit Square fall in Inscribed Circle ?

Coding: Uvec, Vvec vectors of X and Y coordinates

Variable: DistSq =
$$(Uvec - .5)^2 + (Vvec - .5)^2$$

Question: InCirc = (DistSq < 1/4)

Proportion in Circle = Area = $\pi/4$ = .78540

Average
$$Dist^2 = \int_0^1 \int_0^1 \left\{ (u - .5)^2 + (v - .5)^2 \right\} du \, dv = 1/6$$

8

Data from Examples

Poker: Question is prob of 2 pairs, xxyyz

Combinatorial answer is: $\frac{1}{\binom{52}{5}}\binom{13}{2}\binom{4}{2}\binom{4}{2} = 0.047539$

3 Runs, each with 10⁵ simulated hands:

Run 1: 4793 of 1e5 had 2 pairs: estimated prob = .04793

Run 2:	Tally	of	#	pairs	is	•	0	1	2
							52669	42504	4827
Run 3:	Tally	of	#	pairs	is	•	0	1	2
							52880	42341	4779

Data from Geom. Prob Example

In successive runs of N randomly generated points in Unit Square:

Run#	Ν	Radius	InCirc	AvDistSq
1	1e5	.5	0.7871300	0.1662735
2	1e5	.5	0.7855700	0.1664821
3	1e6	.5	0.7849080	0.1668259
4	1e6	1/3	0.3491230	0.1667787
5	1e6	1/3	0.349002	0.166720

Worksheet Questions. #1. Find a single best estimate from these Data for the probability of a random point falling in the Inscribed Circle, of radius 1/2 about (1/2,1/2)?

#2. Can you account for the relative frequencies with which random points fall in the circle of radius 1/3 about (1/2, 1/2)?

Conditional Prob's via Simulation

Conditional questions come up naturally: condition determines denominator !

Example. Conditional prob. $X \in (.2, .6)$ given $Y \in (.3, .8)$:

(A) if (X,Y) random in the square

(B) if (X,Y) random in the circle $(X - .5)^2 + (Y - .5)^2 < 0.25$

(C) if (X,Y) random in the triangle X < Y

Simulations show the difference ! CondProb Demo

Further Worksheet Questions

#3. What is the exact conditional probability of (or relative area of region with) $X \in (.2,.6)$ given $Y \in (.3,.8)$ for a random point (X,Y) in the triangular region $0 \le X < Y \le 1$?

#4. Since all of these simulations must be programmed: how might one tell that there are errors in the program, or that the random number generator is not behaving properly ?

This is a probability related question: but we have not touched on the theoretical idea yet: that comes next.

Law of Large Numbers

If X_1, X_2, \ldots, X_N are bounded random variables, independent and identically distributed, then

$$P\left(|(X_1 + \dots + X_N)/N - E(X_1)| > \epsilon\right) \to 0$$

as $N \to \infty$, for each $\epsilon > 0$.

Key example: $X_i = \{0, 1\}$ indicator that event E occurs in i'th replicated dataset. Then $E(X_1) = P(E)$, Avg = Prob.

So the LLN lets us make a prediction: if we think a simulation is erratic because of inadequate sample size, then it ought to settle down to stable results with larger N.

Large N Behavior of Estimate \hat{p}

Picture in CumPoker Demo

shows estimated fraction of points falling within circle of radius 1/9 about (1/2, 1/2) as number of points N in unit square grows.

To get quantitative idea of errors & variability in simulation averages for a particular N, we next appeal to the **Central Limit Theorem**.

Central Limit Theorem (CLT)

With N indep. repetitions and true probability p = P(E) $S_N = n(E) = \#$ occurrences of E

has **Binomial**(N, p) distribution mean Np, and 'standard deviation' $\sqrt{Np(1-p)}$

The CLT says $(S_N - Np)/\sqrt{Np(1-p)}$ behaves for large N like a 'standard normal' $\mathcal{N}(0, 1)$ distributed random variable,

falling between ± 1 w.p. .68, ± 2 w.p. .95, ± 2.58 w.p. .99, ± 3.29 w.p. .999

Precision Bounds for Relative Frequencies

So if we simulate N replications E_1, \ldots, E_n of event E and use relative frequency $\hat{p}_N = \frac{1}{N} \sum_{i=1}^N I[E_i \text{ occurs }]$ to estimate p = P(E), then $\frac{|\hat{p}_N - p|}{\sqrt{p(1-p)}}$ is bounded by $\begin{cases} 1.96/\sqrt{N} & w.p. \ 0.95\\ 2.576/\sqrt{N} & w.p. \ 0.999\\ 3.291/\sqrt{N} & w.p. \ 0.999 \end{cases}$

Even when true p is unknown, w.p. \geq .999, successive \hat{p}_N from separate simulation batches of size N cannot be farther apart than $\sqrt{4p(1-p)} \cdot 3.291/\sqrt{N} \leq 3.291/\sqrt{N}$

(This relates to Worksheet Question #4 above.)

Application of Precision Bounds

Recall data from 3 runs of 10^5 simulated Poker Hands: **Run 1** $\hat{p} = .04793$; **Run 2** $\hat{p} = .04827$; **Run 3** $\hat{p} = .04779$ With true $p \approx .048$, find 99% precision bounds $2.576\sqrt{(.048)(.952)/1e5} = 0.00174$ (Multiply by $\sqrt{2}$ to bracket pairwise differences.)

Combine all three runs (N=3e5) by averaging, to get .04800 with .999 precision bound $3.291\sqrt{(.048)(.952)/3e5} = .00128$. Exact 2-pair prob. = 0.047539, well within bounds.

(.04800-.047539)/sqrt((.048)*(.952)/3e5) = 1.181is a perfectly unexceptional normal deviate.

Definitions: Density & Histogram

Probability Density: function $f \ge 0$, with $\int_{-\infty}^{\infty} f(x) dx = 1$ With random variable following density f

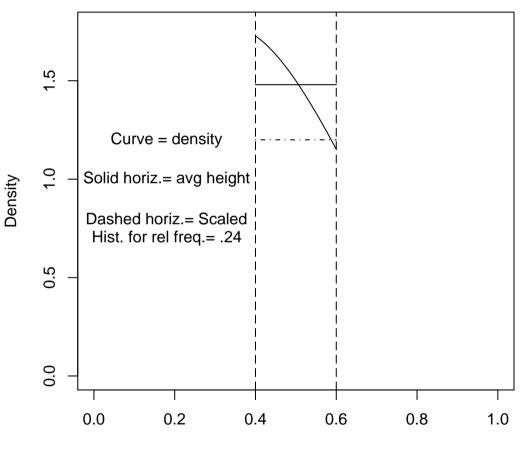
Area under f over (a,b] =
$$\int_a^b f(x) dx = P(a < X \le b)$$

Scaled Rel. Freq. Histogram: based on counts n_1, n_2, \ldots, n_L of numbers of variable values X_1, X_2, \ldots, X_N resp. falling into (equal-length) intervals (jh, (j+1)h].

Histogram:
$$g(x) = \frac{n_j}{Nh}$$
 for $jh < x \le (j+1)h$

(Scaling makes total area under g equal to 1.)

Plot of Single–Cell Histogram Bar & Density Seqment over the interval (0.4, 0.6]



X value

Relationship: Density vs. Histogram

Suppose X_1, \ldots, X_N data points, tallied for histogram, with n_j values falling between jh, (j+1)h.

If f is true density for the X's, then LLN says for large N:

$$\frac{n_j}{N} \approx P(jh < X_1 \le (j+1)h) = \int_{jh}^{(j+1)h} f(x)dx$$

But the j'th Scaled Histogram Bar is then

 $\frac{n_j}{Nh} \approx \frac{1}{h} \int_{jh}^{(j+1)h} f(x) dx = \text{Avg.Density Height in Cell}$

which is close to f(jh) when h is small !

HistDemo Illustrations

Further Worksheet Problems

- #5. Suppose we do a simulation with N = 2000 iterations to evaluate a probability p which (an initial few simulations show) is in the neighborhood of 0.2. What is the 99% precision bound for the estimate (*i.e.*, the upper bound on $\hat{p} - p$ which holds with approximate probability 0.99)?
- #6. A certain type of density g is positive only on the interval [0,1] and has a constant value $g_j \leq 3$ on each of the intervals (j/20, (j+1)/20]. Random variable values Y_1, \ldots, Y_N are observed, with N = 1000. How accurate are the histogram bar heights as estimates of g_j , if you can tolerate a probability of error of 0.01 in your precision bounds ?

Sampling From Data

Consider pictured data values $(X_1, Y_1), (X_2, Y_2) \dots, (X_{299}, Y_{299})$ (measured waiting times between and durations of 'Old Faithful' geyser eruptions).

Next suppose we generate N = 100 batches of size up to 299 by independently sampling **with replacement** from the observed dataset. Can study typical behavior of various statistics, e.g.

```
median X\,, inter-quartile range of Y , 'best-fitting line slopes'
```

GeysPlot, GeysLines, MedSamp Demos

Further Data Analysis via Resampling

Geyser Data: compare mean duration within

groups defined by : ${Duration>3 \\ Duration\leq 3}$

Also compare Duration \times Wait lines within these groups !

GeysPlot Picture

References

Google Random Number Generation

http://en.wikipedia.org/wiki/Random_number_generator

Diaconis, P. & Efron, B. (1983). Computer-intensive methods in statistics. *Scientific American* May, 116-130.

Lecture slides at: http://www.math.umd.edu/~evs/MMIslid09.pdf .

Visit the **R project** website http://www.r-project.org/ for freely downloadable software !

Scripts for R code in demos at: http://www.math.umd.edu/ evs/MMIscriptR.txt

More on Central Limit Theorem

Previously discussed CLT for (relative) freq. counts (binomial random variables). Suppose we estimate parameter ϑ like mean or median or best-fitting line slopes from 'statistic' T.

Recalculate statistic values T_1, \ldots, T_N from indep. batches of data. Then sample mean $\overline{T} = (T_1 + \cdots + T_N)/N$ accurately estimates E(T) (may be different from ϑ !),

and $s_T^2 = \frac{1}{N-1} \sum_{i=1}^N (T_i - \overline{T})^2$ estimates Var(T)

CLT says
$$\overline{T} \approx E(T_1) + \frac{Z}{\sqrt{N}}s_T$$
 , $Z \sim \mathcal{N}(0, 1)$