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Abstract. The ongoing Small Area Income and Poverty Estimates (SAIPE)
project at the Census Bureau estimates numbers of poor school-age children
by state, county, and ultimately school district, based upon Current Popu-
lation Survey (CPS) and IRS data along with information from the latest
decennial census. The current SAIPE county-level methodology relies on a
Fay-Herriot (1979) model fitted to log-counts of related school-age children
in CPS-sampled households, and discards data from those sampled counties
with no sampled poor children. The present paper compares SAIPE small-
area estimation by analogous Fay-Herriot models for logarithms of county
child poverty rates with a unit- (i.e., individual-) level logistic regression
model with county-level random effects (GLMM). This comparison is based
upon several loss criteria applied to SAIPE datasets from 1994 and 1990,
using CPS weighted estimates or (in 1990) decennial census data as stan-
dards of truth for the county-level child poverty rates being estimated. The
GLMM is shown to fit the data better than the log-rate Fay-Herriot models,
when judged by the internal evidence of the 1994 and 1990 CPS datasets.
SAIPE’s Fay-Herriot fitting method for 1990 log-rates performs excellently
in matching to the 1990 Census log-rate in CPS-sampled counties, but worse

than GLMM in counties with no CPS sample.
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1 Introduction: Historical Aspects of SAIPE

Under the terms of Title I of the Elementary and Secondary Education Act,
more than $7 billion in compensatory education funds annually are allocated
to counties and school districts using a formula involving child poverty-rate
estimates. The SAIPE approach to county-level estimates was developed
in response to legislation in 1994 (NRC Report of the National Academy
of Sciences Panel of Estimates for Small Geographic Areas, Citro & Kalton
2000a, p. 3) calling for the Census bureau to supply ‘updated estimates’ of
county-level child poverty for use in Title I allocations to counties in 1997-
98 and 1998-99, and thereafter to provide estimates at school-district level.
Prior to that time, decennial census data had been the source for such esti-
mates (NRC Report 2000a, p. 16). ‘Updated estimates’ were to be based on
models using census data plus data from other sources. The ‘other sources’
which have been chosen for this purpose are the annual Current Population
Survey (CPS) (NRC Report 2000a, pp. 19-27) and administrative-records
data (NRC Report 2000a, pp. 28-30) from IRS (income tax returns) and the

Food Stamp program.



The CPS is the primary national survey measuring population and poverty
each year, applying a rotating panel design to provide monthly data for
clustered housing units sampled within a weighted probability sample of
geographic units including about 1300 counties annually. It was chosen in
the SAIPE program to provide the major indicators of national county-level
changes in child poverty, in the form of sample-weighted estimates of num-
bers and proportion of poor children among children aged 5-17 related to
primary householder (poor related school-age children). In SAIPE, and in
this paper, the CPS data are analyzed as a two-stage sample with Primary
Sampling Unit (PSU) equal to county. For improved stability of estimates,
three years of CPS data (including that of the year before and the year
after the income-year of interest) are combined to provide the response vari-
able (logarithm of CPS weighted county estimate of number of poor related
school-age children, or logarithm of ratio of CPS weighted county estimate
of number of poor related school-age children over CPS estimate of related
school-age children) in the models described below. Thus, in what we refer to
as the 199/ SAIPFE dataset, the combined CPS (March income supplement)
samples in the years 1992-1994, corresponding to 1488 distinct counties,
were used to produce county-level child poverty estimates for the year 1993.
Similarly, the 1990 SAIPE dataset refers to CPS aggregates over the 1259
counties providing data in 1988-1990, for estimation of poverty in 1989.

The objective of the SAIPE county model is to use decennial-census and
administrative predictor variables to express the similarity of child-poverty
data across counties, thereby ‘borrowing strength’ (Ghosh and Rao 1994)
from observed data to compensate for the absence of many counties from
3-year CPS samples and for the smallness of samples in many other counties.

Since the outcome of modeling is to estimate numbers of related poor school-



age children in all counties, SAIPE is constrained to use only administrative-
record predictor variables which are available in appropriately aggregated
form for all counties nationally. Since the IRS and CPS data, along with
other national records, are by law confidential at the individual level, the
constraint of uniform national coverage is coupled to further constraints
regarding strong agency controls on the manner of release of data. The
most useful variables which have been found to meet these constraints are
the county numbers of child exemptions for families in poverty and of all
child exemptions reported on tax returns, along with county numbers of
households participating in the Food Stamp program.

Many exploratory analyses of SAIPE data with alternative models have
been performed over the last decade (NRC Report 2000a, Chapter 5), in
order to choose the best available model specification and small-area pre-
dictors from the variables derived from IRS county-aggregated data, CPS
sample data, and long-form county aggregates from the most recent decen-
nial census. The modeling framework chosen is that of Fay and Herriot
(1979), as described in detail in the next S

ection. The four models which turned out to be the best (NRC Report
2000a, models (a)-(d) p. 56), primarily from the point of view of maximized
likelihood and adequacy of fit to the CPS-derived response variables, in-
cluded (logarithms of) the administrative-records predictors described above
together with the logarithm of either the under-21 county population or
the under-18 county population demographically updated from estimates of
the previous decennial census. The under-18 population count was found
clearly superior to the under-21 in the log-Number model which was judged
the best, cited from now on as the standard SAIPE model, in which the

response variable is the log number of related school-age poor children and



the predictors are logs of numbers (rather than rates) from administrative
records. Although the Report claims that the under-18 choice actually wors-
ened the performance of the log-rate model, the difference is very slight, and
we consider here only the under-18, not the under-21, population counts in
defining regressors.

The current-year county-level predictor variables for the SAIPE log- Rate

county model are:

LTAXRT = logarithm of IRS-estimated Child Poverty Rate;

LSTMPRT = logarithm of Food-Stamp Participation rate;

LFILRT = logarithm of IRS Child Tax-Exemptions divided by
Population Estimate;

LCPRT = logarithm of Poverty Rate for residents aged 5--17

from the latest decennial census.

In either the log-Number or log-Rate form of the SAIPE Fay-Herriot (FH)
model, the response variable cannot be computed in a PSU with sampled
children when the sample contains no related poor school-age children. The
data from such sampled counties are dropped when estimating model pa-
rameters. (In 1994, 304 such PSU’s out of 1488 were dropped, and in 1990,
231 out of 1259.) The non-sampled counties and counties with no poor
related school-age children in the sample are somewhat different from typ-
ical counties nationally: since the largest counties are always sampled, the
non-sampled counties tend to be smaller and more rural, and that is obvi-
ously true also of the sampled but dropped counties. The regression model
is supposed to hold equally well over all counties, but is fitted using only
those with sampled related poor school-age children. Moreover, although

the relative modeling effectiveness on sampled versus non-sampled counties,



in the decennial year 1990 when external comparisons on all counties were
possible, was not a primary concern of the National Academy of Sciences
(NAS) panel, the NRC Report (2000a, p. 162) indicates that the standard
SAIPE model over-predicts poverty in small counties. Both Reports (2000a,
p. 162; 2000b, p. 6, 2nd bullet) urge as a research priority for SAIPE that
estimation techniques such as GLMM which would not drop sampled coun-
ties should be developed. To remove unwanted time discrepancies between
predictors and responses, and to reduce time lags between income-year and
predictors, the NRC Report (2000a, p. 30, p. 162) urges that research move
toward an analysis method which would operate on single-year CPS data
if possible. Single-year samples would contain an even larger proportion
of counties without sampled poor related children which would have to be
dropped in fitting the SAIPE FH models.

For these reasons, we compare the SAIPE FH models with General-
ized Linear Mixed Models (GLMM'’s), specifically with a class of random-
intercept logistic regression models. Since such models directly specify and
estimate the rate of child poverty rather than the number of poor children,
and since the differences in performance between the SAIPE standard and
log-Rate models were not large (Report 2000a, Chapters 5-6 and Appendices
B-C), we restrict attention to the log-Rate model, re-fitting it and related
FH models along with the GLMM’s.

1.1 Organization of the paper

This paper is organized as follows. Section 2 defines the models on which
the existing and proposed Small Area Estimation (SAE) methods are based,
with SAE formulas given in section 2.1; criteria for SAE comparisons de-

fined in section 2.2; description and summary in section 2.3 of SAE biases in



related simulations; and explanation in section 2.4 of how the methods take
into account within- and between- PSU weighting in the CPS sample design.
Section 3 details the data-analytic comparison of the models studied, pro-
ceeding from a descriptive analysis of CPS and census data in Section 3.1,
to exact specification of all models in Section 3.2, and display of results
respectively versus internal (CPS) and external (census) standard of truth
in Sections 3.3 and 3.4. The results are pulled together in the discussion of

Section 3.5 to yield conclusions and recommendations in Section 4.

2 Competing Methods for SAIPE Estimation

The mixed-effect linear models used and seriously considered in SAIPE are
all of the following general Fay-Herriot (1979) model (FH) form. For each
primary sampling unit (PSU), or county, indexed by i =1,...,m, sample-
sizes m; and p-dimensional vectors x; of predictor variables are known
(with n; artificially re-set to 0 in the case of log-transformed responses
when no poor children are sampled in PSU ). Response-variables satisfying

yi =z f+ u + e u; ~ N(0,02) eirv/\/<0,%) (1)

i

are observed whenever n; > 0. Here 3 € RP is a vector of unknown
fixed-effect coefficients, and wu;, e; are respectively PSU random effects
and sampling errors, independent of each other within and across PSU’s.

Ordinarily, ¢2 is unknown and estimated, while v, is known. In SAIPE

u
practice as of 1995 (NRC Report 2000a, p. 37), v is unknown and the
model error from fitting a regression model with the same predictors to

previous decennial census data is treated as the known value of o2.



Small area estimates (SAE’s) based on such FH models are statistics

designed to estimate with small mean squared error (MSE) the parameters
Vi =xi B+ v, i1=1,....,m

In the SAIPE log-Rate FH models, y; is the observed log child-poverty
rate for the ¢’th PSU, with the rate itself defined by exponentiating:

97 = exp(d) = exp(af B+ u;) (2)

Based upon the methods proposed in Slud (1999, 2000b) of estimating
logistic GLMM’s via maximization of an accurately calculated log-likelihood,
we propose here a logistic GLMM which would make use of all available
SAIPE data. If z; are p-dimensional predictors and u; ~ N(0,02) are
random PSU effects as in (1), and if ) denotes the number of sampled

poor related school-age children, then the model assumes

y) ~ Binom(n;, m;) log< > = 2"b + (3)

1—m i
with b now the unknown fixed-effect coefficients. The parameters m; =

E(y?/n; |u;) are themselves rates, and in that sense comparable to (2).

Remark 1 Note two distinctions between the rate-parameters in the mod-
els (1) and (3). First, the numbers n; in (1) have historically been taken
as numbers of sampled households, while n; in (3) should logically be
taken as the number of sampled related school-age children. Second, the
rate-parameter 97 in (2) is not quite the conditional expectation of the
empirical child poverty rate: instead, E(e¥ |u;) = 0% evs/(%). The ra-
tionale for comparing 7 and m; is that the same models are viewed as
holding if y; in (1) were replaced by the analogous log-rate Y; over the
whole of the PSU, n; in (3) by the total number N; of related school-age
children, and 3 by Y= N; exp(Y;). O



2.1 SAE Formulas

In the FH setting, the estimators for 1J; based on the data {y;, n;: n; >
0, 1 < j < m} satisfying (1) are the standard EBLUP estimators (cf.
Prasad and Rao 1990, Ghosh and Rao 1994)

O; = 2" B+ 4 (y; — 27 B)

where (3,62) or (B,9.) are the maximum likelihood (ML) estimators in
model (1), and 4; = 62/(62+ve/n;) or 4 = 02/(02+1./n;), depending
on which variance component is being estimated. We adopt the convention
that 4; =0 (so that V; = x A) when n; = 0.

Data-analytic results are presented below both with the usual FH model

(cited as LmA) with v, assumed known but o2

unknown, and also (cited
as LmB) with ¢2 as known and v, unknown in model (1). In either case,
the (complete-data) estimators for the exponentiated small-area parameters

UF = exp(Y;) are given by the approximately bias-corrected formula
Q% tr A 2 tr 1 ~2 N
Ui = exp (2B + 5i(yi—= ﬁ)+§ o (1= %) (4)

In GLMM analyses, the parameters (b, 02) in (3) are estimated via
Maximum Likelihood, using the accurate numerical log-likelihood approxi-

mations described in Slud (2000b), and the resulting SAE’s take the form

A e(nt+o2)(yi+1) Y+oz)y;
9 = / 2)dz | / 9(x)dz (5)

(1 + 6(17+0'z n1+1 1+e 'y+oz)

where values 7 = xl" B and o = &, are substituted; where ¢ is the
standard normal density; and where the values y;, n; are taken to be 0

in PSU’s with no sample. These SAE’s are as given by Slud (1999).



2.2 Criteria for Model-Comparisons

It is recognized that even in decennial years, census and CPS estimates of
school-age child poverty rates differ for nonsampling reasons (2000a NRC
Report, pp. 16-27); but the fit of different SAIPE models was generally as-
sessed in the NRC Report (Citro & Kalton 2000a) by ‘internal’ comparisons
with CPS weighted estimates. The corresponding ‘external’ comparator is
the child poverty rate estimated from the most current decennial census,
perhaps modified by updated demographic information. It seems from the
historical notes on SAIPE in Chapters 1-3 of the NRC Report that ade-
quacy of fit to CPS estimates has now replaced fit to census-based estimates
as the primary criterion in determining the best SAIPE model, although the
Report uses the pattern of model-based SAE’s on regionally and demograph-
ically defined subgroups of counties to check the model results. However,
the CPS estimates are highly variable in small counties, and to the extent
that the internal and external comparators disagree, even in larger counties,
there is currently no principled way to decide which should be primary.

We undertake model comparisons in this paper with respect to the 1990
and 1994 SAIPE datasets, based on loss-functions which measure discrep-
ancies between model-based SAE’s 97 and a county rate 9% (estimated
from CPS or census) serving as standard of truth. The loss functions (cf.
NRC Report 2000a, Appendix C) are:

SSQ = 3" (0 0%, WiSSQ = > v (9) — 9;°0)?

% 7

Abs = |07 =00, Witdbs = > v [0F — 90
Here v; denotes a within-PSU sample-size indicator: for sampled PSU’s, the

CPS-estimated number n} (defined below in Section 2.4) of sampled related
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school-age children in the 4’th county; and for non-sampled counties the
census population in 1990, or the demographic population estimate in 1994.
For sampled PSU’s, WtAbs is the total number of sampled children whose
poverty status would be mis-predicted to be poor by each SAE method.
Whenever SAE’s are compared to census rates, which unlike CPS sample

estimates are never 0, we supplement the other loss-criteria with
m ~
AbsRel = > |07 /970 — 1

For the reasons sketched in the first paragraph of this subsection, we present
results separately with both choices of truth-standard, internal (CPS) and
external (decennial-census), and separately within the CPS sample, for coun-
ties which did and did not yield sampled poor related school-age children,
and (in 1990 data, with decennial census as truth standard) for counties not
sampled by CPS.

In addition, each model implicitly predicts an expected proportion of
counties which will yield no poor children among their sample of children.
Therefore, we also compare models with respect to the accuracy of agreement
of these expected proportions with the observed ones. The calculations
under (1) are as follows. In county ¢, with n} sampled children and
log-rate y;, suppose that the observed rate is replaced by 0 rather than
e whenever n;e¥% < 1. For fixed parameters (83, 02, v.) in (1), the

expected proportion of counties which will have no sampled poor children is

m—1 Z B(— l"gm—m) (6)

Vo2 + ve/n;

The expected proportion of counties without poor sampled children accord-

ing to model (3) is

S [ (1 explalB+ 0u2) ™ 0(z) d (7)
=1

11



2.3 Background for comparisons

In order to compare GLMM-based SAE’s in SAIPE to the currently used
SAE’s, Slud (2000, 2002) has previously conducted several simulation ex-
periments. Briefly, those experiments found that the GLMM method had
10-30% lower empirical mean-squared error than the FH method when the
true model was GLMM, and even when the true GLMM was assumed to
have a logarithmic link — a setting more closely resembling the log-linear
mean-rate specification of the standard SAIPE FH model— the MSE of the
GLMM estimators was not more than 5-10% worse and was often better
than that of the FH estimators. Part of the explanation for this was that
even with a logarithmic link, the FH model was misspecified when applied
only to sampled PSU’s with nonzero counts of child poor. However, the
simulation experiments showed a small systematic bias of FH-based SAE’s,
when the log-link GLMM holds. The bias of the SAE’s under FH models

(LmA or LmB) was roughly linear, as a function of the true rate 9; € [0, .27] :
Bias ~ .00167 — .0667 v;

Under GLMM’s with logarithmic link, the SAE biases gradually increase as
a function of response probability ¥; up to 0.14, from —.005 to .005, and
then trend sharply down, as far as —.04 or farther, near ¥; = .27.

To study the effects in SAIPE of data-truncation due to dropping coun-
ties with no sampled poor children from analysis, we performed another set
of unpublished simulations on the FH model (1), with true parameters equal
to the SAIPE log-rate model parameters below, with values y; treated as
observed only when n;e¥ > 1. Then, in each simulation iteration, the pa-
rameters (3,02) (LmA case) or (3,v.) (LmB case) were estimated by ML
from the observed data and then substituted into the SAE formulas (4), (6).

12



We found that the SAE estimators 19? had a non-negligible and systemati-
cally positive bias with median value 0.07, and the bias had correlation 0.27
with 9. Moreover, whether the analysis was done using the LmA or LmB
model, the (untransformed) SAE biases ranged from —.02 to 0.30 (inter-
quartile range was .052-.096 for LmB and approximately the same for
LmA) and showed a definite negative slope with respect to log sample size
(i.e., log(n;)), roughly following the equation SAEbias ~ .095—.006log(n;).
The large size and systematic tendency of the simulated SAE biases with
respect to ¥; or n; seem to be due to the large biases (of order 0.1 in coeffi-
cients, and 3 or 10% in v.) in the estimated parameters based on truncated
data. However, the FH model-fitting errors due to truncation may not seri-

ously compromise the quality of the associated SAE’s (¢f. Section 3.1).

2.4 Accounting for Between- and Within-PSU Weighting

Since the data for SAIPE estimates are collected with the CPS’s sample
survey design, the method of analysis should reflect the weights (roughly,
the inverse probabilities of sampling) of PSU’s and of individuals within
PSU’s. For the FH models, the two types of weighting enter very differently.
First, the differential weighting of individuals within each PSU is already
taken into account in the weighted CPS ratio estimator of county child-
poverty rate whose logarithm is the response variable for all FH models.
Next, the form of the sampling-error term v./n; in the FH model links the
error structure to county size, which serves as a surrogate for PSU weight.
That is, if the PSU random-effects w; were known, then the log-likelihood
— 15 {log(ve/ni) + nily; — x B — u;)?/ve} is the same as for a normal

model with error-variance v, in which the ¢’th PSU receives weight n;.
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However, the SAIPE log-rate FH model or the FH models fitted below do
not otherwise take between-county CPS weights into account.

The definitions of models (1) and (3) immediately lead to different strate-
gies for between-PSU weighting in their ML analysis. First, in the log-
likelihood for (1), each county enters with equal weight, the only distinction
between counties based on sample-size being made through the sampling-
error variance term v./n;. On the other hand, the Glm model (3), while
judged as an aggregate PSU-level model, has the form of a unit-level model,
which (due to the identical covariates used over each county) enters n;
log-likelihood terms for county 4, thereby giving larger counties greater in-
fluence in determining the fixed-effect coefficients and variance components
than is done in the FH model MLE’s.

In (3), regarded as a unit-level model, n; would be the number of related
school-age children in county 4, with ¢! the actual sampled number of poor
children. However, fitting the model in that form does not allow the within-
county weights to be reflected at all. Therefore, in estimating GLMM model
parameters with SAIPE data, we take n; instead to be the CPS weighted
ratio estimate n; equal to the county number of children sampled, defined
as: the exact count of sampled HU’s with population multiplied by the
weighted estimate of total CPS school-age children divided by the weighted
estimate of total CPS HU’s with population. (Our CPS data did not include
a separate weighted estimate of the sampled number of related school-age
children.) The same type of sampling weight adjustment was previously
adopted by Robert, Rao and Kumar (1987) in the case of a fixed effects
logistic model. Similarly 9 in the likelihood for (3) is replaced by nj e¥:.
Since our purpose is to compare GLMM and FH analyses, we replace n; by

n} in all FH models, other than the SAIPE under-18 log-rate model itself.

7
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3 SAIPE Data Analyses: FH vs. GLMM

3.1 Preliminary Fitting of log-Rates

For all of the models compared here, the key determinant of model quality is
the closeness of the relationship between the predictor variables and the CPS
or census (log-rate) response variables. Therefore, we begin by summarizing
the results of direct scatter-plotting and linear modelling of these responses
in terms of the SATPE (log-rate) predictors.

(i) The sample correlation between the log of county estimates of child-
poverty rates from the 1980 and 1990 decennial censuses is high (0.82) but
not extremely so.

(ii) The correlation, in 1990 CPS-sampled counties with poor sampled
children, between the logs of the 1990 census-estimated child poverty rate
and the CPS weighted-ratio estimated child poverty rate is not high (0.51).

(iii) The SAIPE log-rate predictors of the 1990 decennial census log child
poverty rate provide an extremely good fit (correlation 0.96 between fitted
and observed values over all 3130 counties). Similarly high correlations
persist when the relationship is restricted to CPS-sampled counties or to
counties with CPS-sampled poor children.

(iv) The correlation is very high (0.95) between the 1990 decennial cen-
sus log rate (over CPS counties with poor sampled children) and the cor-
responding fitted values from the linear regression model for 1990 log CPS
rate versus the SAIPE log-rate predictors (which incorporated census data
only from 1980). The correlation between fitted values (from the same linear
model) and log census rates on the set of all CPS-sampled counties is also
0.95, and the correlation over all counties is 0.925, still amazingly high.

(v) In a linear model with 1990 log CPS rate as response, and with the

15



log-rate SAIPE predictors augmented by the logs of denominators (which
are the census county population size, census population 5-17, and census
county population recalculated using CPS definitions), the coefficients for
the latter variables were quite insignificant, and the multiple R? has the
same value .281 with and without the extra variables.

(vi) A linear model with 1990 log CPS rate as response, with log-rate
SATPE predictors augmented by 1990 log census-rate, leaves the coefficient
of the log census-rate very insignificant.

One consequence of (i)-(iv) is that a linear model with SAIPE log-
rate predictors already reproduce the log 1990 census rate remarkably well.
SAIPE’s legislative mandate to provide ‘updated estimates’ was apparently
interpreted to mean that between decennial censuses, CPS direct child-
poverty estimates in larger counties were regarded as more reliable than
past census rates, and the EBLUP estimates 9; and (4) explicitly aver-
age both types of rates. Remark (v) further justifies using a log-rate model
instead of the log-count model favored in the NRC Report (2000a). Re-
mark (vi) suggests that the residuals of the log CPS rate from the model
with SAIPE log-rate predictors are largely independent of the current census
county rates. In the context of SAIPE state poverty estimates, Huang and
Bell (2002) found that in decennial years a model which equates true census
and CPS state poverty rates is best (in AIC sense), while models involving
the other SATPE predictors are best in income years at least 2 years after
the previous census. In (vi), we find that a model for 1990 CPS rates can

ignore the 1990 census rate if it retains the SAIPE log-rate predictors !
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3.2 Exact Specification of Models for Comparison

In our data analyses below, we compare six models, five FH models and
the GLMM model (3), ML analysis of which is labeled as Glm. All six
models are aggregated at county level, with FH responses e¥% and GLMM
responses 39 /n} equal to the CPS weighted ratio estimate of child poverty
rate. The SAIPE under-18 log-Rate model, labeled Saipe, is the same as
model (d) in the NRC Report (2000a): model (1) with y; the logarithm of
the CPS weighted ratio estimate of child poverty rate, n; the total number
of sampled HU’s with population, and o2 = 0.0140 taken to be known from
a separate regression using data from the previous decennial census. In all
other models, the sample-size n; is replaced by the quantity n; defined
in the previous paragraph.

Five other FH models (1) are considered, all but the last of which have
the same four predictors as Saipe. The first, labeled FH.LmB, is refitted
by ML, with ¢? = .014 fixed as though known to have exactly the same
value as for Saipe, and v, is estimated. Second, the model FH.LmA
fixes the v, estimate from FH.LmB as though that were known, and re-

estimates parameters 3 and o2 in (1) by ML. Third, the model FH.GB

2

. estimated in Glm below as though known, and fits v,

fixes the o
as unknown variance-parameter in (1). Next, we fit a joint ML model (1),
labeled FH.jt, in which both o2, v, are estimated as unknown parameters.
(This can be done with existing software by alternately and repeatedly fixing

ve and estimating a FH model of LmA form, then fixing the estimated

2

< and estimating v. as unknown in the FH model of LmB form, until

o
convergence.) Finally, the predictors from both the SAIPE log-Count model

and the log-Rate model are nested in those for a larger model with the
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SAIPE log-Count predictors plus three additional predictors equal to the
logarithms respectively of (demographically updated Census estimates of)
the total under-18 county population and the total county population, along
with the log 5-17 population according to CPS definitions, calculated from
the previous decennial census. The re-fitted FH model, with seven predictors

plus intercept and both o2, v, treated as unknown, is labelled FH.jt2.

3.3 Internal Evidence from 1994 & 1990 SAIPE Data

We begin our summary of the 1994 SAIPE data-analysis by showing in
Table 1 the estimators of fixed-effect coefficients and variance components
for all of the 4-predictor log-rate models described above. Results for the
7-predictor FH.jt2 model are not displayed, because the coefficients of the
first four predictors are all within 0.02 of the corresponding FH.jt values; the
coefficients of the last three log-size predictors in FH.jt2 are non-significant,
and the log-likelihood for FH.jt2 is only 1.7 greater than for FH.jt, a
deviance of 3.4 which is moderate for a 3 likelihood-ratio test statistic.
The log-sizes are similarly non-significant in the 1990 Saipe data. Thus, in
the best-specified FH models, the log-Count is no better than versus the
log-Rate form of the model. Therefore, we do not consider FH.jt2 further.
[Table 1 here.]

The log-likelihoods in Table 1 all correspond to FH models with the same
response variable and predictors, but cannot be meaningfully compared to
the Glm log-likelihood. In any case, likelihood is a criterion of model-fit and
is quite distinct from model-comparisons based on SAE behavior. Of the
five FH models, Saipe is clearly the worst fitting. FH.LmB is just about
as bad, and is not considered further. FH.LmA is better than Saipe with
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respect to log-likelihood and somewhat better but very similar under most
of the loss-functions calculated below. Therefore FH.LmA can effectively
serve as a surrogate for Saipe in all Tables after Table 2. The FH models

show a wide variety of (02, v.) parameter combinations, connected by the

2

remark that o

and v, generally vary inversely. However, since Saipe or
FH.LmA have by far the smallest o2 values, and therefore give greatest
weight to the predictors rather than the direct estimates y; in (4), it is
to be expected in light of Section 3.1 that SAE’s from these models would
agree particularly closely in 1990 to census rates.

Examination of the fit of the Saipe 1994 model reveals the rather differ-
ent behavior of residuals for child-poverty rates for CPS-sampled counties
with and without child poor. (Residuals are calculated in terms of rates, not
log-rates, so for sampled counties without child poor, the residuals are the
expressions (4)). This applies, unsurprisingly, to all five FH models, which
are fitted using only the data from counties with sampled child poor. But
there is a systematic bias between the fitted child poverty rates in the Glm
analysis and those provided in the truncated-data FH models, clearly distin-
guishing those sampled counties with and without sampled child poor. First,
in Figure 1 all estimated rates are necessarily over-estimates in counties with
no sampled child-poor, but it was not easily predictable that relatively few
counties with child poor would have estimated rates which are too large.
(The same pattern obtains in the 1990 SAIPE dataset.) A more mean-
ingful distinction between predictability of child poverty rates by county is
given by Figure 2. There we plot versus the 1990 Census child-poverty rate
the county-by-county differences between the logit of estimated 1994 child-
poverty rates by Glm and by FH.LmA. The y-ordinate for the ¢’th county
is log((97)5m /(1 — (97)51m)) — log((d7)FH-LmA /(1 — (97)FH-LmA)). Fig.
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ure 2 shows that there are systematic differences between the way in which
the Glm and FH.LmA models predict within sampled counties which have
no sampled poor (related, school-age) children as compared with those that
did have sampled poor children. While the fitted Glm and FH.LmA child-
poverty rates had average logits respectively of -1.51 and -1.57 among coun-
ties with poor children (slightly greater than the counties’ average logit
child-poverty rate of -1.65 found in the 1990 decennial census), the Glm
had average logit rate of -2.36 (much lower than the 1990 census value of
-1.97) among the counties which in 1993-5 had CPS sample but no sam-
pled poor children, and the FH.LmA average logit estimated rate had the
much higher value of -1.87 (not far from the FH.LmA and Glm aver-
age logit rate on counties with sampled poor children). For application of
model predictions to non-sampled counties, it is much more plausible to
use a method which automatically gives lower child-poverty-rate predictions
to the sampled counties without sampled poor children. On this account,
we would expect Glm SAE’s to outperform those from FH models on the
non-sampled counties.

[Figure 1 about here.]

[Figure 2 about here.]

The figures analogous to Figures 1 and 2, based on other FH fitting-
methods in place of FH.LmA or on the 1990 SAIPE dataset in place of
the 1994 dataset, look very similar to these, and are not shown. A further
indication of the same behavior cited above, is the scatter-plot in Figure 3
of logit Glm estimated child-poverty rates versus the logit FH.LmA esti-
mated rates for CPS-sampled (1988-1990) counties, both fitted on the 1990

SAIPE data. In this picture, the counties without sampled poor children are
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plotted as solid diamonds, and those with poor children are plotted as hol-
low diamonds. The estimated rates under Glm tend to exceed those under
FH.LmA for counties with no sampled poor children, while the estimated

FH.LmA rates tend to be larger in counties with poor sampled children.

[Figure 3 about here.]

[Tables 2 and 3 about here.]

Tables 2 and 3 respectively show the loss-values for the 1994 and 1990
SAIPE datasets, for the internal (CPS) standard of truth. (For comparison,
we show also in Table 3 the loss-function values arising from ‘estimating’
the CPS rates by the census 1990 rates.) The immediate conclusion, by
all loss-criteria, is that the Glm method performs better overall than the
FH methods, and indeed, clearly outperforms all FH methods also on the
sets of counties with and without child poor, except that FH.GB gives the
best results among all methods on the counties with sampled poor children.
Among the other FH methods, Saipe and FH.LmA are very similar, with
FH.LmA usually the better of the two, except that on counties with no
sampled poor children the very slight differences are in favor of Saipe. This
pattern persists throughout: we do not continue to tabulate separate results
for Saipe, since they are extremely close to those for FH.LmA.

Among the m = 1488 counties with CPS-sampled related school-age chil-
dren in 1993-95, there are no poor children in 304, or 20.4%. With the fitted
parameters of model Saipe substituted, the expected proportion (6) is cal-
culated to have the much smaller value 0.089. By contrast, models FH.GB,
FH.LmA, and FH.jt respectively yield values 0.153, 0.162, 0.147 for the
proportion (6), still too small but not outrageously so. This can already be

interpreted as a serious and somewhat unanticipated modeling deficiency of
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Saipe. The calculated estimated proportion (7) of counties with no poor
sampled children from Glm is 0.142. From this comparison, we see that
none of the models considered can accurately reproduce the proportion of
sampled counties with no sampled child poor: FH.LmA and Glm models
underestimate slightly, and Saipe badly. A similar pattern is repeated for
the 1990 SAIPE data, in which 0.183 = 231/1259 is the true proportion
of all CPS-sampled counties with no sampled poor children, while the re-
spective model predictions are: for FH.jt 0.111, for FH.LmA 0.131, for
FH.LmB 0.127, for Saipe 0.068, for FH.GB 0.112, and for Glm 0.113.

3.4 Model-based estimators versus 1990 Census estimates

We turn now to external comparisons between the SAE’s, with reference
to the 1990 SAIPE dataset with the 1990 decennial census county child
poverty rates as standard of truth. Consider first the counties in the 1990
SAIPE dataset, i.e., those sampled by CPS from 1988-1990. Table 4 displays
five loss-function values for each of five SAE methods, for the 1990 census
rates as standard. Now Glm performs better than FH.GB in counties
with sampled poor children, and worse in counties without poor children, a
pattern opposite to that in Table 3. The Saipe-surrogate method FH.LmA
is now clearly the best-performing method, by all loss-criteria. Glm and
FH.jt are substantially equivalent (not shown in the Table).
[Tables 4 and 5 here.]

Table 5 summarizes the performance of the various SAE methods on the
counties which were not sampled by CPS in the period 1988-90, using the
1990 census as standard. Here as in Table 4, FH.LmA is the best of the
FH methods. But now, Glm shows a clear advantage over FH.LmA.: 25%
by the SSQ and WtSSQ loss-criteria, and 8-12% by the other criteria.
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As mentioned in Section 3.1, the excellent performance of Saipe and
FH.LmA SAE’s with respect to a decennial-census standard is an expected
consequence of the extremely high correlation in the decennial year 1990
between the census-estimated child-poverty rate and the linear predictor of
the log CPS rate in terms of SAIPE variables. In Table 1, the Saipe and
FH.LmA models have the smallest o2 by far, so that their SAE’s display
the greatest reliance on the fixed-effect predictors; and at the same time,
these models have the largest coefficient for the predictor LCPRT, the log
child-poverty rate derived from the previous decennial census which is the

variable most closely correlated with the 1990 decennial-census rate.

3.5 Which Criterion is Primary for SAIPE ?

The comparison between the FH and Glm model performance in SAIPE is
fairly clear. The GLMM does a much better job of fitting to CPS rate data,
and the quality of its SAE’s in reproducing census rates is also good. By
contrast, although the SAIPE log-rate models fit the CPS data inadequately
by several criteria, their associated SAE’s reproduce the decennial census
rates in decennial income years remarkably well. What are the implications
of these contrasting findings for SAIPE 7

SAIPE’s legislative mandate seems to require updated estimates between
decennial years which differ from decennial census rate-estimates whenever
current direct CPS estimates are reliable but disagree with census estimates.
In other words, CPS estimates in larger counties in mid-decade must be
allowed (collectively, through a model) to perturb estimates primarily based
on the past census. By the same logic, a modeled pattern in the current CPS
direct estimates in smaller or moderate-sized counties which reflects a change

from the past decennial-census values should also be allowed to affect SAE’s.
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However, there are at present no reliable ‘ground-truth’ measurements of
county child-poverty rates taken between decennial censuses.

With this logic in mind, we compared the performance of the same mod-
els and SAE’s as in Tables 4 and 5 upon the smaller set of CPS-sampled
counties with estimated population size at least 11000. These are the coun-
ties with above-median population: they have a median of 38 CPS-sampled
school-age related children. The SAE comparisons for these counties are
very similar to those displayed in the Tables. Thus, even in counties with
large enough size (and usually, sample of HU’s with related school-age chil-
dren) to make the direct estimate informative about the CPS log-rate, there
is an excellent fit by Glm, and Glm also does well with respect to the census
standard, although not nearly as well as FH.LmA or Saipe. On unsampled

large counties, Glm does exactly as well as Saipe, which is satisfactory.

4 Conclusions and Recommendations

The main conclusions of this research are as follows:

(A) In the SAIPE setting, SAE biases within the Fay-Herriot log-rate
model due to analysis with truncated datasets are small but systematic.
While the magnitudes of errors are not conclusively larger with FH than with
GLMM models, their distribution is noticeably different on CPS-sampled
than on non-sampled counties.

(B) The SAE’s based on the GLMM method Glm outperform all
FH competitors with respect to internal (CPS) loss-function criteria, on the
sets of all CPS-sampled counties, those with sampled child-poor, and those
without child poor. The only exception is the method FH.GB, in which a
large county random-effect is chosen to resemble that of Glm: this method

slightly outperforms Glm on the counties with child poor, but is much worse
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than Glm in counties without child poor.

(C) The Saipe or FH.LmA SAE methods agree much better with
the external census standard than other methods, including Glm, in CPS-
sampled counties, both in counties with and without sampled poor children.
However, in counties which were not sampled by CPS, Glm agrees more
closely with census rates than the FH methods studied.

(D) Of all the SAE methods compared, the only ones which clearly
outperform Glm by some criteria (FH.GB with respect to CPS standard on
sampled counties with sampled poor children, and FH.LmA with respect to
census standard on CPS-sampled counties) are resoundingly worse by other
criteria. The only one of the FH methods which is often good and never
terrible is the one based on FH.jt (jointly maximized with respect to both
variance-component parameters). But it is dominated by Glm. Thus, our
recommended method is Glm.

(E) The current Saipe method (log-rate, under-18 form) in essence
produces conditional estimates for child poverty given at least one sampled
poor child in a PSU. It performs extremely well with respect to the decennial
census standard, but by log-likelihood and loss-function measures, does not
fit SAE’s to the CPS data well. Its poorer fit to CPS is not attributable
to differences from the log-count FH models judged best in the NAS Panel
reports, and is corroborated by its very inaccurate model-based predictions
(from numbers of CPS-sampled related school-age children) of numbers of
counties without sampled poor children. Saipe’s good fit to the census and
poor fit to CPS rates are both largely due to the very small imposed (not
fitted) PSU-effect variance o2.

(F) Since the Glm method performs just as well, by comparison with

Saipe and FH.LmA , when restricted to larger counties, the SAIPE man-
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date to reflect current ‘updated’ (CPS and IRS) data in producing current
Small Area Estimates appears to be more adequately fulfilled by Glm than
by the Fay-Herriot methods.

If a GLMM approach to county-level SAE’s were adopted in SAIPE,
the county-level results would be raked to state totals, since the current

linear-model approach will likely continue to be used at the state level.
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Table 1: Coefficient and variance estimates in 1994 SAIPE dataset for 6
models discussed in the text. The model labeled Saipe is the log-rate under-
18 model fitted to the 94 SAIPE data. Its coefficients, given to only two
decimal places for reasons of nondisclosure, are as in the NRC report except
for an unexplained discrepancy of 0.02 in the LFILRT coefficient.

Glm FH.GB FH.LmA FH.LmB Saipe FH.jt

Param.
Intercept  .726 -.104 -.014 .051 .04 -.115
LTAXRT  .390 .394 .294 277 .26 .362
LSTMPRT  .406 210 .288 .293 .30 225
LFILRT -.318 -.359 -.343 -.390 -.44 -.334
LCPRT 441 294 .349 378 37 313
o2 550 550 071 014 014 .309
ve  .000 .755 17.27 17.27  33.625 3.306
logLik * 0 -1226.8 -1249.2 -1268.4 -1272.8 -1193.1

Table 2: Loss-criterion values for 4 SAE methods versus CPS (weighted
sampled-based) estimates, from 1994 SAIPE data, for all 1488 sampled coun-
ties, for all 1184 counties with sampled poor children, and for all 304 counties

without sampled poor children.

Glm FH.GB Saipe FH.LmA

All counties
SSQ  15.850 18.023  41.346 38.830
WtSSQ 91.124 158.55  722.64 566.02
WtAbs 1221.5 855.29 5219.4 4111.5
Abs  79.958 75.371 165.54 155.248

With child poor
SSQ  11.908 3.954 33.065 30.533
WtSSQ  66.078 9.029 636.01 478.95
WtAbs 948.98 155.52  4695.3 3583.9
Abs 49.784 15.937  120.75 110.22

No child poor
SSQ  3.942 14.069  8.280 8.297
WtSSQ  25.046 149.52  86.632 87.073
WtAbs 272.48 699.77 524.10 527.60
Abs 30.174 59.435 44.791 45.031
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GIlm Prediction Errors, 1994 CPS-sampled Counties
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Figure 1: Scatterplot of residuals between SAE’s and CPS-estimated child
poverty rates based on 1994 SAIPE county data, where counties with sam-
pled poor children are plotted with hollow triangles, and counties without

sampled poor children are plotted with solid triangles.
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Lolg_;_it Difference Between GIm and FH.LmA
itted Rates, '94 CPS-sampled counties
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Figure 2: Scatterplot of differences between SAE’s of 1994 child-poverty
rates from Glm and from FH.LmA, plotted for each county versus county
child-poverty rate from the 1990 census. Counties with sampled poor chil-
dren are plotted with hollow triangles, and counties without sampled poor

children are plotted with solid triangles.
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GIm vs FH.LmA Predicted Rates, SAIPE 1990
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Figure 3: Scatterplot of Child Poverty-rate Predictors for Glm versus
FH.LmA based on 1990 SAIPE dataset. Counties with sampled poor chil-
dren are plotted with hollow triangles, and counties without sampled poor

children are plotted with solid triangles.
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Table 3: Loss-criterion values for 3 SAE methods and Census 1990 versus
CPS (weighted sampled-based) estimates, from 1990 SAIPE data, for all
1259 sampled counties, for all 1028 counties with sampled poor children,
and for all 231 counties without sampled poor children.

Glm FH.GB FH.LmA Census

All counties

SSQ  5.641 8.923 20.751 23.03
WtSSQ  58.327 117.65 491.89 665.62
WtAbs 1108.5 757.90 4212.6 5462.9
Abs  47.722 45.565 112.37  123.67

With child poor
SSQ  3.655 0.785 15.396 18.08
WtSSQ 40.670 3.498 419.98 598.21
WtAbs 872.02 123.80 3730.5 4994.2
Abs  29.460 6.743 82.096 94.47

No child poor
SSQ  1.985 8.138 5.355 4.95
WtSSQ  17.657 114.15 71.909 67.41
WtAbs 236.47 634.10 482.06 468.7
Abs  18.262 38.822 30.272 29.20
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Table 4: Loss-criterion values for 3 SAE methods, from 1990 SAIPE data,
with respect to Census 1990 estimates: for all 1259 sampled counties, for
the 1028 counties with and the 231 counties without sampled poor children.

Glm FH.GB FH.LmA

All counties

SSQ  8.630 14.648 1.392
WtSSQ  409.06 562.09 74.139
WtAbs 4397.4 5046.9 1833.3
Abs  77.649 98.005 28.820
AbsRel  509.50 686.74 191.75

With child poor
SSQ  7.650 14.004 1.126
WtSSQ  389.62 552.96 71.04
WtAbs 4163.5 4878.2 1765.1
Abs  66.164 87.985 23.944
AbsRel 422.96 584.38 149.67

No child poor
SSQ  0.980 0.644 0.266
WtSSQ  19.430 9.132 3.104
WtAbs 233.89 168.75 68.215
Abs 11.485 10.019 4.876
AbsRel 86.530 102.36 42.077

Table 5: Loss-criterion values for 3 SAE methods, fitted from 1990 SAIPE
data, with respect to Census 1990 estimates for all 1870 counties not sampled
by CPS in 1988-90.

Glm FH.GB FH.LmA

SSQ 3.256 7.898 4.498
WtSSQ  7683.2  24003.1 10220.7
WtAbs 183377 368782 201046
Abs  55.502 98.295 62.039
AbsRel 310.31 589.08 331.95
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