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Abstract. We study Small Area Estimation based on data obtained by left-
censored responses from a Fay-Herriot (1979) normal-error model. The problem is
motivated by the Census Bureau’s ongoing Small Area Income and Poverty Estima-
tion (SAIPE) project, where a FH model is fitted to a logarithmically transformed
response variable (count of sampled poor children within a CPS-sampled county),
with PSU’s providing responses of 0 being discarded. Alternative small area esti-
mates and associated mean-squared error formulas are provided and supported by
a simulation study, and applied to a SAIPE data analysis.
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1 Introduction

Small-area estimation is becoming increasingly important in survey applica-
tions, particularly in those fields of official statistics where legislative man-
dates require socioeconomic estimates within narrower jurisdictions than
can accurately be described by direct estimates from national surveys. An
especially prominent and successful small-area project of this sort is the
US Census Bureau’s Small Area Income and Poverty Estimation (SAIPE)
program, an ongoing effort — mandated by Title I of the US federal Code
and currently funded under the No Child Left Behind Act — to estimate
(among other things) the numbers of poor school-age children by state,
county, and ultimately school district, based upon data from the Current
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Population Survey (CPS), Internal Revenue Service (IRS), Food Stamps,
and the latest decennial census. The estimation methodology used at the
county level — the level to which we restrict attention here — is to fit a
linear regression model to logarithms of counts of poor school-age children
related to the householders in CPS-sampled households, a regression model
of a form introduced by Fay and Herriot (1979) in which sampling error and
a random effect at the small-area level are separated and one (usually the
sampling error) is assumed known, based either on direct survey estimates
or a generalized variance estimation model.

In the SAIPE and many other applications of Fay-Herriot models, area-
level Small Area models are specified using a transformation (most often,
the logarithm) of the original sampled data or of weighted estimators de-
rived from it. PSU’s where sampled responses fall below a (possibly PSU-
dependent) threshold may be dropped, e.g. in SAIPE, counties with 0 sam-
pled poor children are dropped from the estimating equations defining na-
tional parameter values. In this paper, we develop formulas showing the
top-order effect of such left-truncation in biasing model parameters and
SAE’s. We show how the bias could be corrected approximately, starting
from estimates based on a Fay-Herriot model ignoring censoring, and how
more accurate parameter estimates and SAE’s could be derived by treating
the data as left-censored.

The problem treated here is generic in small-area estimation because
of the wide importance of Fay-Herriot models. Left-censoring arises either
because of transformation and excluded zeroes, as in SAIPE, or for struc-
tural reasons, e.g. due to an establishment survey’s imposition of lesser re-
porting requirements on small units. For example, the Energy Information
Administration’s monthly crude oil report is based on a survey (EIA-813,
http://www.eia.doe.gov/oss/forms.html) in which respondent compa-
nies that carry or store more than 1000 barrels of crude oil are required to
file data monthly. Another example is in the US National Resource Inventory
Survey (Nusser and Goebel 1997) data on wind erosion, collected annually
to produce average wind erosion at the national level. State and county au-
thorities are interested in county-level estimates of wind erosion, yet some
counties are typically discarded from the data analysis because their ob-
served wind erosion remains stable and small over time. The methods of
this paper would apply to such surveys, possibly after nonlinear transforma-
tion of the sampled measurements, when small-area estimates are needed if
there are good linear-model predictors for the response.
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2 FH Model for SAIPE Small Area Estimation

One of the most prevalent mixed-effect linear models used in small-area
estimations (Ghosh & Rao 1994), including SAIPE, is the Fay-Herriot (1979)
model (FH) form, described as follows. For each PSU indexed by i =
1, . . . , m, assume that a sample-size ni and p-dimensional vector xi of
predictor variables are known, and that response-variables satisfying

yi = xtr
i β0 + ui + ei , ui ∼ N (0, σ2

0) , ei ∼ N (0, si) (1)

are observed (whenever ni > 0), where β0 ∈ Rp is a vector of unknown
fixed-effect coefficients, and ui, ei are respectively PSU random effects and
sampling errors, independent of each other within and across PSU’s. The
variances si are assumed to be known functions of ni except possibly for a
constant ve of proportionality: the usual form is si ≡ ve/ni. Ordinarily,
the parameter σ2 is unknown and estimated, with σ2

0 denoting its true
value for the observed data, while ve is known. In SAIPE it also makes
sense to treat σ2

0 as known (estimated from an auxiliary model fitted to
the most recent decennial census data, cf. Citro and Kalton 2000, App. A)
and ve as unknown, and a parallel treatment of the issues treated here can
be given for this case.

Small area estimates (SAE’s) based on such FH models are statistics
designed to estimate with small mean squared error (MSE) the parameters

ϑi = xtr
i β0 + ui , i = 1, . . . , m

The values yi are generally direct survey estimators of the target small-
area parameters ϑi in the sampled PSU’s but may be unacceptably variable
because of small sample-size ni. In the SAIPE log-count FH models, yi

is the observed log number of poor children in the i’th PSU (county), with
the small-area parameter for the count itself defined by exponentiating:

ϑ∗
i = exp(ϑi) ≡ exp(xtr

i β0 + ui) (2)

2.1 SAE Formulas

In the FH model, the estimators we consider for ϑi based on the data
{yi, ni : ni > 0, 1 ≤ i ≤ m} above are the EBLUP estimators (cf. Prasad
and Rao 1990, Ghosh and Rao 1994, Rao 2003)

ϑ̂i = xtr
i β̂ + γ̂i (yi − xtr

i β̂) (3)
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where (β̂, σ̂2) or (β̂, v̂e) are the maximum likelihood (ML) estimators in
the model (1), and γ̂i = σ̂2/(σ̂2+si). (Note that while the papers of Prasad
and Rao (1990) and Lahiri and Rao (1995) treating large-sample properties
of EBLUP estimators restricted attention to moment-based estimators, an
analogous theory for ML estimators has been provided by Datta and Lahiri
(2001).) We follow the convention that γ̂i ≡ 0 (so that ϑ̂i = xtr

i β̂) when
ni = 0. In addition, we define for future reference the notations

τi = σ2
0 + si , γi =

σ2
0

τi
, ηi = xtr

i β0 , η̂i = xtr
i β̂

and let φ(z), Φ(z) respectively denote the standard normal density and
distribution function.

In later sections, we consider estimation of parameters under model (1)
based on different mechanisms causing the survey data to be incomplete.
We study several likelihoods and estimators for ν0 ≡ (β0, σ

2
0). In each

case, those estimators could be substituted into (3) to create small-area
predictors, but we also explore and compare other likelihood-based SAE’s.

3 Left-Censored FH-Model Data

Consider now the data yi satisfying model (1) reported in such a way that
the exact response-value yi is observed only if yi ≥ κi, where κi ∈ R is a
known real threshold. For count data, the threshold κi = 1 applies, while
if yi denotes the logarithm of a rate, yi = log(counti/ni), then a finite
transformed value is observed only if eyi ≥ 1/ni, i.e., κi ≡ − log(ni).

Under the assumption that the predictor variables (and sample sizes
ni) are available for all PSU’s, it is clear that the threshold-based sampling
framework described above results in the classic left-censored data structure
(Klein and Moeschberger 2003):

(

xi, ni, max(yi, κi), I[yi≥κi] : i = 1, . . . , m
)

(4)

with corresponding log-likelihood

lcens (β, σ2) = −
m
∑

i=1

{

1

2
I[yi≥κi]

(

log(2π(σ2 + si)) +
(yi − xtr

i β)2

σ2 + si

)

− I[yi<κi] log(Φ(
κi − xtr

i β√
σ2 + si

))

}

(5)
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In this setting, the value yi is replaced by an indicator whenever yi < κi.
Although that information has not always been used in surveys, the data do
include the indices of which sampled PSU’s have below-threshold responses.

In some surveys, there may instead be no information whatever on PSU’s
within the sampling frame which would have been sampled but would have
produced below-threshold responses. In such cases, m itself (as an overall
characteristic of the sampling frame) would be unknown, and the data would
consist only of

(xi, ni, yi : 1 ≤ i ≤ m, yi ≥ κi) (6)

which is a left-truncated sample (Klein and Moeschberger 2003), with log-
likelihood

ltrunc(β, σ2) = −
∑

i: yi≥κi

{

1

2

(

log(2π(σ2 + si)) +
(yi − xtr

i β)2

σ2 + si

)

− log(1 − Φ(
κi − xtr

i β√
σ2 + si

))

}

(7)

For survey data from a sampling frame assumed to satisfy (1), there are
at least four ways the statistician could analyze the data to provide param-
eter estimators ν̂ = (β̂, σ̂2) to be substituted into small-area estimators.

(A) One can drop the PSU’s with below-threshold responses, which is to
say estimate parameters ν = (β, σ2) from the dataset (6), using standard
FH methodology based on complete data. The underlying log-likelihood
here is

lcompl (β, σ) = − 1

2

∑

i: yi≥κi

{

log(2π(σ2 + si)) +
(yi − xtr

i β)2

σ2 + si

}

(8)

(B) One can recognize that the FH complete-data log-likelihood (8)is
misspecified under the sampling framework (6), and correct the parameter
estimators for bias and robustly estimate their large-sample variances.

(C) One can drop the PSU’s with below-threshold responses, but analyze
the left-truncated dataset (6) using the log-likelihood (7).

(D) Finally, one can analyze the left-censored dataset (4) using the left-
censored regression model log-likelihood.
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The Census Bureau’s SAIPE methodology has essentially been option
(A) above. The SAIPE program has historically (up through its 1997
county-level estimates of numbers of poor children) treated its log-transformed
county-level counts of poor related sampled children in the CPS (ASEC)
through a slightly modified FH model (1) treated as a complete-data model.
Strictly speaking, the FH model was used only in the variant form where
σ2 is taken as known – fitted within a generalized-variance framework from
decennial census data — and si = ve/nα

i with ve treated as unknown. The
value α used in practice has been α = 1/2 up through the 1995 estimates
and α = 1/4 starting with the SAIPE 1997 production estimates.

Our objective in this paper is first to study option (B) as a way of
deriving ‘correct’ large-sample estimators of parameters from left-censored
data, with a view to assessing, approximating and correcting for the biases
which arise in (A). Next, since the truncated dataset (6) contains strictly less
information (both in the vernacular and technical senses) than the censored
dataset (4), there is no good motivation for option (C) above, even though
its model is correctly specified: when the left-censored form (4) of the data
is available, a fully informative likelihood-based treatment (D) will provide
better large-sample estimators than those based on the reduced data (6).

The remainder of the paper is organized as follows. First, in Section 4,
we consider option (A) of estimating parameters using the complete-data FH
parameter estimates on (6), ignoring the left-truncation. We exhibit a top-
order approximation of the estimation biases, numerically assess the quality
of that approximation under several scenarios, and study the consequences of
the biases for small-area estimation. Next, in Section 5, we derive maximum-
likelihood estimators based on a parametric left-censored-data likelihood,
and compare the large-sample behavior and asymptotic variances of those
estimators withthe ones found in (B). All methods are compared first in a
realistic finite-sample simulation study, in Section 6, and then in a real-data
SAIPE example, in Section 7. Overall conclusions are drawn in Section 8.

4 Misspecified Analysis of Censored Data as Com-

plete

For the data-set observed in the form (6), a naive estimator ν̃ = (β̃, σ̃2) of
ν0 = (β0, σ2

0) obtained by maximizing lcens (β, σ2), equivalent to the one
actually used in SAIPE for the log-count model, is given by using precisely
the same formulas as before restricted to the observed data, namely:
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β̃(t) =

(

m
∑

i=1

x⊗2
i

t + si
I[yi≥κi]

)−1 m
∑

i=1

xi yi

t + si
I[yi≥κi]

and

β̃ ≡ β̃(σ̃2) , σ̃2 = arg min
t

m
∑

i=1

I[yi≥κi]

(

log(t + si) +
(yi − xtr

i β̃(t))2

t + si

)

Since these estimators are not derived from a likelihood or moment criterion
based on the left-truncated data model, one might expect them to be some-
what biased. It turns out that they are, and we calculate the large-sample
limits ν∗ = (β∗, σ2

∗) of ν̃ = (β̃, σ̃2) , as follows. First,

β̃ − β0 =
(

m
∑

i=1

I[yi≥κi]
x⊗2

i

σ̃2 + si

)−1 [
m
∑

i=1

I[yi≥κi]
xi(ui + ei)

σ̃2 + si

]

Next, denoting the variable of integration for the standard normal deviate
(ui + ei)/

√
τi as z, and defining

ξi ≡ (κi − ηi)/
√

τi = (κi − xtr
i β0)/

√

σ2
0 + si

note that yi = ηi + (ui + ei), and

E
(

I[yi≥κi] (ui + ei)
)

=
√

τi

∫ ∞

ξi

z e−z2/2

√
2π

dz =

√
τi√
2π

e−ξ2

i
/2

Therefore, applying a nonidentical-summand Law of Large Numbers
(uniform over the parameter t = σ̃2) within the previous expression for
β̃ − β0, the limit β∗ − β0 differs by an amount asymptotically negligible
in probability from

(

m
∑

i=1

x⊗2
i

σ̃2 + si
(1 − Φ(ξi))

)−1 1√
2π

m
∑

i=1

xi
√

τi

σ̃2 + si
e−ξ2

i
/2

In this same spirit, we deduce that for large m the estimator β̃(t) differs
asymptotically negligibly in probability from β∗(t) defined by

β∗(t) = β0 +
(

m
∑

i=1

x⊗2
i

t + si
(1 − Φ(ξi))

)−1 1√
2π

m
∑

i=1

xi
√

τi

t + si
e−ξ2

i
/2 (9)
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Similarly, σ̃2 differs asymptotically negligibly, as m → ∞, from the
argument t = σ2

∗ minimizing

m
∑

i=1

(

(1 − Φ(ξi)) log(t + si) +

∫ ∞

ξi

(z
√

τi − xtr
i (β∗(t) − β0))

2

t + si
e−z2/2 dz√

2π

)

=
m
∑

i=1

(

(1 − Φ(ξi)){log(t + si) +
1

t + si
(τi + (xtr

i (β∗(t) − β0))
2)}

+
1√
2π

e−ξ2

i
/2 1

t + si
{−2

√
τi(x

tr
i (β∗(t) − β0)) + τi ξi}

)

and after substituting the formula (9) left-multiplied by (β∗(t) − β0)
tr ·

∑

i (t + si)
−1 x⊗2

i (1 − Φ(ξi)), we obtain

σ2
∗ = arg min

t

m
∑

i=1

(

(1 − Φ(ξi))(log(t + si) +
τi

t + si
)

+ e−ξ2

i
/2

√

τi

2π
· κi − xtr

i β∗(t)

t + si

)

(10)

We collect our conclusions in the following Theorem. Further justifica-
tions of the steps can be found in the Appendix.

Theorem 4.1 Under the assumptions (a)–(c), as m → ∞, the estima-
tors β̃, σ̃2 maximizing (8) differ asymptotically negligibly respectively from
β∗(σ

2
∗) and σ2

∗ defined above in formulas (9) and (10). Moreover, in the
limiting case where as m → ∞, m−1∑m

i=1 I[yi≥κi] ≈ 1, to top order

σ2
∗ − σ2

0 ≈ 1√
2π

m
∑

i=1

ξi

τi
e− ξ2

i
/2
/

m
∑

i=1

1

τ2
i

(1 − Φ(ξi)) ≡ δσ2

β∗ − β0 ≈
(

m
∑

i=1

x⊗2
i

τi
(1 − Φ(ξi))

)−1 1√
2π

m
∑

i=1

xi√
τi

e− ξ2

i
/2 ≡ δβ

It is not hard to check that the calculation just completed is essentially
the same as finding the arguments ν∗ = (β∗, σ

2
∗) minimizing the Kullback-

Leibler distance between the model (A) with log-likelihood (8) for the data
on {i : yi ≥ κi} versus the correct log-likelihood (5). Thus our derivation
of ν∗ follows the well-established lines of the asymptotic misspecified-
model theory in White (1982), regarding the estimator ν̃ as the maximum-
likelihood estimator under the misspecified complete-data likelihood for (6).
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We continue by finding the form of the asymptotic variances of these esti-
mators, as follows. Under suitable regularity conditions, described in the
Appendix, we have as m → ∞,

√
m

(

β̃ − β∗

σ̃2 − σ2
∗

)

D−→ N (0, A−1ΣA−1) (11)

where the (p+1)× (p+1) matrices A, Σ are defined by nonrandom limits

A = lim
m→∞

1

2m

m
∑

i=1

∇⊗2
b,t E

(

I[yi≥κi]

[

log(t + si) +
(yi − xtr

i b)2

t + si

]

)

∣

∣

∣

(b,t)=a∗

and

Σ = lim
m→∞

1

4m

m
∑

i=1

Var

(

I[yi≥κi]∇b,t

[

log(t + si) +
(yi − xtr

i b)2

t + si

]

)⊗2
∣

∣

∣

(b,t)=a∗

and A, Σ are given in block-decomposed form

A =

(

A11 A12

Atr
12 A22

)

, Σ =

(

Σ11 Σ12

Σtr
12 Σ22

)

with p × p upper-left blocks A11, Σ11, in formulas (26)-(31) in the Ap-
pendix.

Our objective in this Section has been to contrast the actual large-sample
behavior (11) of the complete-data estimators with the nominal behavior
that would be expected under complete-data FH formulas:

√
m

(

β̃ − β0

σ̃2 − σ2
0

)

−→ N
(

0,

(

Σβ 0
0 Σσ2

))

(12)

where

Σ−1
β =

1

m

m
∑

i=1

x⊗2
i

σ2
0 + si

I[yi≥κi] , Σ−1
σ2 =

1

m

m
∑

i=1

1

2(σ2
0 + si)2

I[yi≥κi]

The major result of this section is that, in the setting where left-censoring
exists but is relatively light, the extent of bias in parameter estimation can
be well approximated and estimated, and mean-squared estimation error
can be estimated robustly. To accomplish this, we want essentially to find
estimators of ν0 = (β0, σ2

0) to substitute into the terms τi, ξi within
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the formulas for δβ , δσ2 in Theorem 4.1. Now, we will see below that the
differences between ν∗ = (β∗, σ2

∗) and ν0 are often large enough that
direct substitution of ν̃ for ν0 is a bad idea. On the other hand, this
substition does give a preliminary estimator for (δβ , δσ2) which corrects
ν̃ in the right direction. Then ν̃ corrected by the preliminary-estimated
biases (δβ , δσ2) provided an improved estimator of ν0 which can in turn
be substituted into an improved estimator of (δβ , δσ2), and this correction,
bias-estimation, and re-substitution can be iterated to obtain a sequence of
estimators ν(k) = (β̃(k), (σ̃(k))2), k ≥ 0, according to the scheme

(β̃(0), (σ̃(0))2) ≡ (β̃, σ̃2) , τ
(k)
i = (σ̃(k))2 + si , ξ

(k)
i =

κi − xtr
i β̃(k)

√

τ̃
(k)
i

δ̃
(k)
β ≡

(

m
∑

i=1

x⊗2
i

τ̃
(k)
i

(1 − Φ(ξ̃
(k)
i ))

)−1
m
∑

i=1

xi
√

τ̃
(k)
i

φ(ξ̃
(k)
i )

δ̃
(k)
σ2 =

m
∑

i=1

ξi

τ̃
(k)
i

φ(ξ̃
(k)
i )

/

m
∑

i=1

1

(τ̃
(k)
i )2

(1 − Φ(ξ̃
(k)
i ))

β̃(k+1) ≡ β̃ − δ̃
(k)
β , (σ̃(k+1))2 ≡ σ̃2 − δ̃

(k)
σ2

For a fixed dataset, the limit of this sequence of estimators as k → ∞ can
equivalently be given by the solution (assumed unique, which appears to be
the case in practice) of the estimating equations

β̂ = β̃ −
(

m
∑

i=1

x⊗2
i

τ̂i
(1 − Φ(ξ̂i))

)−1
m
∑

i=1

xi√
τ̂i

φ(ξ̂i) (13)

σ̂2 = σ̃2 −
m
∑

i=1

ξi

τ̂i
φ(ξ̂i)

/

m
∑

i=1

1

τ̂2
i

(1 − Φ(ξ̂i)) (14)

where
τ̂i = σ̂2 + si , ξ̂i = (κi − xtr

i β̂)/
√

τ̂i (15)

Note that the estimators given by equations (13)–(15) are the method-B
estimators ν̂ ≡ ν̂B, but we omit the B subscript for simplicity. Although
the solution ν̂ to these equations cannot be asserted to be consistent but
only approximately so, we will see that this estimator performs very well.
We summarize our result in:
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Theorem 4.2 Under the hypotheses of Theorem 4.1, the estimators (β̂, σ̂2)
defined as solutions of the estimating equations (13)–(15) are approximately
consistent estimators of (β0, σ2

0), in the sense that the errors are of smaller
order than δβ + δσ2 with (δβ , δσ2) given in Theorem 4.1, when censoring
is rare in the sense that m−1∑m

i=1 I[yi≥κi] → 1 in probability as m → ∞.

We shall examine finite-sample aspects of this approximation in the sim-
ulation study of Section 6 below. At this point, we briefly consider the
exact calculation of large-sample differences, within specific scenarios, be-
tween a0, a∗, and the bias approximations given by Theorem 4.1.

Suppose for illustration that xi = (1, wi)
tr ∈ R2 with wi ∼ N (0, σ2

w)
and that the sample sizes ni are integer-valued random variables distributed
independently of wi, with ni ∼ Unif{10, 11, . . . , 50} (discrete-uniform),
and with κi = κ the same for all i. Then in a large-m limit, formulas
(9)-(10) and (26)-(31) become expectations, and β∗, σ2

∗, Σβ , Σσ2 and the
diagonal elements of A−1 ΣA−1, can be calculated numerically, as can
the differences δσ2 and δβ between the left and right hand sides of the
approximate equalities in Theorem 4.1. We did this by coding a function
in R, and we exhibit the results in Table 1 for several combinations of the
parameter values β0, σ2

0, σ2
w, ve. In each case, we quantify the degree of

censoring through the parameter c (proportion censored), where

c = lim
m→∞

1

m

m
∑

i=1

P (yi < κi) = E(Φ(
κ1 − xtr

1 β0

σ2
0 + ve/n1

))

There are two immediate conclusions from the tabulated results. First, the
corrections δβ , δσ2 approximate the corresponding biases β∗ − β0 and
σ2
∗ − σ2

0 remarkably well, with some discrepancies visible at 20% censor-
ing and progressively smaller errors as the degree of censoring decreases.
Secondly, the ‘robust’ or sandwich-formula variances given by the diagonal
elements of A−1ΣA−1 are generally very similar to the simpler ‘nominal’
variances given by the diagonal elements of Σβ together with Σσ2 .

4.1 Small Area Estimates and MSE

We now consider alternative SAE’s and their MSE’s according to the analysis
options (A)-(D) listed in Section 3. Recall that in all cases, we view the
data as being governed by the left-censored FH model with data (4) and
log-likelihood (5).
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Table 1: Limits (β∗, σ2
∗), asymptotic variance parameters, and proportion

c of PSU’s censored, for misspecified (complete-data) estimators of (β0, σ
2
0)

when FH model data are actually left-censored at a constant threshold κ.
In upper portion of Table (above double-line), β0 = (1,−.5), σ2

0 = 2, and
sample-sizes ni are discrete-uniform over {10, . . . , 50}; in lower portion,
β0 = (1, 1), σ2

0 = 1, and ni are uniform in {30, 70, 100}. Asymptotic biases
β∗−β0 and σ2

∗ −σ2
0 should respectively be compared with approximations

δβ, δσ2 from Theorem 4.1. Diagonal elements of Σβ are given in the column
headed Σβ , and the diagonal elements of A−1ΣA−1 in the columns ΣR

β and

ΣR
σ2 (R for Robust). Columns involving β have two entries corresponding to

first and second components.

κ σ2

0
ve c β∗ σ2

∗
δβ δσ2 Σβ Σσ2 ΣR

β ΣR
σ2

0 .5 2 .168 1.2037 .3578 .2040 -.0896 .55 .45 .49 .44
-.3760 .1241 .32 .31

-.5 .075 1.0953 .4160 .0954 -.0677 .54 .52 .52 .50
-.4269 .0732 .30 .28

-.75 .046 1.0615 .4393 .0616 -.0526 .55 .56 .53 .53
-.4472 .0528 .30 .27

-1 .027 1.0381 .4581 .0381 -.0382 .55 .59 .55 .56
-.4636 .0364 .29 .27

-1.2 .017 1.0252 .4700 .0252 -.0282 .56 .61 .56 .59
-.4739 .0261 .29 .27

-1.4 .011 1.0161 .4792 .0161 -.0200 .56 .63 .56 .61
-.4819 .0181 .29 .27

0 .2 5 .146 1.1326 .1457 .1338 -.0440 .38 .22 .35 .20
-.4066 .0939 .23 .22

-.5 .057 1.0543 .1649 .0547 -.0296 .37 .24 .36 .23
-.4511 .0491 .21 .19

-.75 .033 1.0326 .1763 .0327 -.0214 .37 .25 .37 .24
-.4672 .0330 .20 .19

-1 .018 1.0186 .1848 .0187 -.0143 .37 .26 .37 .25
-.4791 .0210 .20 .18

0 1 21 .259 1.4798 .5552 .3870 -.2188 1.36 2.17 1.14 2.17
.6611 -.1848 1.54 1.55

-.5 .166 1.3125 .6597 .2646 -.2239 1.28 2.43 1.16 2.33
.7421 -.1897 1.46 1.41

-1 .098 1.1914 .7556 .1696 -.1909 1.27 2.72 1.20 2.56
.8158 -.1584 1.41 1.33
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The simplest option is the EBLUP estimator (3) arising in the misspec-
ified complete-data analysis (A), which — after treating censored PSU’s as
wholly unobserved — becomes

ϑ̃A
i =

σ̃2

σ̃2 + si
(yi − xtr

i β̃) I[yi≥κi] + xtr
i β̃

Recall that the actual asymptotic behavior of the usual ML estimators
(β̃, σ̃2) is given by (11). To top order, we find under option (A) using
small-area predictors ϑ̃A

i :

MSEA
i = E

( σ̃2

σ̃2 + si
(yi − xtr

i β̃) I[yi≥κi] + xtr
i (β̃ − β0) − ui

)2

Now substitute of (β∗, σ2
∗) for (β̃, σ̃2), with oP (1) error, and recall that

ui ∼ N (
σ2

0

τi
yi, si

σ2

0

τi
) conditionally given yi. Then MSEA

i = oP (1)+

σ2
0 si

τi
+ E

(

(yi − xtr
i β0){

σ2
∗

σ2
∗ + si

I[yi≥κi] −
σ2

0

τi
} + ∆i{1−

σ2
∗

σ2
∗ + si

I[yi≥κi]}
)2

where as in Section 9.3 we denote ∆i = xtr
i (β∗ − β0). Next substitute

formula for µ1i from Section 9.3, to find

MSEA
i =

σ2
0 si

τi
+
( σ2

∗

√
τi

σ2
∗ + si

φ(ξi) + ∆i(1 − σ2
∗

σ2
∗ + si

(1 − Φ(ξi)))
)2

+Var
( σ2

∗

σ2
∗ + si

(yi − xtr
i β∗)I[yi≥κi] −

σ2
0

τi
(yi − xtr

i β0)
)

+ oP (1)

Next, substitute formulas for µ1i, µ2i from Section 9.3 to obtain, after some
further algebraic reductions,

MSEA
i = σ2

0 + (1 − Φ(ξi) + ξiφ(ξi))
(

τi(
σ2
∗

σ2
∗ + si

)2 − 2 σ2
0

)

+ ∆2
i {1 − 2(1 − 2Φ(ξi))

σ2
∗

σ2
∗ + si

} + 2∆i
√

τiφ(ξi)
(σ2

0

τi
+

σ2
∗

σ2
∗ + si

)

This MSE formula includes a bias term due to the discrepancy between the
large-sample limit β∗ of the misspecified ML estimator β̃, but not (nominal
or robust) asymptotic-variance terms for β̃ or σ̃2 (since these are O(1/m).
The magnitude of the bias has been approximated in Theorem 4.1, and we
have seen that under realistic parameter combinations with left-censoring of
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20% or less, this approximation is very good, correcting more than 95% of
the bias. A natural first approach to improving the small-area predictions
is to modify β̃ by the bias-estimator within the SAE formula, using the
estimators (β̂, σ̂2) defined by (13)-(14), as follows:

ϑ̃B
i =

σ̂2

σ̂2 + si
(yi − xtr

i β̂) I[yi≥κi] + xtr
i β̂

An expression for the mean-squared error MSEB
i of this SAE can be

derived along the same lines as the formula for MSEA
i above. One main

difference is that the term ∆̃i corresponding to ∆i in the new formula
is much smaller than ∆i. However, as can be verified from simulations,
MSEB

i is often quite a bit larger than MSEA
i : the main point is that

in many examples β̂i estimates β0 quite accurately, but there is intrinsic
positive bias in ϑ̃B

i due to the fact that the correction to xtr
i β̂ by residuals

is employed only when those residuals are above the threshold κi − xtr
i β̂.

Therefore, a slightly improved small-area estimator using the adjustment
(B) involves correcting ϑ̃B

i by its estimated bias, namely

ϑ̃B∗
i =

σ̂2

σ̂+si
(yi − xtr

i β̂) I[yi≥κi] + xtr
i β̂ − σ̂2

√
σ̂2 + si

φ(
κi − xtr

i β̂√
σ̂2 + si

) (16)

5 Analysis using Left-Censored Data Likelihood

The method of analysis proposed above as method (D) is a left-censored
parametric linear regression model with the slightly unusual PSU-dependent
variance term σ2 + si of Fay and Herriot. With the si terms absent, such
analyses have appeared in older survival analysis literature: recent survival
literature has emphasized instead the semiparametric censored linear regres-
sion model with ( ei absent and) the distribution of ui unknown (with
mean 0), cf. Buckley and James (1979), Tsiatis (1990), Ritov (1990), and
Ying (1993). As in Klein and Moeschberger (2003), the maximum-likelihood
estimation of (β0, σ2

0) using the parametric log-likelihood lcens is straight-
forward but does not lead to explicit formulas.

The likelihood equations determining the ML estimates, expressed in
terms of the notation zi ≡ zi(β, σ2) ≡ (κi − xtr

i β)/
√

σ2 + si, are:

m
∑

i=1

xi

{

I[yi≥κi]
yi − xtr

i β

σ2 + si
− I[yi<κi]

1√
σ2 + si

· φ(zi)

Φ(zi)

}

= 0 (17)
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m
∑

i=1

1

σ2 + si

{

I[yi≥κi]

(

1 − (yi − xtr
i β)2

σ2 + si

)

+ I[yi<κi] zi
φ(zi)

Φ(zi)

}

= 0 (18)

and the asymptotic variance-covariance matrix for the resulting maximum
likelihood estimates of (β, σ2) is readily computed and estimated as the
inverse of the per-PSU information matrix

I(β0, σ2
0) =

(

I11 I12

Itr
12 I22

)

≡ −E(∇⊗2
β,σ2 lcens (β0, σ

2
0)) (19)

I11 =
1

m

m
∑

i=1

x⊗2
i

τi

[

1 − Φ(ξi) + ξi φ(ξi) + φ2(ξi)/Φ(ξi)
]

I12 =
1

m

m
∑

i=1

xi

2τ
3/2
i

φ(ξi)
(

1 + ξ2
i + ξi φ(ξi)/Φ(ξi)

)

I22 =
1

m

m
∑

i=1

1

4τ2
i

[

2(1 − Φ(ξi)) + ξi φ(ξi) (1 + ξ2
i + ξi φ(ξi)/Φ(ξi))

]

Letting (β̂D, (σ̂D)2) denote the densored-data ML estimators obtained
by solving the likelihood equations (17)-(18), we know from standard maximum-
likelihood estimation theory (the regularity conditions for which are easily
satisfied in the present setting) that

√
m





β̂D − β0

(σ̂D)2 − σ2
0





D−→ N
(

0, (I(β0, σ
2
0))

−1
)

We briefly compare the asymptotic variances of the estimators (β̂D,
(σ̂D)2, ) versus (β̃, σ̃2) (normalized by

√
m) in the first illustrative case

considered in calculating Table 1: this is the case where xi = (1, wi)
tr, wi ∼

N (0, 2), β0 = (1,−.5), σ2
0 = 0.5, with ni discrete-uniform in {10, 11, . . . , 50}.

The nominal (complete-data) Fay-Herriot variances for the two components
of β and σ2 are respectively .550, .318, .453, while the diagonal elements
of the correct asymptotic variance matrix in (11) for the Fay-Herriot esti-
mators are .490, .307, .442. By contrast, the corresponding variances for
the censored-data ML estimators are .623, .340, .843. At first sight, it is
puzzling that the ML component estimators do not all have smaller vari-
ances. But recall that the FH and censored-ML estimators are not directly
comparable because the former are biased, and the asymptotic variability of
the bias estimators has so far not been taken into account.
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5.1 Small Area Estimates and MSE

How would the censored-data likelihood be used to generate small-area esti-
mators ? The most natural generalization of the EBLUP idea is to estimate
ϑi in PSU’s without sample data as xtr

i β̂D, and to estimate in PSU’s with
sampled data by ϑ̂D

i ≡
(

xtr
i β + I[yi≥κi] · E(ui | yi) + I[yi<κi] · E(ui | yi < κi)

) ∣

∣

∣

(β,σ2)=(β̂D, (σ̂D)2)
(20)

Here the superscript D refers to the censored-data ML as method (D) dis-
cussed in Section 3. Note that the SAE ϑ̂D

i necessarily takes a different
form according to whether the response yi in the i’th PSU is left-censored.
The conditional expectations within ϑD

i are E(ui | yi) = (yi −xtr
i β0)σ

2
0/τi

and

E(ui | yi < κi) =
σ2

0

τi

∫ ξi

−∞

z φ(z) dz

√
τi

Φ(ξi)
= − φ(ξi)σ2

0

Φ(ξi)
√

τi

Therefore,

ϑ̂D
i = xtr

i β̂D + I[yi≥κi]
(σ̂D)2 (yi − xtr

i β̂D)

(σ̂D)2 + si
− I[yi<κi]

φ(ξ̂D
i ) (σ̂D)2

Φ(ξ̂D
i )
√

τ̂D
i

(21)

where
τ̂D
i ≡ (σ̂D)2 + si , ξ̂D

i ≡ (κi − xtr
i β̂D)/

√

τ̂D
i

To calculate MSE’s, we need to take into account the probability of the
observation in the i’th PSU having been left-censored, where xi, κi, ni are
fixed. The calculation (for ni > 0, as in the case of MSEA

i , MSEB
i ) is

as follows.

MSED
i = E

(

I[yi≥κi] (ϑ̂
D
i − ϑi)

2 + I[yi<κi] (ϑ̂
D
i − ϑi)

2
)

Then, using the consistency of the ML estimators, we find to top order

MSED
i ≈ E

(

I[yi≥κi]

{σ2
0

τi
(yi − xtr

i β0)− ui

}2
+ I[yi<κi]

{ φ(ξi)σ2
0

Φ(ξi)
√

τi
+ ui

}2)

= E
(

I[yi≥κi] (
σ2

0

τi
(ui + ei) − ui)

2 +

+ I[yi<κi] ·
[

(ui −
σ2

0

τi
(ui + ei))

2 +
σ4

0

τ2
i

(ui + ei +
√

τi
φ(ξi)

Φ(ξi)
)2
])
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since the cross-term in the expanded square term multiplying I[yi<κi] has
expectation 0. Evaluating the final expectations now shows

MSED
i ≈ si σ

2
0

τi
+

σ4
0

τi
Φ(ξi)

( 1

Φ(ξi)

∫ ξi

−∞

z2 φ(z) dz − φ2(ξi)

Φ2(ξi)

)

=
si σ

2
0

τi
+

σ4
0

τi

(

Φ(ξi) − ξi φ(ξi) − φ2(ξi)

Φ(ξi)

)

(22)

The formula (22) for MSED
i naturally indicates that this MSE is close

to the (top-order) nominal Fay-Herriot MSE of si σ
2
0/τi. When censoring

is moderate, i.e. when most of the values ξi = (κi − xtr
i β0)/

√
τi are less

than − 0.5, say, we note from our numerical experience in Table 1 that
the bias-term ∆̃i in MSEB

i is quite small, while the function Φ(ξ) −
ξφ(ξ) − φ2(ξ)/Φ(ξ) is bounded between 0 and .083 for ξ ≤ −.5. Thus
in moderate-censoring settings, the comparison of MSED

i versus nominal
MSE is effectively between si σ

2
0/τi and si(siσ

2
0 +σ4

∗)/(σ2
∗ + si)

2, and it is
easily checked that the first of these is always larger than the second, with
noticeable differences when σ2

∗ is far from σ2
0. Thus, since we found in our

numerical calculations of Table 1 that σ2
∗ can easily differ by more than

15% when the censoring-proportion c is no more than 10%, we conclude
that the mean-squared-errors for small-area estimators ϑ̂D

i are likely to be
much better than for ϑ̃B

i or ϑ̃A
i . We proceed, in the following Section,

to test these theoretical predictions in terms of finite-sample SAE and MSE
behavior from a simulation study using design matrix and parameters as in
the SAIPE 1993 data (Citro and Kalton 2000). We also compare there the
top-order formula (22), with remainders o(1), to a more elaborate formula
(33) derived in the Appendix to have remainders O(1/m).

6 Comparative Simulation Study

We conducted a simulation study to check the performance of the estima-
tion methodology presented in the previous sections. Our simulation design
closely imitates the situation encountered in the U.S. Census Bureau’s on-
going SAIPE project described in greater detail below in Section 7. For sim-
plicity and confidentiality, the covariates used in the simulation are pseudo
values simulated (once only) from a multivariate normal distribution with
the same means and variances as the original covariates for all US coun-
ties which were used in the SAIPE 1993 log-rate model for poverty among
school-age children related to sampled householders. The covariates are as
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described in Section 7 and the coefficients used to generate the response
variables are β = (−1.860, .236, .313,−.119, .393). The sample sizes ni

are the actual US Current Population Survey (CPS) numbers of sampled
households in 1992-94, as in the SAIPE project, for subsets of the first m
alphabetically ordered US counties, after deleting Los Angeles county (by far
the largest one). This was done because, in simulations not reported here,
with fixed values of σ2 as small as .014, we found that the L.A. county
SAE was very erratic and distorted the summary measures of MSE.

Fixing β, we generated values {yi}m
i=1 in simulations with N = 1000

iterations, according to model (1) with si = ve/ni, but we left-censored
the generated values as y∗i ≡ max(κi, yi), where κi = − log ni. We have
explored various combinations of simulation parameter values (m, σ2, ve),
but display results only for m = 100, 500, 1000 cross-classified with four
labelled combinations for (σ2

0, ve):

Par 1 2 3 4

(σ2
0, ve) = (.5, 30) (.5, 17) (1, 30) (1, 17)

These σ2
0 values are somewhat larger than the values fixed in the SAIPE

log-count and log-rate models described in Citro & Kalton (2000), but they
are reasonable, being similar to the values (σ2, ve) jointly fitted by max-
imum likelihood to the SAIPE log-rate FH model on 1993 data. Table 2
shows the averages over strata i of the small area parameters, the simu-
lated SAE biases, and the true MSE under methods A=FH, B=Badj and
D=Cens. The first set of A, B, D columns displays SAE bias and the second
set MSE. In all cases, method D yields the smallest bias by far, as well as the
smallest range. The bias for methods A and B is generally positive, much
less so for method D. Both in terms of bias and MSE of SAE, method B
appears always inferior to A.

Table 3 summarizes the mean and standard-error behavior of the max-
imum likelihood parameter estimates of (β, σ2) obtained by methods A,
B and D, over the same range of simulations as in Table 2, for parameter-
combination Par = 2. (We calculated but do not display the corresponding
results for the other parameter combinations, since the results were very sim-
ilar.) Here also, method D performs best. As m increases, clearly the MLE
converges to the correct values. In our simulation, the censoring rate varies
between 5% to 14%. Method A produces SAE’s biased considerably above
their targets, with bias-squared as a percentage of MSE ranging from 4 to 12
%, and Method B did not materially improve the results. However, method
D results in very accurate parameter estimates, at least for large samples.
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Table 2: Average small-area parameters, censoring proportions, SAE biases
and MSE’s over 1000 simulation iterations, for various (m, σ2, ve) combina-
tions, with β fixed = (−1.860, .236, .313,−.119, .393) as described in text.

SAE Bias MSE
m Par %Cens θ̄i A B D A B D

100 1 6.6 -3.581 0.056 0.083 0.009 0.295 0.296 0.275
2 5.4 -3.582 0.043 0.065 0.006 0.226 0.227 0.206
3 8.0 -3.584 0.108 0.175 0.021 0.488 0.495 0.400
4 7.0 -3.585 0.092 0.154 0.016 0.378 0.385 0.285

500 1 12.3 -3.770 0.105 0.150 0.016 0.321 0.328 0.286
2 10.9 -3.767 0.085 0.126 0.011 0.265 0.268 0.229
3 13.9 -3.773 0.172 0.272 0.027 0.567 0.590 0.443
4 12.7 -3.772 0.156 0.254 0.023 0.476 0.493 0.338

1000 1 10.0 -3.782 0.087 0.127 0.015 0.295 0.300 0.266
2 8.8 -3.783 0.070 0.105 0.011 0.240 0.242 0.209
3 11.5 -3.781 0.150 0.240 0.030 0.519 0.537 0.408
4 10.5 -3.784 0.133 0.220 0.024 0.426 0.439 0.305

A striking feature of Table 2 is that the MSE’s under method B are
systematically larger than those of method A, despite the clear indication of
Table 3 that the parameter estimators under method B are systematically
closer than those of method A to the truth [or to those of method D]. This
apparent paradox is resolved by recalling that the MSE formulas for methods
A and method D: the one in D explicitly adjusts the fixed-effect predictor
downward for each unobserved PSU known to be below-threshold, while
the one in methods A and B takes the fixed-effect predictor as is. So the
finding is that the MSE and bias become worse if one uses the method-A
SAE formula with the method-B or method-D parameter estimators.

Clearly the current practice of the Census Bureau in SAIPE, method A,
would produce serious bias in SAE’s, with MSE’s too large by 10-20%, if the
FH model simulated were the correct one. Note however that these biases
and MSE’s are expressed on the measurement scale of the underlying FH
model, which in the case of SAIPE is logarithmic. Comparisons between
the performance of Methods A, B, and D on real SAIPE data are given in
Section 7 below.
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Table 3: Parameter Estimates and their SE’s, for Par = 2 case.

m Method β̂0 β̂1 β̂2 β̂3 β̂4 σ̂2

100 A -1.909 0.252 0.249 -0.113 0.410 0.427
(0.405) (0.464) (0.367) (0.917) (0.558) (0.098)

B -1.873 0.222 0.295 -0.103 0.420 0.457
(0.405) (0.459) (0.360) (0.913) (0.546) (0.097)

D -1.874 0.224 0.293 -0.113 0.420 0.458
(0.410) (0.461) (0.363) (0.927) (0.540) (0.105)

500 A -1.932 0.249 0.219 -0.151 0.419 0.445
(0.187) (0.192) (0.148) (0.426) (0.225) (0.048)

B -1.857 0.241 0.313 -0.103 0.391 0.493
(0.185) (0.193) (0.144) (0.420) (0.222) (0.047)

D -1.858 0.238 0.314 -0.108 0.390 0.492
(0.187) (0.195) (0.144) (0.425) (0.222) (0.052)

1000 A -1.909 0.276 0.222 -0.170 0.412 0.455
(0.127) (0.136) (0.100) (0.322) (0.147) (0.033)

B -1.860 0.228 0.315 -0.113 0.398 0.497
(0.127) (0.136) (0.097) (0.318) (0.144) (0.032)

D -1.862 0.229 0.314 -0.113 0.397 0.496
(0.128) (0.137) (0.098) (0.322) (0.146) (0.035)

Table 4: Empirical MSED
i values averaged over i (MSED), in simulations of

size m = 100, 500, 1000, along with relative differences between theoretical
MSE and MSED (RD), and between estimated MSE and MSED (RB).

m Par MSED RD1 RB1 RD2 RB2

100 1 0.275 -0.098 -0.175 -0.023 -0.100
2 0.206 -0.072 -0.120 -0.017 -0.064
3 0.400 -0.095 -0.135 -0.044 -0.083
4 0.285 -0.079 -0.110 -0.041 -0.071

500 1 0.286 -0.042 -0.059 -0.021 -0.038
2 0.229 -0.038 -0.049 -0.024 -0.034
3 0.443 -0.053 -0.065 -0.039 -0.051
4 0.338 -0.055 -0.062 -0.044 -0.051

1000 1 0.266 -0.033 -0.040 -0.024 -0.031
2 0.209 -0.033 -0.038 -0.026 -0.031
3 0.408 -0.057 -0.062 -0.051 -0.056
4 0.305 -0.056 -0.059 -0.052 -0.055
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Table 4 compares the empirical, theoretical, and estimated quantities
MSED

i within the same SAIPE-style simulation as in the other Tables. The
empirical MSE’s using small-area estimators ϑ̂D

i are calculated directly,
over the 1000 simulation iterations in each of three simulations, with m =
100, 500 and 1000 strata. The theoretical MSE’s are calculated using
formulas (22) and (33), with true parameters (β, σ2, ve) substituted, and
the estimated MSE’s from the same formulas with method-D parameter
estimators substituted (based on fixed ve). Each of these MSE’s is then
averaged over the m strata of the simulation. Column RD1 [respectively
RD2] gives the relative difference between theoretical MSE based on (22)
[resp. (33)] and MSED

i ; and column RB1 [resp. RB2] give relative differences
between MSE estimators, based on the corresponding formulas, and MSED

i .

Table 4 shows that the MSE formulas (22) and (33) under-estimate the
actual empirical MSED

i on average, by an amount which is no more
than 10% for (22) and 5% for (33), for all combinations (m, Par) tried.
The relative errors for estimated MSE’s — based on plugged-in rather than
true parameter values — are somewhat worse, but substantially so only for
m = 100. None of the theoretical or estimated MSE’s show a clear decrease
with m in the Table, but this is because the simulations with different
m are considerably different. (For example, see the differences in censoring
percentages across m displayed in Table 2.)

7 Real-data Comparisons

7.1 Log-rate model for SAIPE 1993 data

As described in the Introduction, our motivation for this paper came from
the small-area estimation method of the SAIPE program based on a Fay-
Herriot model for log-transformed county child-poverty response data. We
present model-fitting results using methods A, B, and D on the SAIPE data
for income-year 1993 (using CPS samples aggregated across 1992-94). As
described elsewhere (Slud 2003, 2004), the log-rate model for SAIPE 1993
data uses as response variable yi the log-transformed CPS-weighted ratio
estimate of county child poverty rate (among children aged 5–17 related to
householders) in those counties appearing in the pooled 1992–94 CPS sam-
ple, and as predictors the logarithms of the following four variables LTAXRT,
LSTMPRT, LFILRT, LCPRT:
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LTAXRT: the logarithm of the 1993 county total of Poor child IRS exemptions
over total child exemptions,

LSTMPRT: the logarithm of the ratio of the number of people receiving food
stamps over the 1993 demographic estimate of county population,

LFILRT: the logarithm of the ratio of the county number of IRS child exemp-
tions over the 1993 estimated resident child population,

LCPRT: the logarithm of the child poverty rate estimated from the previous
decennial census adjusted to the ‘CPS universe’ definitions of resident
householders and related children.

Here ni is the number of households sampled, even though the relevant
sampled units would be children, because the count of CPS-sampled children
was not directly available for the SAIPE data. The Fay-Herriot model (1)
with this response and predictors, where σ2

0 is fixed (in 1993) at 0.014,
si = ve/ni, and (β, ve) are the unknown parameters, is the county log-
rate model which differs from but closely approximates the model for log
counts (of poor related children, by county) actually specified in SAIPE.
Slud (2003, 2004) has studied the relationship of the log-rate model to the
actual SAIPE log-count model, as well as the goodness of fit of small-area
predictors based on the model both to the CPS data and (in decennial census
years) to the census county child-poverty rates (adjusted to ‘CPS universe’
definitions). In the 1993 SAIPE data, there were 1488 counties in the 1992-
94 aggregated CPS sample, of which only 1184 had a positive number of
sampled poor children. Since the 304 sampled counties with no sampled
poor children were ignored in fitting the model, they represent a censoring
rate of 304/1488 = 20.4%. However, as indicated in Section 2, we model the
dropping of counties with 0-counts by saying that the log ratios yi of the
counts of poor children divided by ni are still normally distributed variates
which are left-censored by the values κi = log(1/ni) , i.e. known only to
take some value less than κi.

Table 5 exhibits the maximum likelihood parameter estimates of (β, ve)
obtained by Methods A, B, and D, with σ2

0 = .014 fixed. The Methods B
and D yield very similar parameter estimates except for the intercept and
LSTMPRT coefficients and ve. (The LFILRT coefficients have large standard
error, thus are not as different as they look.) However, as we now proceed
to show, none of these models fits very well. As a preliminary indication,
consider the predicted censoring percentage according to these models with
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Table 5: Parameters fitted by Method A=FH, B=Badj, and D=Cens, to
SAIPE 1993 data with predictor means subtracted and σ2

0 = .014 fixed.

Int LTAXRT LSTMPRT LFILRT LCPRT

β0 β1 β2 β3 β4 ve

FH -1.824 .274 .288 -.447 .379 33.1
Badj -1.854 .235 .336 -.420 .369 35.9
Cens -1.952 .211 .429 -.471 .365 61.8

Table 6: Parameters fitted by Method A=FH, B=Badj, and D=Cens, to
SAIPE 1993 data with predictor means subtracted and ve = 34.33 fixed at
value obtained by ML over (β, σ2, ve) within left-censored log-likelihood (5).

Int LTAXRT LSTMPRT LFILRT LCPRT

β0 β1 β2 β3 β4 σ2

FH -1.849 .304 .282 -.416 .338 .070
Badj -1.889 .253 .340 -.369 .331 .077
Cens -2.073 .293 .397 -.357 .336 .277

estimates plugged into formula (23): .091 for Method A, .096 for Method B,
and .125 for Method D. Thus, although the corrections given by Methods
B and D do bring the estimated value of c slightly higher, they still fall far
below the observed censoring rate of .204.

One might say that the value .014 for σ2, artificially fixed by a method
documented in Kalton and Citro (2000) involving linear-model fitting using
a linear model with the analogous predictors and the previous (in this case,
the 1990) decennial census, is an obstacle to finding a close fit to the log CPS
weighted ratio estimate by county that is being used as response variable.
For this reason, re-fit the models by jointly maximizing the censored-data
likelihood over (β, σ2, ve), which can be accomplished using a function
coded in R repeatedly, alternately to maximize (5) over (β, ve) for fixed σ2

and to maximize over (β, σ2) for fixed ve. The resulting joint estimates
are σ2 = .277, ve = 34.33. Now fixing this ve value and re-estimating
parameters using Methods A and B gives the parameter estimates summa-
rized in Table 6. We fixed ve in this way because according to our model,
the censored-data likelihood most fully describes the data, and we are in-
vestigating whether this fully specified left-censored model fits adequately.
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Table 7: Limiting parameter estimates from Methods A=FH, B=Badj, and
D=Cens, with ve = 34.33 fixed, if the left-censored model held with ni and
predictor-variable covariances as in SAIPE 1993, and if the predictors were
multivariate normally distributed, identically across counties.

Int LTAXRT LSTMPRT LFILRT LCPRT

β0 β1 β2 β3 β4 σ2

FH -1.996 .276 .373 -.336 .316 .250
Badj -2.074 .292 .396 -.356 .335 .281
Cens -2.073 .293 .397 -.357 .336 .277

Again we can check whether any of the fitted models in Table 6 give
adequate estimates of the censoring proportion c. The respective plug-in
estimated values of c from these models are: .095 for Method A, .099 for B,
and .122 for D. Thus, none of the estimation methods with the alternatively
chosen value for ve provides a close estimate of c.

Another indication of the (lack of) fit of the fully specified left-censored
FH model to the data is given by the discrepancies between the Method B
and Method D estimators. The formulas for the limiting values β∗, σ2

∗ of
the Method A estimators and the corresponding Method-B adjusted values
β∗−δβ, σ2

∗−δσ2 can be evaluated numerically, analogously to the calculation
done for Table 1, if the centered covariates Xi are treated as being mul-
tivariate normally distributed with means 0 and variances estimated from
their empirical covariance matrix based on the 1488 SAIPE counties in 1993.
The results of the calculation are given in Table 7.

We can see clearly that if the left-censored FH model held precisely
with the parameters fitted by Method B in Table 6 (and if the predictor
variables were iid multivariate normal), then the Method B and Method
D parameter estimates would agree extremely closely in large-m samples.
This is something we saw in the m = 1000 simulations in Section 6, e.g.
in Table 3, but definitely do not observe in the actual SAIPE 1993 data.

The combined failure of the fitted models in Tables 5 and 6 to provide ac-
curate c estimators or to match closely between Methods B and D strongly
suggests that the left-censored FH model does not adequately fit the SAIPE
1993 data. Given that the predictor variables do linearly predict the log-rate
responses very strongly (Kalton and Citro 2000, Slud 2003), how are we to
understand the lack of fit ? We cannot yet exclude the possibility either
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Overlay of Histogram for Residuals from Method A Fit 
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Figure 1: Histograms for residuals from Method D (ve = 34.33 fixed) and
Method A (σ2 = .014 fixed) fits for observed SAIPE 1993 counties with
non-zero counts of poor children, overlaid with estimated county-averaged
conditional density for uncensored observations, as described in text.
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that the underlying county random-effects ui are non-normal or that the
sample-sizes ni figuring in the thresholds κi do not behave independently
of the responses yi conditionally given the covariates xi. So we proceed
by examining the behavior of the above-threshold residuals and comparing
it to the model predictions.

We consider next a diagnostic for lack of fit based on graphical compar-
ison between the histogram of residuals from the Method-D or method-A
model and the corresponding conditional density constructed for the ob-
served (ni > 0) population of counties. Figure 1 respectively shows his-
tograms of residuals yi − xtr

i β̂D (from method D with fixed ve = 34.331)
and yi − xtr

i β̂A (from method A with σ2 = .014 fixed) for the 1184
uncensored counties, i.e. counties with yi > κi. If the left-censored Fay-
Herriot model were valid, and the parameters β0, ve, σ2

0 known, then in
each county for which yi > κi is known to have occurred, the conditional
density of yi − xtr

i β0 would be

1√
τi

I[t≥κi−xtr

i
β0] φ(t/

√
τi)/(1 − Φ(ξi))

It follows that the displayed histogram ought to be close to the average
conditional density over all such counties,

1

1184

∑

i:yi≥κi

τ
−1/2
i I[t≥κi−xtr

i
β0] φ(t/

√
τi)/(1 − Φ(ξi))

Therefore, we overlaid the histogram with this density, where the respective
estimates (β̂D, (σ̂2)D, 34.331) and (β̂A, .014, v̂A

e ) are substituted for the
parameters (β0, σ

2, ve). The resulting picture is Figure 1. Although not
perfect, because of a slight skewness and mean shift to the left, the fit of
the ‘theoretical’ conditional densities to the histograms in these graphs is
strikingly good. Both of these graphs relate only to the behavior of above-
threshold response-values yi, and they differ in that the population-wide
parameters in the upper (Method D) panel are estimated based on all data,
including the below-threshold observations, while in the lower panel (Method
A) only the above-threshold observations were used in fitting. Partly as a
result, the empirical average of the above-threshold residuals yi − xtr

i β̂D

for the model depicted in the upper panel was 0.130, which corresponded
fairly well to the estimated theoretical average

1

1488

1488
∑

i=1

φ(ξ̂D
i )

Φ(ξ̂D
i )

((σ̂D)2 +
34.331

ni
)1/2 = .190
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while the empirical average of 0.075 for Model A residuals from the lower
panel was more sharply discrepant from its estimated theoretical average

1

1488

1488
∑

i=1

φ(ξ̂A
i )

Φ(ξ̂A
i )

(.014 +
v̂A
e

ni
)1/2 = .160

Overall, the diagnostics of fit suggest that the lack of fit of the left-
censored FH model to the SAIPE 1993 data are largely due to the failure of
the left-censoring threshold κi in a FH model to describe the phenomenon
of observing 0 poor children in a sampled county, rather than to a failure
of distributional assumptions concerning random effects.

8 Summary and Conclusions

We have shown, theoretically and through simulations, the considerable bias
and inflation of MSE that can result from ignoring left-censoring in a Fay-
Herriot model by comparison with an estimation methodology (both for
population and small-area parameters) based on a censored-data likelihood.
We have provided a method B (estimating equations 13–15) of adjusting
the parameter estimators derived by ignoring left-censoring, a method which
provides answers extremely close to the censored-data ML estimators when
censoring is up to about 10%. As shown in the example of Section 7, this
result provides a useful check on the correctness of the model assumptions.

Theoretical results, including formulas and estimators for MSE of SAE’s
derived from censored-data (method D) ML estimators, are corroborated by
a simulation study presented in Section 6. In the left-censored simulations,
SAE’s which adjust fixed-effect predictors downward in areas known to be
left-censored clearly outperform SAE’s which do not.

As with other Small-Area methods, the results presented here are un-
avoidably parametric. Yet in the motivating SAIPE example, we have seen
that lack of fit is apparently due not to the failure of distributional assump-
tions, but to the simple model of independent sampling and left-censoring.
In that example, there is in fact some clustering of samples: the CPS sam-
ples clusters of four nearby housing units, which are more similar to one
another than are area-wide units. Thus, in areas with small samples, there
might be a so-far unmodelled tendency for the below-threshold proportion
to be larger than allowed for in model (1). In future work, we will study
models with parameters for inflation of this below-threshold category.

27



9 Appendix

9.1 Regularity Conditions

It is assumed throughout the paper that the response-variables yi, i =
1, . . . , m, satisfy the model (1), and also that:

(a) The random vectors xi and sample sizes ni are either uniformly
bounded or are realizations of independent identically distributed vari-
ates with finite fourth moments.

(b) Whether random or not, the vectors xi ∈ Rp are such that as m gets
large, E( 1

m

∑m
i=1 ‖xi‖4) are uniformly bounded and with probability

approaching 1 as m → ∞,
∑m

i=1 x⊗2
i is a positive definite matrix,

where for a column vector v, we denote v⊗2 = v vtr.

(c) The following large-sample (almost-sure) limits exist as m → ∞, with
error-terms OP (m−1/2) :

lim
m

m−1
m
∑

i=1

x⊗2
i

σ2 + si
, lim

m
m−1

m
∑

i=1

1

2(σ2 + si)2

(d) For each compact subinterval J of (0,∞), the following large-sample
limits exist uniformly over t ∈ J :

lim
m

1

m

m
∑

i=1

x⊗2
i

(t + si)k
(1 − Φ(

κi − xtr
i β0

√

σ2
0 + si

)) , k = 1, 2, 3

lim
m

1

m

m
∑

i=1

1

(t + si)k
(1 − Φ(

κi − xtr
i β0

√

σ2
0 + si

)) , k = 0, 1, 2, 3

lim
m

1

m

m
∑

i=1

xj
iκ

1−j
i

(t + si)k
φ(

κi − xtr
i β0

√

σ2
0 + si

) , j = 0, 1, k = 1, 2, 3

Moreover, the limiting proportion uncensored must be strictly less than 1:

c ≡ lim
m

1

m

m
∑

i=1

Φ(
κi − xtr

i β0
√

σ2
0 + si

) < 1 (23)
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9.2 Proof of Theorem 4.1

Beyond the regularity conditions, the Theorem assumes that the quantity
c is close (but not necessarily equal) to 0. The regularity conditions directly
imply the (uniform) large-sample convergence of both β̃(t) and β∗(t) to

β0 +

(

lim
m

1

m

m
∑

i=1

x⊗2
i

t + si
(1 − Φ(ξi))

)−1(

lim
m

1

m

m
∑

i=1

xi
√

τi

t + si
φ(ξi)

)

(24)

and also the convergence of d
dt β̃(t) = β̃′(t) and of d

dt β∗(t) = β′
∗(t) to

(

lim
m

1

m

m
∑

i=1

x⊗2
i

t + si
(1 − Φ(ξi))

)−1(

− lim
m

1

m

m
∑

i=1

xi
√

τi

(t + si)2
φ(ξi)

+ lim
m

1

m

m
∑

i=1

x⊗2
i

(t + si)2
(1 − Φ(ξi)) (β∗(t) − β0)

)

(25)

and of β̃′′(t), β′′
∗ (t), both to the same limit. Now, restricting attention to

a small neighborhood of t values (not depending on m) on which the
minimum of the right-hand side of (10) is unique, we find by differentiation
that the minimizer σ2

∗ is determined as the root of the function

lim
m

1

m

m
∑

i=1

[

(1 − Φ(ξi))
t − σ2

0

(t + si)2
−

√
τi

t + si

(

xtr
i β′

∗(t) +
κi − xtr

i β∗(t)

t + si

)

φ(ξi)
]

whose derivative also has a uniform limit.

Under the hypotheses of Theorem 4.1,

β∗(t)
P≈ lim

m

( 1

m

m
∑

i=1

x⊗2
i

t + si

)−1 1

m

m
∑

i=1

xiyi

t + si
= β0

and σ2
∗ ≈ σ2

0, and by (24) and the boundedness away from 1 of c in (23),

β′
∗(σ

2
∗) , β∗ − β0 = OP

(

lim
m

1

m

m
∑

i=1

√
τi

σ2
∗ + si

φ(ξi)
)

It follows by the inspection of the displayed function above with root σ2
∗

that to top order,

lim
m

1

m

m
∑

i=1

[

(1 − Φ(ξi))
σ2
∗ − σ2

0

τ2
i

− φ(ξi)√
τi

(κi − xtr
i β0

τi

)

]

≈ 0
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proving the first approximate equality of Theorem 4.1. To prove the second,
successively substitute σ2

∗, σ2
0 for t into (24) and compare the two results

using (25) and Taylor’s theorem to find

β∗−β0 =
(

lim
m

1

m

m
∑

i=1

x⊗2
i

τi
(1−Φ(ξi))

)−1(

lim
m

1

m

m
∑

i=1

xi√
τi

φ(ξi)
)

· (1+oP (1))

The proof is complete. 2

9.3 Formulas for A, Σ

We begin by collecting for future reference the formulas and notations

ξi =
κi − xtr

i β0√
τi

, ∆i = xtr
i (β∗ − β0)

and for k = 1, . . . , 4,

µki ≡ E
(

I[yi≥κi](yi − xtr
i β∗)

k
)

=

∫ ∞

ξi

(z
√

τi − ∆i)
k φ(z) dz

Then
µ1i =

√
τi φ(ξi) − ∆i (1 − Φ(ξi))

µ2i = (τi + ∆2
i ) (1 − Φ(ξi)) +

√
τi (

√
τi ξi − 2∆i)φ(ξi)

µ3i =
√

τi

(

τi(ξ
2
i + 2) − 3ξi∆i

√
τi + 3∆2

i

)

φ(ξi)

− (∆3
i + 3τi ∆i) (1 − Φ(ξi))

µ4i =
√

τi

(

τ
3/2
i (ξ3

i + 3ξi) − 4τi∆i(ξ
2
i + 2) + 6τ

1/2
i ξi∆

2
i − 4∆3

i

)

φ(ξi)

+
(

∆4
i + 3τ2

i + 6τi∆
2
i

)

(1 − Φ(ξi))

In terms of these notations, we apply the formulas for A, Σ given below
(11) to obtain explicitly:

A11 =
1

m

m
∑

i=1

x⊗2
i

1 − Φ(ξi)

σ2
∗ + si

(26)
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A12 =
1

m

m
∑

i=1

xi
µ1i

(σ2
∗ + si)2

(27)

A22 =
1

m

m
∑

i=1

1

(σ2
∗ + si)3

[

µ2i − σ2
∗ + si

2
(1 − Φ(ξi))

]

(28)

Σ11 =
1

m

m
∑

i=1

x⊗2
i

(σ2
∗ + si)2

(

µ2i − µ2
1i

)

(29)

Σ12 =
1

m

m
∑

i=1

xi

2(σ2
∗ + si)2

( µ3i

σ2
∗ + si

− µ1i (
µ2i

σ2
∗ + si

+ Φ(ξi))
)

(30)

Σ22 =
1

m

m
∑

i=1

1

4(σ2
∗ + si)2

[ µ4i

(σ2
∗ + si)2

− 2µ2i

σ2
∗ + si

+ 1 − Φ(ξi)

−
( µ2i

σ2
∗ + si

− 1 + Φ(ξi)
)2 ]

(31)

Note that when censoring is absent, i.e. all thresholds κi tend to −∞,
then a∗ = a0 and by well-known properties (skewness and kurtosis 0) of
the normal distribution, µ1i = µ3i = 0, µ2i = τi, µ4i = 3τ2

i . It follows in
this case that A11 = Σ11 = Σ−1

β , A12 = Σ12 = 0, A22 = Σ22 = Σ−1
σ2 .

9.4 Derivation of Modified MSE-D Formula

We develop here a more precise formula for MSE based on the estimator
ϑ̂D

i given in formula (21).

MSED
i = E(ϑ̂D

i − ϑi)
2

= E
{

xtr
i β̂ + I[yi≥κi]γ̂i(yi − xtr

i β̂) − I[yi<κi]

√

τ̂i γ̂i
φ(ξ̂i)

Φ(ξ̂i)
− xtr

i β0 − ui

}2

= E
{

xtr
i (β̂ − β0) + I[yi≥κi] (γ̂i (ui + ei) − ui − γ̂i x

tr
i (β̂ − β0))

+ I[yi<κi] (−γ̂i

√

τ̂i
φ(ξ̂i)

Φ(ξ̂i)
− ui)

}2

Using the independence of αi ≡ γi(ui + ei) − ui from {uj + ej}m
j=1, and

therefore from the estimators (β̂, σ̂2) = (β̂D, (σ̂D)2), we evaluate the 0’th
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order term in the last expression and recognize the cross-terms as 0, finding
the last display equal to

siσ
2
0

τi
+ E

{

xtr
i (β̂ − β0) + I[yi≥κi](γ̂i − γi)(ui + ei)

−I[yi≥κi] γ̂i x
tr
i (β̂ − β0) − I[yi<κi]

(

γi(ui + ei) + γ̂i

√

τ̂i
φ(ξ̂i)

Φ(ξ̂i)

)}2

= (22) − 2 E
{(

xtr
i (β̂ − β0) + I[yi≥κi] [(γ̂i − γi)(ui + ei) − γ̂i x

tr
i (β̂ − β0)]

− I[yi<κi](γ̂i
φ

Φ

∣

∣

∣

ξ̂i

√

τ̂i − γi
φ

Φ

∣

∣

∣

ξi

√
τi)
)

· I[yi<κi] γi (ui + ei +
φ(ξi)

Φ(ξi)

√
τi)
}

+E
{

xtr
i (β̂ − β0) + I[yi≥κi] (γ̂i − γi)(ui + ei) − I[yi≥κi] γ̂i x

tr
i (β̂ − β0)

− I[yi<κi]

(

γ̂i
φ

Φ

∣

∣

∣

ξ̂i

√

τ̂i − γi
φ

Φ

∣

∣

∣

ξi

√
τi

)}2

where (22) in the last formula denotes the 0’th order formula given in equa-
tion (22).

Now we check that the middle term (the cross-term) in the last formula
is oP (1/m) for large m. To do this, we represent

β̂ − β0 = (mI)−1 ∇ logLik(β0, σ
2
0) + OP (m−1)

which results in a calculation

Cov
(

β̂ − β0, I[yi<κi] γi (
ui + ei√

τ i

+
φ(ξi)

Φ(ξi)
)
)

= o(
1

m
) +

Cov
(

((mI)−1)11
xi√
τ i

(I[yi≥κi]
ui + ei√

τ i

− I[yi<κi]
φ(ξi)

Φ(ξi)
)

− ((mI)−1)12
1

2τi
(I[yi≥κi] (1 − (ui + ei)

2

τi
) + I[yi<κi] ξi

φ(ξi)

Φ(ξi)
) ,

I[yi<κi] γi (
ui + ei√

τ i

+
φ(ξi)

Φ(ξi)
)
)

where the first p rows of the inverted per-observation information matrix
I−1 have been block-decomposed into an upper-left p × p block (I−1)11
and a p × 1 block (I−1)12. Then the last covariance-expression is also
o(1/m). A similar calculation gives the same o(1/m) result for the cross-
term involving γ̂i − γi in MSED

i . Thus, apart from o(1/m) remainders,

MSED
i = (22) + E

{

xtr
i (β̂ − β0) + I[yi≥κi] (γ̂i − γi)(ui + ei)
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− I[yi≥κi] γ̂i x
tr
i (β̂ − β0) − I[yi<κi]

(

γ̂i
φ

Φ

∣

∣

∣

ξ̂i

√

τ̂i − γi
φ

Φ

∣

∣

∣

ξi

√
τi

)}2

After a further application of the delta method to the terms in the last
expected square, we find

MSED
i = (21) + E

{

ai x
tr
i (β̂ − β0) + bi (γ̂i − γi)

}2
(32)

where

ai ≡ 1 − γi I[yi≥κi] + γi I[yi<κi]
φ(ξi)

Φ(ξi)

(

− ξi −
φ(ξi)

Φ(ξi)

)

bi ≡ I[yi≥κi](ui + ei) − I[yi<κi]

√
τi φ(ξi)

2(1 − γi)Φ(ξi)

(

2 − γi + (ξi +
φ(ξi)

Φ(ξi)
) ξi γi

)

Using the same representation of β̂ − β0 given above, we can recognize
by ML theory that the asymptotic covariance matrix of (β̂−β0, σ̂2−σ2

0) is
(mI)−1. The identity γi = 1−si/(si+σ2), together with the delta-method,
then gives the asymptotic covariance matrix for (xtr

i (β̂ − β0), γ̂i − γi) as

Mi ≡









xtr
i (mI)−1

11xi
(1−γi)

2

si
xtr

i (mI)−1
12

(1−γi)
2

si
xtr

i (mI)−1
12

(1−γi)
4

s2

i

(mI)−1
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We proceed to substitute into formula (32). Since (ai, bi) is asymptot-
ically independent of (β̂ − β0, σ̂2 − σ2

0) to top order, we find (still ignoring
o(1/m) remainders)

MSED
i = (21) + tr

(

E

(

a2
i ai bi

ai bi b2
i

)

Mi

)

(33)

If we denote

Ci ≡ E

(

a2
i ai bi

ai bi b2
i

)

then

Ci,11 = E(a2
i ) = (1− γi)

2 (1−Φ(ξi)) + Φ(ξi)
{

1− γi
φ(ξi)

Φ(ξi)
(ξi +

φ(ξi)

Φ(ξi)
)
}2

Ci,12 = Ci,21 = E(aibi) =
√

τi φ(ξi)(1 − γi) −
√

τi φ(ξi)

2 (1 − γi)
·

33



(

2 − γi + (ξi +
φ(ξi)

Φ(ξi)
) ξi γi

)(

1 − γi
φ(ξi)

Φ(ξi)
(ξi +

φ(ξi)

Φ(ξi)
)
)

Ci,22 = τi (1−Φ(ξi)+ξiφ(ξi)) +
τi φ2(ξi)

4 (1 − γi)2 Φ(ξi)

(

2−γi+(ξi+
φ(ξi)

Φ(ξi)
) ξi γi

)2

Note that the formula for the per-observation (p+1)×(p+1) information
matrix I is the same as I(β0, σ2

0) in (19). Using that formula together
with the formulas given above for the 2 × 2 matrices Mi and Ci, we
obtain MSED

i from formula (21) in the paper and formula (33) above.
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