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SUMMARY 

The small-sample performance of some recently proposed nonparametric methods of constructing 
confidence intervals for the median survival time, based on randomly right-censored data, is compared 
with that of two new methods. Most of these methods are equivalent for large samples. All proposed 
intervals are either 'test-based' or 'reflected' intervals, in the sense defined in the paper. Coverage 
probabilities for the interval estimates were obtained by exact calculation for uncensored data, and 
by simulation for three life distributions and four censoring patterns. In the range of situations 
studied, 'test-based' methods often have less than nominal coverage, while the coverage of the new 
'reflected' confidence intervals is closer to nominal (although somewhat conservative), and these 
intervals are easy to compute. 

1. Introduction 

Estimates of median survival times are frequently presented in medical reports to charac- 
terize the survival experience of groups of patients. For censored data this measure is 
certainly preferable to estimated mean survival as it is easy to estimate and has a clear 
interpretation; however, biostatisticians (for example Peto et al., 1977) have pointed out 
that estimates of median survival can be seriously misleading because of their relatively 
large variation, particularly if the survival curve does not change rapidly near the median. 
Despite this warning, published reports containing confidence intervals for median survival 
are unusual, probably because methods for computing such intervals have not been 
generally available. 

The recent papers of Brookmeyer and Crowley (1 982a), Efron (1981), Emerson (1982), 
Reid (1981) and Simon and Lee (1982) have provided a number of competing nonpara- 
metric interval estimators for the median survival time from randomly right-censored data. 
Each paper illustrates the properties of its interval estimate with a small-sample (typically 
25-75 observations) simulation study. However, there is no guidance in these papers on 
how to choose among the newly available methods of constructing confidence intervals for 
the median survival time in a small clinical study. In addition, new proposals for confidence 
bands for the Kaplan-Meier estimated survival curve (see Kaplan and Meier, 1958) lead 

Key words: Median survival time; Independent right-censoring; Confidence interval; Test-based 
interval; Reflected interval; Kaplan-Meier survival curve. 
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naturally to new confidence intervals for quantiles of the survival distribution, as suggested 
in the recent work of Anderson, Bernstein and Pike (1982). 

For censored data, Brookmeyer and Crowley (1982a), Emerson (1982), and Simon and 
Lee (1982) have all presented methods that involve the inversion of a generalized sign test 
for the location of the median survival time. This paper distinguishes between the method 
of Emerson (1982)-whose confidence interval exemplifies what we call a 'reflected' 
interval-and the 'test-based' 'intervals of Brookmeyer and Crowley (1982a) and Simon 
and Lee (1982). After drawing the general distinction in ?2 between test-based and reflected 
intervals, we introduce two additional reflected intervals: the first mentioned by Efron 
(1981, ?6, with acknowledgement to K. Bailey), and the second a new proposal of our own 
involving a transformation of the time scale. The 'bootstrapped confidence interval' 
proposed by Efron requires extensive Monte Carlo simulation in its definition and, as 
discussed in ?2, turns out to be closely related to the Brookmeyer-Crowley test-based 
interval. The 'conditional bootstrap' interval of Reid (1981) is readily computed without 
simulations and also has a natural interpretation as a test-based interval. 

The purpose of the present work is first to compare the nonparametric confidence 
intervals for median survival under the headings of 'reflected' and 'test-based' intervals; 
second, to advance the new reflected intervals (simple reflected and transformed reflected) 
in light of their success on small censored samples; third, to show the asymptotic large- 
sample equivalence of these reflected intervals to the interval of Brookmeyer and Crowley 
(1982a); and finally, to present exact calculations illustrating performance on uncensored 
data, simulation results for small-sample censored data, and recommendations as to which 
methods to use for small samples of patients. In ?2 we give notations and definitions for 
all proposed methods. Large-sample considerations are briefly dealt with in ?3, while ?4 
contains a discussion of the special modifications and the occasional 'fix-ups' all methods 
may need when samples are small or heavily censored. Section 5 describes analytically the 
properties of confidence intervals when there is no censoring. Our simulation experiments 
are summarized in ?6 and are used to compare the intervals for various life and censoring 
distributions. Section 7 contains a worked example. Discussion and recommendations 
appear in ?8. 

2. Notation and Definitions 
We assume throughout that the observed survival data (Ti, Aiz), i = 1, . . ., N, are gene- 
rated from independent pairs of independent death and censoring times (Xi, Yj), where 
Ti- min(Xi, Y,) and where Aiz = 1 if Xi - Y, and Aiz = 0 if Xi > Yi. We write 
S(t) pr(X> t) and Sy(t) pr(Y> t), and assume that S(.) is continuous with density 
f(t) and cumulative hazard A(.). Then there will be no tied death times, Xi and Xj, or 
simultaneous death and censoring times, Xi and Yj, and the median, Au, of Xi is uniquely 
defined as S-'(). For such data, the survival curve, S, has the approximately unbiased 
(Efron, 1967) nonparametric estimator due to Kaplan and Meier (1958) 

S(t)- I (1-lri), 
j TjTt 

where rj number of Ti which are greater than or equal to Tj, i = 1, . . ., N. For large N, 
the asymptotic variance of S(t) is known to be 

(BelwadCrw 7) wS(t)2 cS(X)2SY(X)i-m dS(x) 
(Brelow nd C owle,97) whc=scossety siaed(eNrokee n 
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Crowley, 1982a) by the Greenwood formula 

= (t)2 E Ajri1(r - 
i: Tj--t 

Since S(A) = we define XG(t) = I >j:,pjt jrj-'(rj - 1)-' to estimate variance near the 
median. Peto et al. (1977, p. 37, Statistical Note 6) proposed a simplified variance estimator 
in which S(t) is treated as an estimate of a binomial parameter based on an effective sample 
size, ri/S(t), where i max(j: Aj = 1, Tj - t). Specifically, Peto et al. estimated varIS(t)) 
by OP(t) = S(t)2{1-S(t)}/ri. Depending on the censoring distribution Sy(.), op(t) can be 
seriously biased, as we show in ?3. Simon and Lee (1982) estimated ON(t) by kP(t) 
S(t)/{4(ri - 1)), which is always larger than jp(t). 

For future reference, we define an estimate of the cumulative hazard (Nelson, 1972): 

A (t)- 'i Aer'. 
j.: Tj-- t 

Another possible estimator for A(t) is -In S(t) H(t); however, for constructing a 
confidence interval on a transformed time scale, Hr seems less effective than A, as we point 
out in connection with Table 2. The variance of A(t) can be estimated (see ?3) by 
OG(t)/S(t), which equals 4 XG(t). Whenever we refer to inverses of the right-continu- 
ous step functions S and A, we mean the inverses defined as S-1(x) - inflt:S(t) < x} and 
A-'(x) inflt: A(t) > x}. We adopt the estimator ji = S'(,) for the median ,u; this estimator 
is used by all the authors we cite except Simon and Lee (1982), who estimated ju by invert- 
ing a linearly interpolated S. 

Our notation for upper binomial tail probabilities is 

=N 
/NT 

B(k, N, p)- (TJp'(1 - p) J 
j=k 

Then for noninteger y, we define an interpolated tail probability 

B(y, N, p) ([y] + 1-y)B([y], N, p) + (y - [y])B([y] + 1, N, p), 

where [y] denotes the largest integer less than or equal to y. 
We now distinguish the general notions of reflected and test-based confidence inter- 

vals for the median survival time ,u. Suppose that for each t, Is, (t), S2(t)} is a level-a con- 
fidence interval for S(t). We describe as 'test-based' a confidence interval of the form 
[t: 1 E {S. (t), S2(t)}], while the corresponding 'reflected' interval is [t: 3(t) E IS, S2(A)f]. 
The difference between these two approaches to the construction of confidence intervals is 
best seen graphically (Fig. 1) when survival-curve estimators are drawn as continuous 
curves for clarity. The lower endpoint, RI, of the reflected interval is obtained by horizon- 
tally projecting the upper confidence bound S2(4), until it meets S(.); the t corresponding 
to the meeting point is taken as R., that is R. = S-' S2(.u)). An analogous procedure using 
S1(,) defines R2. For this reason the reflected interval requires calculation of S, (t) and 
S2(t) only at t = i. By contrast, the test-based interval requires knowledge of S,(.) and 
S2(.) at many time points. The lower limit, T., is the time t at which S, (t) = I, and T2 that 
at which 32(t) = I 

Let S, (t) =(t)W - Zi2(t) "2 and S2((t) St) + Za/2 IXt)} "2, where ?(t) is an estimator 
of the asymptotic variance ON(t). When k(t) is taken to be G(t) or op(t), the test-based 
interval forum is, respectively, the confidence interval defined by Brookmeyer and Crowley 
(1 982a) or that defined by Simon and Lee (1982). We refer to the corresponding reflected 
interval with k(t) - Xc(t) and ISl(l ), S2G1)} 

I [I + Za/2II( I)}-,2] as the simple reflected 
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0: 1- X " 1 
Z 

(I) 

o 1/2-- 

co 0 

R1 T1 U T2 R2 
TIME 

Figure 1. Schematic representation of test-based and reflected intervals. T, are endpoints of test-based 
interval; Ri are endpoints of reflected interval. 

interval' due to Bailey and Efron (see Efron 1981, ?6), although they defined only the 
reflected interval with respect to the bootstrap variance estimator +*(t). 

Next consider {SI (t), S2(t)}, given as 

[p: 0 S p < 1, B{Np, N, S(t)) _> 'a, 
B{N(1 - p), N, 1 - S(t)) > 'a]. 

At t = ,u and with S(jt) replaced by 2, the reflected interval for u in this setting is (except 
for endpoints) the interval proposed by Emerson (1982). Similarly, if 

{S1(t), S2(t)} [p: 0 < p < 1, 'a S B[N(1 - p), N, 1 - S(t) S 1 a], 

the test-based interval is the unsmoothed 'conditional bootstrap' interval for ,u, due to Reid 
(1981). With regard to the unconditional bootstrap interval, Efron (1981, ?3) argued that 
the Greenwood estimate OkG(t) agrees closely with the bootstrap variance estimate 0*(t) for 
S(t), and moreover [see Efron, 1981, Equation (6.1)] that the bootstrap interval for M is 
equal to the set of t for which the bootstrapped confidence interval f6r S(t) contains 4. In 
other words, Efron's bootstrap interval for u is test-based [with bootstrap confidence bands 
for S(t)] and, if N is large enough so that S(,u) is approximately normally distributed, 
should agree closely with the test-based interval due to Brookmeyer and Crowley (1982a), 
defined above. 

Other confidence intervals {SI (t), S2(t)) for S(t) will correspond to new test-based and 
reflected confidence intervals for u. In fact, Anderson et al. (1982) have recently proposed 
test-based intervals for survival quantiles based on (some simple transformations of) the 
interval for S(.) due to Rothman (1978). Although these authors have shown that their 
intervals for u will have proper coverage for large censored samples, they have not published 
results concerning small-sample performance. 
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Reflected and test-based intervals can be defined as well in terms of the cumulative 
hazard function A(t) as in terms of S(t). We propose a new 'transformed reflected' in- 
terval for Au defined as follows: let IAl (t), A2(t)0 [A(t) + 2Za/2 IkG (t) I1'2] be an 
approximate level-a confidence interval for A(t); then the new reflected interval is 
[t: A(t) GE A1(4), A2(u)fl. 

To close this section, we list the six competing interval-estimators for Au: 

Reflected intervals 
Ih = [t: 43(t)- 4 2} < X ,a XCG(#)] (simple reflected; Efron, 1981); 
I2 = (t: BJNS(t), N, 2} >-2la, B[Nf1 -(t)}, N, 2] 2() (Emerson, 1982); 
I3 = [t: {A(t) -A(,)}2 4X 2l ()] (transformed reflected); 

Test-based intervals 
14 = [t: 43(t) - 12 6 X2,aG(t)] (Brookmeyer and Crowley, 1982a); 
I5 = [t: fS(t)- }2 a X2,ap(t)] (Simon and Lee, 1982); 
I6 = [t: ax S BU (N + 1), N, 1-3(t)} g 1 -ICa] (unsmoothed; Reid, 1981). 

Our definitions differ from those of previous authors only with regard to inclusion of 
endpoints. Reid (1981) also defined an interval based on a smoothed conditional bootstrap 
distribution, which we denote by IR and describe in ?4. 

3. Large-Sample Considerations 
In subsequent sections, we compare the performance of the various methods of forming 
confidence intervals, and concentrate on small-sample properties. In the present section, 
we demonstrate that intervals I, ,I3 and I4 are asymptotically (in large samples) equivalent 
with proper (i.e. nominal) coverage, that I5 is asymptotically conservative (coverage greater 
than nominal) when there is censoring, and that I2 and I6 are asymptotically equivalent 
and strictly anticonservative when there is censoring. All methods are equivalent in the 
absence of censoring. Here 'asymptotic equivalence of Ik and Ij' means that as N --* 0, the 
events GE Ik and Ai E Ij differ by an event of asymptotically negligible probability. 

For large N. Sander, (in Technical Report No. 5, Biostatics, Stanford University, 1975) 
showed that 4 is asymptotically normal with mean Ai and variance qN(W)/f2(A) iff(i) $ 0, 
and thatf(*) is continuous in a neighborhood of A. Since N'2fS(,) - 2 -*0 in probability 
as N -* 00, and since the results of Breslow and Crowley (1974) imply that S(1u) is 
asymptotically normal with mean 2 and variance ON(A) and that N'2 AS(4) - S(4) - S(i) + 
S(u)l - 0 in probability, we find (as did Brookmeyer and Crowley, 1982b) by the delta 
method that intervals I, and I4 are both asymptotically equivalent to the interval 

-[4u + fz/2XcI2(L)}/f(L)]. 

Similarly, N' 2fA(') - In 21 -* 0, N12fA(A) - A(') - A(A) + A(u)l -* 0, and A(Au) is 
asymptotically normal with mean In 2 and variance 4kN(A), so that by the delta method, 
I3 is also asymptotically equivalent to IO. 

We have remarked that I5, the test-based interval due to Simon and Lee (1982) differs 
from 14, the interval due to Brookmeyer and Crowley (1982a), only in that the simple 
estimator 'p(-) is used in place of cG(*). In fact, op(t) and op(t) strictly overestimate the 
variance of S(t) in large samples with censored data, as can be seen from the almost-sure 



592 Biometrics, September 1984 

limiting relations 

lim N'kG(t) = -S(t)2 IS(x)2Sy(x)I-l d1S(x)l 

< S(t) 2 1 y(t)- I {S(X) }-2 dS(X) 

= [S(t) 1 - S(t)fl/Sy(t) 

= lim Nop(t). 
N-Aoo 

In particular, when S(.) Sy(.) (which implies 50% censoring), it is easy to check that 
liM kp(t)/VG(t) - 211 + S(t)-1, which is 4 for t = u. In all cases in which there is no 
censoring, kp(t)/VG(t) --*1 as N -m oo. Because of these considerations, we did not include 
the Simon-Lee interval I5 in our simulations (?6). 

By the normal approximation to binomial tail probabilities, and recalling that S(t) will 
be approximately 1 for t in any of the intervals I, to I6 when N is large, one can easily check 
that I2 and I6 (or the 'smoothed' IR defined below) are asymptotically equivalent to 

It: I S(t)-21 - 2Izal2N- 
which is equivalent to 

[4 - Za/2/f2f(A)N112 , / + Zal2/f2f(^)Nl 

and does not take the level of censoring into account. In fact, this last interval differs from 
Io only in that the Greenwood variance estimator is replaced by (4N)-1, a strictly anticon- 
servative estimator unless Sy 1 on [0, Ai], as can be seen from - fS fS2(x)Sy(x)}1 dS(x) 
> -_f S-2(X) dS(x) = 1. 

4. Special Modifications in Small Samples 

Special difficulties in defining intervals may arise when the number of observed deaths is 
very small. For example, when S(t) = Sy(t) exp(-t) and N < 25, there is a probability 
of several percent that S(4) = 0. To avoid degeneracy, when rj = 1, we have replaced 
(rj - 1) by rj in the final term of the summation for 'G(A^) which we have used in the simple 
reflected and transformed reflected intervals. Another difficulty peculiar to small samples 
is that the inverse values S-l and A'1, which define the endpoints for reflected intervals, 
may not exist. At the lower endpoint, we define the uncomputable inverse value to be the 
smallest observed death time (min Ti for which Ai = 1); this fix-up was chosen for 
comparability to test-based intervals, where the lowest possible endpoint is the smallest 
death time (unless survival curve estimators are interpolated). If we want to avoid semi- 
infinite intervals, there is no natural value to substitute for uncomputable upper endpoints. 
If we want the upper endpoint of an interval never to be larger than the largest observed 
death time, then we note that 

prIA > max(Ti: I < i < N, Ai = 1)} = {pr(A = 0) + f Sy(x)f(x) dx}. 

This probability is (2)N when there is no censoring but is (8)N when S(.) Sy(.), and in the 
latter case, N < 22 implies that errors of coverage of this sort have probability of at least 
.05. Another possible choice (which we adopt for both reflected and test-based intervals) is 
to define an uncomputable upper endpoint to be the largest observed time Ti. Then 
prfig > max(Tj: 1 S i S Nt)} = -45 2S(z)}N, which is (4)N when S(.)--Sy(.). This 
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probability [which is actually less than .003 if S(.) Sy(.)] is small enough for N > 20 
and for typical Sy(.) and S(.) that there would be no practical advantage in choosing a 
larger fix-up value. This fix-up is equivalent to replacing S by the self-consistent estimator 
due to Efron (1967), i.e. to setting S(t) = 0 for t > maxfTil, and is in accord with the 
practice of Brookmeyer and Crowley (1982a) and Emerson (1982). In spite of these 
arguments, there will be many small data sets for which it is preferable to report semi- 
infinite intervals. 

None of the intervals I, to I6 use interpolated (i.e. continuous) survival-curve estimators, 
although Emerson's interval I2 does rely on interpolated binomial tail probabilities. It is 
clear that variant intervals of each type could be produced based on an interpolated variant 
of the Kaplan-Meier curve. Following Efron (1981), Reid (1981) did propose that her 
conditional bootstrap interval be based on 'smoothed' and interpolated binomial tail 
probabilities. At the jth ordered death time Reid first averaged the corresponding tail 
probability with that of the preceding death time, which is equivalent to connecting the 
midpoints of the vertical steps; then, using these smoothed values she interpolated linearly 
to find the time points corresponding to probabilities I a and 1 - la. We use this smoothed 
interval I' in our computations below. 

There are alternative median estimators, variance estimators, smoothing techniques and 
interpolation methods which could be chosen in various combinations in an attempt to 
improve small-sample performance of the intervals we discuss. While we have studied some 
of these, our purpose here is to survey and unify existing ideas of confidence-interval 
construction. 

5. Behavior of Interval Estimators with Uncensored Data 

It is relatively simple, as shown, for example, by Lehmann (1975, pp. 181-185), to construct 
nonparametric confidence intervals for the median from uncensored data. In fact, for an 
uncensored sample of size N the exact probability with which the true median lies in the 
interval (T(.,, T(q) from the Jth-order statistic to the Kth is nj=-J (Z)2-N. Although our 
primary concern is with confidence intervals based on censored samples, there is some 
interest in the remark that all the intervals I, to I6 have the form (T(,J, T( ) on uncensored 
samples, where J and K are nonrandom and depend only on the type of interval, the 
nominal confidence level, and the sample size N. An endpoint (the left one, say) of the 
smoothed conditional bootstrap interval I' for uncensored data always falls a fixed frac- 
tion, y, of the distance between adjacent order-statistics T(-, and T(J+il) and therefore, for 
fixed N and a, can be conveniently reported as the fractional order-statistic T(J+z) 
T(j, + y(T(.j+ I) -T(.)) 

For example, with N = 21 and no censoring, ,i = T( 1), XG() ='I 1/(21 X 20) + 
1 /(11 x 10)} = .013 1 and A(Ai) = 1/21 + + 1/11 = .7164. Therefore when a = .05 we 
can read off from the lists of values S(T(i)) = 1- i/21 and A(T(i)) = X-U (21 - k)-' the 
intervals IL = S-(.5 ? Za2 ?0131'12) = (T(6), T(l6)) and I3 = A'-(.716 ? 2Za,/2.013 11/2) = 
(T(6), T(IS)). Slightly lengthier calculations show (still for N = 21 and a = .05) that 
the intervals I4 and I5 are (T(7), T(I 5)), that I2 (even in censored cases) is precisely 
{3-'(.7404), S'-(.2596)1 which in the uncensored case is (T(6), T(l6)), and that I' 6 
T(6.53), T(1547)[. Table 1 summarizes the results of similar calculations on uncensored 

samples with selected values of N and a = .05 and a = .10, including exact binomial 
coverage probabilities (which have been linearly interpolated for I'). 

Table 1 is instructive because it shows how the performance of the different intervals (on 
uncensored data) varies with the sample size, simply because of the discreteness of the 
binomial distributions. For example, the interval Is of Simon and Lee (1982) performs very 
well at sample size 25, with exact coverage probabilities .957 and .892 in place of the 
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Table 1 
Endpoint order-statistic numbers and exact coverage probabilities for a-level confidence intervals 

based on uncensored samples of size N 

Simple Transformed Brookmeyer- Reid, 
reflected, Emerson, reflected, Crowley, Simon-Lee, smoothed, 

N II I2 I3 I4 I5 I 6 

a = .05 
21 6, 16 6, 16 6, 15 7, 15 7, 15 6.53, 15.47 

.973 .973 .948 .922 .922 .946 
22 7, 16 6, 17 6, 15 7, 16 7, 16 6.49, 15.63 

.948 .983 .925 .948 .948 .942 
25 8, 18 8, 18 7, 18 8, 18 8, 18 8.16, 17.84 

.957 .957 .971 .957 .957 .946 
40 14, 27 14, 27 13, 26 15, 26 14, 27 13.92, 26.17 

.962 .962 .951 .919 .962 .945 
41 15, 27 14, 28 14, 27 15, 27 15, 27 14.78, 27.22 

.940 .972 .956 .940 .940 .948 
42 15, 28 15, 28 14, 27 15, 28 15, 28 14.73, 27.35 

.956 .956 .946 .956 .956 .945 
60 23, 38 22, 39 22, 37 23, 38 23, 38 22.45, 37.59 

.948 .973 .940 .948 .948 .946 
61 23, 39 23, 39 23, 38 24, 38 23, 39 23.37, 38.63 

.960 .960 .944 .929 .960 .948 
62 24, 39 23, 40 23, 38 24, 39 24, 39 23.33, 38.71 

.944 .970 .936 .944 .944 .947 
a = .10 

21 7, 15 7, 15 7, 15 7, 15 7, 15 7.23, 14.77 
.922 .922 .922 .922 .922 .896 

25 9, 17 8, 18 8, 17 9, 17 9, 17 8.93, 17.07 
.892 .957 .924 .892 .892 .897 

41 16, 26 15, 27 15, 26 16, 26 16, 26 15.74, 26.26 
.883 .940 .912 .883 .883 .898 

nominal .95 and .90. However, their method at N = 21 has the defect of producing identical 
intervals (with coverage .922) at both nominal probabilities .95 and .90. Similar comments 
apply to the Brookmeyer-Crowley test-based intervals I4. Some general conclusions for 
uncensored data can be drawn from the extended form of Table 1 (summarized in 
Table 2) covering all N from 21 through 75. The test-based intervals as a group have, with 
relatively few exceptions, smaller coverage than the reflected intervals. The intervals I4 due 
to Brookmeyer and Crowley and I5 due to Simon and Lee are typically anticonservative, 
while the simple reflected interval I, and especially Emerson's I2 are noticeably conservative. 
Between I, and I2 (respectively, I4 and IR), the larger coverage is usually attained by the 
interval I2 (respectively, IR) based on binomial rather than normal tail probabilities. This 
might have been expected because of the known inequalities (see Slud, 1977) bounding 
binomial tails above their normal approximants. The new transformed reflected interval 
I3, which is not markedly conservative or anticonservative at level .05 and is slightly 
conservative at level .10, was chosen for its approximately nominal behavior over the 
variants 

[t: {A(t) - ln 2}2 S 4 X2,a XG(8)] 

and 

I3'I[t: I-In S(t) - In 2}2 S 4 XIa 4(i)] 

The interval 13' behaves somewhat anticonservatively (see Table 2), while I3 is systematically 



Confidence Intervals for Median Survival Time 595 

Table 2 
Counts of how many of the 55 sample sizes (N = 21, .. ., 75) have exact* coverage probabilities on 
uncensored data (i) below .935 for a = .05 or below .88 for a = .10; (ii) above .965 for a = .05 or 

above .92 for a = .10; and (iii) above nominal level 
Trans- 

Simple formed Brookmeyer- Reid, 
reflected, Emerson, reflected Crowley, Simon-Lee, smoothed, 

II I2 I3 I 13 I3 I4 I5 6 

a = .05 
(i)No.<.935 2 0 3 0 9 18 5 0 
(ii) No. > .965 6 27 4 3 1 0 2 0 
(iii) No. > .95 33 55 32 39 25 15 26 0 

a .10 
(i)No. < .88 6 0 0 1 3 19 9 0 
(ii) No. > .92 12 34 6 12 1 1 9 0 
(iii) No. > .90 33 55 40 40 26 20 30 0 

* Binomial coverage probabilities are interpolated for the interpolated endpoints of I'6 (see discussion at the end 
of ?4). 

shifted slightly to the left of I3 and its average length tends to be the same or slightly larger. 
Finally, the performance of Interval I', due to Reid (1981), is quite impressive on 
uncensored data, always giving very slightly less than nominal coverage. Comparisons with 
the unsmoothed interval I6 (which is badly anticonservative) suggest that interpolation 
plays an important role (which, however, will become less important as sample size 
increases). 

6. Simulation Results 

Our simulation experiments cover three lifetime distributions: (i) constant hazard, expo- 
nential with parameter 1, denoted by exp(1); (ii) decreasing hazard, Weibull with scale 
parameter 1.0 and shape parameter 0.7, denoted by Weib (1, 0.7); and (iii) increasing 
hazard, Weib (1, 1.5). The censoring distributions simulated are (i) exp (1); (ii) uniform 
on the interval 0 to 2, denoted unif (0, 2); (iii) exp (.3); and (iv) unif (0, 4.5). 

All simulations were run with 7600 replications, so that the standard error due to 
simulation was approximately .0025 for nominal .95 probabilities, and .0034 for nominal 
.90 probabilities. Tables 3 and 4 show the relative frequencies with which the intervals 
contained the true median for the underlying life distribution for sample sizes 21 and 41, 
respectively. 

The Brookmeyer-Crowley interval, I4, was anticonservative in all cases, strikingly so at 
N = 21 and somewhat less so at N= 41. The improvement with larger sample size would 
be predicted from the asymptotic results in ?3. Both the Emerson interval, I2, and the Reid 
interval, I', tended to become noticeably anticonservative with heavier censoring, and this 
result was more marked at XV= 41 than at XV= 21. Again, this would be expected from the 
large-sample considerations of ?3. However, the results of our simulations of Method I2 
differ from the simulation results of Emerson (1982), who reported conservative coverage 
at all levels of censoring with values of N of 25, 50 and 100. We requested the simulation 
program used by Emerson, and we noted that this program arbitrarily widened the 
confidence interval for censored data in a manner not discussed by that author and for 
which we could imagine no logical justification. 

In the simulations the new reflected intervals, I, and 13, maintained conservative coverage 
at ae = .05 for all lifetime and censoring combinations, and both were quite conservative at 
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Table 3 
Sample size 21, empirical coverage for confidence level .95 (and .90 in parentheses) 

Censoring Expected Simple Transformed Brookmeyer- Reid, Lifetime distribution percentage reflected, Emerson, reflected, Crowley, smoothed, 
censored II '2 13 14 I'6 

exp (1) exp (1) 50.0 .972(.946) .922(.863) .965(.947) .913(.858) .941(.890) 
unif (0, 2) 43.2 .976(.940) .950(.908) .968(.943) .924(.874) .943(.895) 
exp (.3) 23.1 .964(.922) .957(.921) .964(.929) .923(.876) .945(.893) 
unif (0, 4.5) 22.0 .968(.929) .964(.930) .967(.936) .929(.881) .948(.901) 

Weib (1, 0.7) exp (1) 47.6 .975(.944) .940(.889) .966(.945) .916(.862) .950(.898) 
unif (0, 2) 42.3 .974(.944) .959(.918) .966(.945) .924(.874) .949(.902) 
exp (.3) 24.6 .969(.933) .962(.932) .971(.940) .930(.883) .950(.904) 
unif (0, 4.5) 24.9 .968(.927) .963(.928) .966(.934) .924(.884) .949(.901) 

Weib (1, 1.5) exp (1) 52.7 .973(.939) .896(.832) .962(.939) .901(.847) .926(.875) 
unif (0, 2) 43.8 .975(.939) .940(.890) .970(.942) .921(.867) .939(.888) 
exp (.3) 22.5 .964(.922) .956(.916) .965(.928) .926(.869) .942(.889) 
unif (0, 4.5) 20.0 .965(.925) .962(.925) .963(.931) .928(.879) .946(.896) 

O = .10, especially with heavier censoring. The transformed reflected interval, 13, tended to 
give closer to nominal coverage at a = .05, and the simple reflected interval, II, tended to 
do so at a = . 10. Both methods performed better at N = 41 than at N = 2 1, in consonance 
with the large-sample asymptotics. 

Among the large-sample consistent intervals, II, I3 and I4, Table 5 shows (for a = .05) 
that the conservative reflected intervals, I, and I3, were considerably longer on average for 
N = 21 than the anticonservative Brookmeyer-Crowley interval, I4, and somewhat longer 
for N = 41. For all types of censoring, all average interval lengths decreased as the lifetime 
hazards changed from decreasing to constant to increasing. 

7. A Worked Example 

As an illustration of the six methods we are comparing, we have calculated confidence 
intervals for the median survival time in a 6-MP treatment group of leukemia patients (in 
a well-known data set of Freireich et al., 1963, as presented by Gehan, 1975). Our confidence 
intervals are shown in Table 6. Since this data set contains tied observations, our formulas 
for S, OG and A must be modified by replacing Ai with di, the number of deaths at event- 
time ti. The final six columns of our table contain the test-statistics Z2, F2, Z3, Z4, Z 
and P' (where the Z2 have approximate x2 distributions, and P2 and P' are doubled P- 

Table 4 
Sample size 41, empirical coverage for confidence level .95 (and .90 in parentheses) 

Lifee Censoring Expected Simple Transformed Brookmeyer- Reid, Lifetime distribution percentage reflected, Emerson, reflected, Crowley smoothed, 
censored II '2 13 14 I'6 

exp (1) exp (1) 50.0 .966(.928) .910(.858) .961(.931) .931(.880) .918(.857) 
unif (0, 2) 43.2 .964(.923) .939(.887) .961(.921) .933(.880) .930(.873) 
exp (.3) 23.1 .961(.913) .957(.913) .956(.920) .941(.890) .945(.889) 
unif (0, 4.5) 22.0 .955(.907) .954(.910) .956(.914) .935(.881) .940(.884) 

Weib (1, 0.7) exp (1) 47.6 .969(.929) .932(.876) .962(.932) .936(.881) .931(.875) 
unif (0, 2) 42.3 .963(.921) .944(.899) .958(.917) .931(.884) .934(.880) 
exp (.3) 24.6 .960(.914) .957(.917) .958(.917) .938(.887) .945(.892) 
unif (0, 4.5) 24.9 .956(.912) .955(.917) .957(.917) .936(.886) .942(.894) 

Weib (1, 1.5) exp (1) 52.7 .964(.929) .893(.832) .962(.932) .929(.878) .906(.842) 
unif (0, 2) 43.8 .958(.918) .927(.871) .957(.918) .932(.876) .919(.857) 
exp (.3) 22.5 .961(.913) .953(.906) .956(.918) .940(.887) .939(.882) 
unif (0, 4.5) 20.0 .954(.909) .949(.906) .953(.914) .934(.883) .936(.883) 
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Table 5 
Empirical average lengths for intervals II, I3 and I4 for confidence level .95, sample size 21 

(and 41 in parentheses) 

Censoring distribution 
Lifetime 

exp (1) unif (0, 2) exp (.3) unif (0, 4.5) 
I, (Simple reflected) 

Weib (1, 0.7) 1.586(1.226) 1.269(0.962) 1.539(0.905) 1.471(0.884) 
exp (1) 1.350(0.975) 1.124(0.803) 1.131(0.713) 1.094(0.697) 
Weib (1, 1.5) 1.088(0.732) 0.929(0.612) 0.811(0.532) .0792(0.520) 

I3 (Transformed reflected) 
Weib (1, 0.7) 1.577(1.219) 1.261(0.952) 1.461(0.884) 1.400(0.863) 
exp (1) 1.372(0.983) 1.142(0.805) 1.101(0.705) 1.064(0.692) 
Weib (1, 1.5) 1.136(0.744) 0.967(0.619) 0.813(0.533) 0.791(0.520) 

I4 (Brookmeyer-Crowley) 
Weib (1, 0.7) 1.388(1.209) 1.116(0.934) 1.319(0.849) 1.265(0.826) 
exp (1) 1.114(0.914) 0.960(0.764) 0.956(0.663) 0.930(0.648) 
Weib (1, 1.5) 0.825(0.649) 0.752(0.564) 0.676(0.491) 0.663(0.479) 

values from binomial tails); the nonsignificant values of these test statistics form the 
confidence intervals I, to IB, respectively. In other words, denoting by Cj(t) the jth column 
entry at t = t in Table 6, we have constructed Columns 9 through 13 with the formulas 

C9q(t) = 4fC4(t) - 2/C6('), 

Clo(t) = 2B[N maxIC4(t), 1 - C4(t)), N, 2] 

and C11(t) = fC5(t) -C5(1)}21C6(1) 

C1 2 ) = IC4(t) -2 

= fC4(t) - }1C7(t) 

where, for this data set, one can easily see from Column 4 that , is 23 weeks. Column 14 
is calculated by the method given in ?4. From the six final columns of Table 6, we read off 

Table 6 
Construction of Intervals II, I2, I3, I4, I5 and I' for the 6-MP leukemia-treatment-group data from Freireich et al. 

(1963) 
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) 

ti ri di S(tj) ~(ti) j z1 rp(rt-d) i(ti) IkG(ti) Z P2 Z3 Z4 Z5 P6 

6 21 3 .857 .143 .008 .011 .006 5.66 .001 4.12 21.9 12.0 .000 
7 17 1 .807 .202 .012 .012 .008 4.17 .008 3.36 12.4 7.81 .001 
9 16 0 .807 .202 .012 .013 .008 4.17 .008 3.36 12.4 7.46 .001 
10 15 1 .753 .268 .016 .013 .009 2.84 .036 2.60 6.89 5.01 .007 
11 13 0 .753 .268 .016 .014 .009 2.84 .036 2.60 6.89 4.42 .007 
13 12 1 .690 .352 .024 .015 .011 1.60 .134 1.78 3.17 2.46 .039 
16 11 1 .627 .442 .033 .015 .013 0.72 .349 1.06 1.25 1.11 .148 
17 10 0 .627 .442 .033 .016 .013 0.72 .349 1.06 1.25 1.04 .148 
19 9 0 .627 .442 .033 .017 .013 0.72 .349 1.06 1.25 0.93 .148 
20 8 0 .627 .442 .033 .020 .013 0.72 .349 1.06 1.25 0.83 .148 
22 7 1 .538 .585 .057 .020 .016 0.06 .901 0.31 0.09 0.07 .477 
23 6 r .448 .752 .090 .019 .018 0.12 .802 0. 0.15 0.14 .952 
25 5 0 .448 .752 .090 .022 .018 0.12 .802 0. 0.15 0.12 .952 
32 4 0 .448 .752 .090 .028 .018 0.12 .802 0. 0.15 0.10 .952 
34 2 0 .448 .752 .090 .056 .018 0.12 .802 0. 0.15 0.05 .952 
35 1 0 .448 .752 .090 .112 .018 0.12 .802 0. 0.15 0.02 .315 



598 Biometrics, September 1984 

the estimated 95% confidence intervals (in weeks) I, = (10, 35), I2 = I4 = I5 = (13, 35), 
I3 = (7, 35) and I' = (13.30, 35), where the left endpoint of I' is interpolated from 
Column 14 as 13 + (16-13)(.05-.039)/(.148-.039). The upper endpoint, 35, is chosen as 
the largest ti, since none of the Zj attain significance for large values of ti. Ordinarily, the 
upper endpoint of the estimated interval is the smallest t1 for which Zj2(t) is significant at 
all t 3 ti. It is worth remarking that in this example, instead of using time intervals 
(k - .5, k + .5] in months, we have rounded follow-up times to k weeks, and we have 
adopted the usual convention of treating all censorship in this time interval as occurring 
after all deaths 'at ti = k'. The survival and censoring distributions have thereby been 
discretized, and the inclusion of endpoints in the estimated confidence intervals is open to 
interpretation. 

It is instructive to compare the median estimate and confidence interval for the 6-MP 
group in our example with the estimate and interval for the placebo group (Gehan, 1975). 
In the placebo group, A = 8 weeks and I, = (3, 12), I2 = I3 = (4, 12), I4 = I5= (4, 11) 
and I' = (3.87, 11.77). Even though the sample sizes for the two groups are small (N = 21 
for both), the fact that these confidence intervals barely overlap (with I2, I4, I5 and I' they 
do not overlap) suggests that the large observed'difference in the median estimates is not 
due to chance but to a true treatment effect. In fact the Cox-Mantel test comparing the 
two treatments yields a normal deviate at 4.10 (P < .001). Despite the nice separation of 
confidence intervals in this example, the imprecision of the median estimate for the heavily 
censored 6-MP group is apparent when we consider that the confidence interval I, for this 
group covers 71 % of the time axis, ranging from 0 to the largest observed time, here the 
censored observation at 35 weeks. The comparable figure for the placebo group is 35%. 

8. Discussion and Recommendations 

While all intervals in this paper can be derived from considerations of hypothesis testing, 
the estimator of asymptotic null variance at the single point , characterizes what we have 
called the reflected intervals. The geometric interpretation given in Fig. 1 sets reflected 
intervals clearly apart from their test-based counterparts. 

Although in practice one could encounter a broader spectrum of death and censoring 
distributions than were studied here, our calculations and simulations support the following 
conclusions and recommendations: 

(i) the intervals I2 (Emerson, 1982), I5 (Simon and Lee, 1982) and I' (Reid, 1981) all 
have asymptotically incorrect coverage in the presence of censoring; 

(ii) the test-based confidence interval I4 (Brookmeyer and Crowley, 1982a), although 
large-sample consistent, gives short and anticonservative interval estimates for the 
median survival time in small samples of censored survival data when the lifetime is 
not too far from exponential; 

(iii) the reflected confidence intervals I, and I3 have asymptotically correct coverage, 
and in our small-sample simulations of censored survival data, these intervals main- 
tain (at least) nominal coverage for all sample sizes, confidence levels and lifetime- 
censoring combinations studied, but sometimes gave markedly above-nominal cov- 
erage; 

(iv) Intervals I, and I3 are both easy to compute, and have similar small-sample behavior. 
Since the simple reflected interval, II, uses the Kaplan-Meier curve and Greenwood 
variance directly, it is the most likely choice for reporting confidence intervals for 
the median lifetime when data are censored. 

Our preference for the reflected intervals I1 and 13 conforms with the common perspective, 
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which we share, that confidence intervals should achieve at least nominal coverage. There 
is however a clear trade-off between coverage and interval length, and in some situations 
one might prefer the anticonservative Brookmeyer-Crowley interval I4 for its shorter length. 

Median estimates based on limited data are highly variable. For this reason readers of 
medical journals may seriously misinterpret median estimates quoted without estimated 
confidence limits, for example, by believing that two medians differ significantly when they 
do not, or by believing that because the ratio of two medians is 2, say, patients are dying 
twice as fast on one treatment as on another. The results presented here suggest that the 
simple reflected interval (or perhaps the transformed reflected interval) should be calculated 
to provide confidence limits for the median survival time in the presence of censoring. 
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RESUME 
La comportement, sur de petits 6chantillons, de quelques tests non-parametriques r&cemment 
proposes pour construire des intervalles de confiance du temps moyen de survie sur des 6chantillons 
tronques a droite au hasard est compare a celui de deux nouvelles methodes. La plupart de ces 
methodes sont equivvalentes sur de grands &hantillons. Tous les intervalles proposes sont soit 'bases 
sur un test', soit 'reflechis' dans un sens defini dans 1'article. Les probabilities associees aux estimateurs 
des intervalles sont obtenues exactement pour des donnees non tronquees, et par simulation pour 
trois distributions de duree de vie et quatre modes de troncature. Pour les situations envisages, les 
methodes bashess sur un test' ont une probability associee plus petite que celle annoncee, alors que 
les nouveaux intervalles 'reflechis' ont une probability associee plus proche de la probability announce 
(quoique legerement conservatrice) et' sont facilement calculables. 
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