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 SUMMARY

 Several new methodological issues that arise within two-way factorial designs for survival experi-
 ments are discussed within the framework of asymptotic theory for the proportional hazards model
 with two binary treatment covariates. These issues include: the proper formulation of null hypoth-
 eses and alternatives, the choice among log-rank and adjusted or stratified log-rank statistics, the
 asymptotic correlation between test statistics for the separate main effects, the asymptotic power
 (under the various possible methods of analysis) of tests to detect main effects and interactions, the
 comparison of power to detect main effects within a 2 x 2 factorial design with power in a
 three-group trial where no patients are randomized simultaneously to both treatments, and the
 problems of analysis arising when accrual or exposure to one of the treatments is terminated early
 for ethical reasons.

 1. Introduction

 There are presently a number of ongoing or recently completed clinical trials with survival endpoints

 and a factorial design. However, as remarked by Byar and Piantadosi (1985), there has been virtually

 no methodological work directed specifically at factorial designs for survival analysis.

 The purpose of this paper is to use existing theoretical tools to analyze clinical trials with survival

 endpoints and (2 x 2) factorial designs, within the framework of proportional hazards models with

 two binary treatment-group indicators as covariates. Some of the new methodological issues that

 arise in such trials are: (i) choosing among log-rank, adjusted log-rank, and stratified log-rank

 statistics for detecting the separate main effects, and planning for adequate power to detect desired

 main effects and interactions; (ii) assessment of the degree of dependence among test statistics for

 separate main effects, both in ideal settings and in situations likely to be realized in practice, with

 consequences for the "experimentwise" reporting of significant results; (iii) relative efficiency of
 factorial trials as compared with trials designed to detect only a single main effect; (iv) justification
 of the statistical validity of analyses of factorial trials after early termination of accrual or exposure
 to one of the treatments (with the terminated treatment either eliminated from or applied to all newly

 accrued patients).

 The techniques for large-sample asymptotic analysis that we exploit in the paper rely on counting
 processes and martingales, as expounded in the books of Gill (1980) or Harrington and Fleming
 (1990). Comparison of power and efficiency of test statistics is accomplished by consideration of

 so-called contiguous alternatives, which approach the null hypotheses of interest as sample-size

 increases. Because of the practical importance of (iv), these techniques are developed also in the
 context of group sequential or repeated significance tests.

 The plan of the paper is as follows: models and statistics are introduced in Section 2; asymptotic

 large-sample theoretical results are summarized under various headings in Section 3; in Section 4,

 Key words: Adjusted score statistic; Counting processes; Early termination of a treatment; Ex-
 perimentwise probability of stopping; Factorial design; Proportional hazards model; Random-

 ized clinical survival experiment; Repeated significance tests; Stochastic integrals; Stopping

 boundary; Stratified log-rank statistics.
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 these results are interpreted and recommendations are based on them. Justification of the theoretical
 results is deferred to the Appendix.

 2. Cox-Model Formulation of Factorial Designs

 For convenience of notation, we formulate our models and statistics for the case of a two-way

 factorial design in which subjects are randomly assigned to treatments. The assumptions and

 notations are adapted from Cox (1972), Andersen and Gill (1982), and Slud (1984). Suppose that for

 each of n independent subjects indexed by i, there is a random vector Zi - (Zi', Z(2), Zi3)) whose
 components respectively denote the ith subject's level j of treatment-factor A, level k of factor B,
 and the productj-k. Suppose also that for each subject there is a pair of latent waiting times Xi, Ci,
 which are conditionally independent given Zi, with Xi denoting the ith subject's time from entry until
 the study endpoint of interest, and Ci the time from entry until loss to follow-up. Denote by P1k the
 fraction Pr(Zi = (j, k, jk)') of the study population assigned to A-treatment level j and B-treatment
 level k. The entry time Ei for the ith subject is assumed to be independent of all other variables, and
 is taken to be 0 until we discuss repeated or group sequential tests. The data observed on the ith

 subject up to study time t consist of Ti(t) = min{Xi, Ci, t - Ei} along with the failure-indicator
 AP(t) = I[min(Cj,t-e1)-X;]- As usual in survival analysis, denote by Ti = Ti(oo) the "event time" min{Xi,
 Ci} for the ith subject, and Ai = Ai(oo) the corresponding "death indicator" I[xESCil.

 We assume that the dependence of survival on factorial levels Z is described by a Cox (1972)
 proportional hazards model. That is, the conditional cumulative hazard function for the latent failure

 variable Xi given Zi is assumed to have the form

 A(tlZi = (j, k, jk)') = AO(t)exp(8 * Zi) = A0(t)e j' +k/32 +Jk3 (1)

 where AO(t) is the baseline cumulative hazard and : = (81, 12, /3) is a parameter vector. The
 separate effects 8, for factor A and /2 for factor B and the interaction 3 might be parameterized
 differently in the case of multilevel treatments, and (known) time-dependent functions might be
 included in the covariates Z to model delays in treatment effect as in Zucker and Lakatos (1990), but

 we treat only model (1) in the 2 x 2 case, fixing the possible values ofj and k as 0, 1. A further model

 assumption, which we shall impose in much of what follows and which would hold, for example, in

 a randomized trial if the only loss to follow-up were due to end-of-study censoring, is:

 The loss-to-follow-up times Ci are independent of the factor-level vectors Zi. The (2)
 fractions Pjk of the study population for which Zi = (j, k, jk)' factor as products a bk.

 Ordinarily the factorial study would be conducted to find ouit whether either treatment has a
 significant effect on survival. In a testing framework, the null hypothesis Ho would be formulated as
 13 = (61, 823 13) = 0, and this is the only null hypothesis that makes sense in a discussion of
 dependence between test statistics to detect the separate A and B main effects. However, if only the
 single main effect for A were of interest, either for purposes of comparison with a nonfactorial trial
 or because treatment B has been terminated early for ethical reasons, then the null hypothesis would

 be HO,A: 13B = 03 = 0, i.e., that Xi has the same conditional distribution given Zi = (j, k, jk)' for each
 level j of A, for all B-exposure levels k. Another scenario is that treatment B might be strongly

 expected to affect survival whereas the main A-effect and any possible interaction effects are less

 certain. In this setting also, HOA is an appropriate null hypothesis.
 For testing the null hypothesis 1 = 0 against alternatives with at most one nonzero coefficient [i,

 i = 1, 2, 3, the Cox-model score statistics for these three alternatives are the components of the

 vector score statistic S (S(', S(2), S(3)) defined by

 z

 S= (diag(611, D622, D633) 1/2- /\i{Zi - Zi},
 n i= 1 (3)

 D = (D6pq) = - , \i Z- Zi -Zi }
 n i=

 where

 tz | ~~~~n

 Zi= E '[T,,I bT,]Z,nl E '[TZ,, BTi]-
 tn= I | t,n=1I
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 Factorial Survival Analysis 27

 However, it is known that using the log-rank statistic S(1) to test for 81 ? 0 can result in serious loss
 of power for alternatives with fl2 ?i 0, as compared with the most powerful test statistic based on the
 model (1). (See ?3 for detailed power comparisons.) The adjusted test statistics s*('i) asymptotically
 equivalent to the likelihood ratios for the respective alternatives f3i ? 0, i = 1, 2, 3, are defined
 through

 Zi(13) - 2I[Ti T,]Zme I[T,i 1 Ti I
 m=l m=l

 with Zi replaced in the formulas (3) by Zi(O, 12, 3) for defining S*(l), by Zi(31 0, O33) for defining
 S*(2), and by Zi(31, /2, 0) for defining S*(3), where the maximum partial likelihood estimators
 (MPLEs) /i, i = 1, 2, 3, are defined by the equation

 n

 A Xij{Zi -Zi(O31, /32, /33)}= (4)
 i= 1 O

 If we are testing for the main A-effect but think it likely that B has a non-null effect, then another
 reasonable choice of test statistic is the stratified log-rank S,,r defined by

 1 Ylk (Xi)1

 I[Z (1, k , k) Ylk(Xi ) + YOk(Xi[) } k]
 S str , (5)

 |It Ylk (Xi) YOk (Xi )

 V k- Ylk (Xi) + Yok (Xi) [Zi) = k]

 where Yjk(t) -i Ir[Tl t,Zi=(j,kjk)J* The stratified log-rank statistic B for main B-effect with non-null
 A-effect is defined analogously.

 For purposes of later comparison, we consider also a linear model for survival times in the

 uncensored case, namely the accelerated failure model, which expresses within factor levels (j, k)

 ln(X) = 0 + 8J + 82k + 13jk + V, (6)

 where 10 is a constant and the random variable exp(/30 + V) has cumulative hazard function AO(t)
 with E(I<Z = (j, k, jk)') = 0. This model coincides with (1) in the Weibull cases where AO(t) = ytx
 for some -y, 8 > 0. Within such a model, assuming also (2) for convenience, the main-effect

 parameter for treatment A is E(ln(X) Z(1) = 1) - E(ln(X) Z(l) = 0) = 81 + b1l32, with b1 as in (2),
 and the interaction effect is 83. The parameters 1 can be estimated by ordinary least squares with
 respect to a design matrix with rows (1, Z'), i = 1, ... , n, and the least squares estimator for the
 parameters (181, 12, 13) has covariance matrix proportional to the inverse of cov(Z).

 Motivated by the linear-model definition of main-effect and interaction parameters, one might also

 analyze the factorial trial data under (1)-(2) by the MPLEs 1 + bl3 and /l3, and these statistics too
 will be considered below.

 3. Summary of Results

 3.1 Asymptotic Distributions of Statistics

 In a moderate-to-large-sample clinical trial satisfying our assumptions including (1), the MPLE 1 =

 (A1, 12, 13) is asymptotically normally distributed with mean 1 and variance- covariance matrixD-1,

 where D-D(.v : Jo [u(2)(S, 13) /u(1)(s 1) \o2)
 D =_D(oo, 13) I0 - 8 I IU(O)(s, 13) dAO(s) (7)

 and for i = 0, 1, 2,

 u()s 13) -- (|k) |Pflexp{ (k) 1,3- -e(JXkiJk)fA(s)}|Pr( C ? slZ=|k||
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 Here and in what follows, for a vector v we denote by v?i respectively 1, v, and vv' for i = 0, 1, 2.

 For large samples, the vector Zi(f3) defined above (4) is asymptotically close to u(1)(Ti, f3)Iu(0)(Ti, ,3).
 Expression (7) is consistently estimated by the covariance estimator

 n
 D(??,~~ A3)- , f\ Z, _ Z, (13)} (i 2* (8)

 ni=1

 Note that formula (8) with f3 replaced by 0 coincides with the expression D in (3), and under Ho both
 (3) and (8) are consistent for D in (7). Under HO,A, D11 turns out to be consistent for D1l.

 It is shown in the Appendix that under Ho both

 S - C(diag(D11, D22, D33)<112D12, S* - diag(Djj, D2j, D731<112_ (9)

 converge in probability to 0. More generally, under HO,A the first and third components of the
 second quantity in (9) converge in probability to 0. Thus the "adjusted log-rank statistic" S*(1) for

 treatment-effect of A is after standardization asymptotically equivalent to the MPLE /31 under HO,A.
 A further equivalence holds: under Ho but not under Ho, A, (1) - 0Str - 0 as n o o.

 3.2 Asymptotic Correlation Among Test Statistics

 When a clinical trial with factorial design is analyzed, inferences for both main treatment effects and
 for an interaction effect will be performed and simultaneously reported, each test statistic being
 referred separately to its own nominal distribution. We investigate the dependence among statistics

 that might be used to test separate treatment effects, in order to assess the "experimentwise"
 probability of reporting at least one significant effect, under both null and alternative hypotheses.

 Formula (7) indicates that under Ho, D = cov(Z)S, where 8 = Pr(A1 = 1) = Pr(X1 ? C1). When
 (2) also holds, the first and second components of Zi are readily seen for each t to be conditionally
 independent given that subject i is alive and uncensored at study time t (i.e., given that Ti ? t), so
 that

 al(l -a,) 0 al(l - al)bl

 D 0 b1(1 - b1) bl(1 - bl)al18.

 al(l -al)bl bl(l -bl)al albl(l -albl)

 Since D is the asymptotic covariance matrix of V/nD/3, it follows that the two log-rank statistics sM1)
 and S(2) are asymptotically independent under Ho, (1), and (2). If (2) fails to hold, for example,
 because different loss-to-follow-up patterns obtain within different treatment-factor levels, then

 under Ho and (1), S(1) and S(2) will asymptotically no longer be precisely independent, but will be
 very nearly so in practice. For a quantitative assessment of the dependence and its effect on
 experimentwise rejection probabilities in group sequential testing, see Section 3.4 below.

 The adjusted log-rank statistics S*(1) and S*(2) will never be asymptotically independent: using
 their equivalence to the standardized MPLEs I1 and 132, together with the theory summarized
 in Section 3.1, we find the asymptotic correlation of S*(l) and S*(2) under Ho and (2) to be

 (D-')12/ (D')11(D' )22 = .ab1.
 Under Ho and contiguous alternatives, without assuming (2), S(2) will be asymptotically indepen-

 dent of (S*(1), S*(3)). This follows immediately upon taking asymptotic covariances using the
 representations given in paragraph 3.1:

 0 ~~S*( 1)1/20
 S(2) n/D2 ( )'DA (S* (3) 4 ((D 0 0 (D1) -1/2)

 Thus, suppose that we want to test Ho, but that we believe /32 is quite likely to be different from
 0, i.e., that there may well be a non-null (but not extremely large) main effect from treatment B.
 Even if we cannot justifiably assume (2), we can first test for the main B-effect using the statistic S(2)

 at significance level atB, and then perform an independent test of Ho A using (S*(1), S*(3)). Indepen-
 dence of the two tests makes them relatively easy to interpret, whether from the nominal or

 experimentwise point of view. In addition, the use of adjusted statistics at the second stage of testing

 provides a valid test of Ho A regardless of whether f:2 = 0.
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 Factorial Survival Analysis 29

 3.3 Power and Sample Size: Comparison Among Statistics

 All of the foregoing statements about asymptotic equivalence and independence of statistics under

 null hypotheses extend automatically to contiguous alternatives, under which asymptotic formulas

 for power will now be developed, following the methods of Gill (1980) and Schoenfeld (1981). The

 "contiguous" alternatives that we consider are close to Ho or HoA in a way that depends on n so
 as to yield a limiting power strictly between 0 and 1 as n - oo, viz.

 HI,,,: Zi and Ci are as under HO,A, and conditionally given Zi = (j, k, jk)', Xi is independent of
 Ci and has cumulative hazard fo exp(k32 + jn- 112(c(s) + kc3(s))) dAO(s),

 where c, and C3 are fixed functions that we take to be constants. These constants express the relative
 degrees of deviation from 0 of the coefficients of Z?'' and Z131 under the alternative. For convenience, we
 assume (2). For each of several normalized test statistics, with standard normal asymptotic distribution

 under HOA, we calculate in the Appendix the limiting expectation .t under H1I, as n - oo, leading to the
 expression F(-za2 + A) + F(-Z,2 - A) for the limiting power of a two-sided size-a test based on that
 statistic. Formulas for the means .t in terms of the constants cl, C3, and y = exp(82), and of the matrix
 D given by (7), are displayed in Table 1. The results are conditional on the observed values of a, and b1.

 Table 1
 Formulas for asymptotic means of statistics under H1,7, in terms of constants cl , C3, a = a1,

 b = b, , D, y

 Statistic Asymptotic mean

 Log-rank S(1) (clDll + c3D13 - (y - l)((Cy - 1)c + yc3)A)

 Adjusted log-rank 5*(Il - D13 c1

 Stratified log-rank str (clD11 + C3D13)/ D11

 Standardized MPLE for main VDll- Dl3 (cl + bc3)
 effect /31 + bf33 1 - 2b +

 Standardized MPLE for f3 based CD - D c
 on data without A & B treatment

 In the expression for the log-rank in this table, the constant A is defined in terms of Sc(t)
 Pr(C ? t) by

 r 1 ~~xe( +7)x dx
 A= a,(I - al)bl(I - b1) f (A (x)) xe +(1 - Y)x 0 be yx + (1 - b)e-x

 The entries in Table 1, in conjunction with formula (7) for D, can be used generally for the

 calculation of power or sample size in factorial trials. The asymptotic mean under H1, for the
 adjusted log-rank statistic 5*(3) for testing interaction is c3 D13 - 131DI P

 To facilitate comparisons between statistics and the interpretations and recommendations of

 Section 4, we consider also the simplifications of Table 1 either if the alternatives H1, are
 contiguous to Ho (i.e., if -y = 1) or if there is no censoring (i.e., Sc(t) 1). In these cases, if 8
 I Sc(A-J(x))e-x dx, then as n -- oo, under H1 2

 Asympt. mean (S*(l)) = cl Val (1 - al)(1 - bl)8,

 Asympt. mean (standardized , I + b 133) = Asympt. mean (SAr) = (cl + biC3)da1(1 - a1)6.

 (10)

 As in Table 1, the asymptotic mean for the standardized MPLE of /31 based only on the three levels

 (0, 0), (1, 0), and (0, 1) for (Z(1), Z(2)) iS identical to the asymptotic mean of 5*(l)* We have remarked
 already that under alternatives H112 contiguous to Ho (when Py = 1), the log-rank and stratified
 log-rank are asymptotically the same. On the other hand, for general Py in the absence of censoring,
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 Table 2 exhibits, for the case b1 = .5, the numerically computed coefficients of cl and C3 in the
 asymptotic mean for the log-rank statistic.

 See Section 4 for discussion and interpretation of the asymptotic means of test statistics presented
 here and their implications for asymptotic power within factorial survival analyses.

 Table 2

 Coefficients of c1 and C3 under HI ,r in Asympt. mean
 (log-rank)l(a1(l - a 1)12),for Sc 1, b, = .5

 y = e2 Coeff. of cl Coeff. of C3

 3 .832 .248
 2 .911 .322
 1.5 .964 .391
 1.2 .992 .452
 1 1 .5
 .8 .988 .548
 .7 .971 .567
 .5 .911 .589
 .3 .813 .580

 3.4 Extensions to Repeated Significance Tests

 Both to allow monitoring of a factorial clinical trial in a group sequential setting, and to address

 possible early termination of one of the two treatments, we consider the properties of test statistics
 calculated repeatedly over chronological time. We introduce additional subscripts Ton variables T,P2,
 AZXm, Z,2(/3), f, S*(i), s(i) to indicate wherever necessary that these quantities are to be calculated

 using only data that would be observable as of time T. The effect of the subscript T on any of the

 statistics is that observations on subjects for whom Ti was larger than T - Ei are treated as
 right-censored at time-on-test T - Ei in real-time-T interim analysis. That is, for a time-T analysis,
 censorship time Ci is replaced by min(T - Ei, C1).

 Using results of Slud (1984)-but see the Appendix of Jennison and Turnbull (1985) for a simpler

 discussion-it can be shown that the numerators n-1/2 A "zX,I{Z(i Z75i'(O)} of the log-rank
 processes S') repeatedly computed at successive times T have uncorrelated and therefore asymp-
 totically independent increments in T under Ho (Slud, 1984, Cor. 2.4). Moreover, S*T() and S(T2) are
 asymptotically independent Gaussian stochastic processes indexed by real time T, and if (2) holds
 then S(1) and S(2) are, too. Thus, a repeated test based on S(2) for a number of values of T of the

 hypothesis H09 versus alternatives with /2 #X 0, is approximately independent of a repeated
 significance test of HoA based on statistics S*T().

 To develop a quantitative feeling for the magnitudes of typical correlations among the component
 main-effect log-rank test statistics when (2) fails to hold, consider the following example. Imagine a

 clinical experiment with two treatment-factors of two levels each, with staggered patient entry and

 five times Tl, . . ., T5 at which log-rank tests will be performed. Suppose that the increments D1I T,l

 D I I T- - DI I ,T *i 9 9 D I I , T5 - D1 l o4f asymptotic variance are all anticipated to be equal, as are
 D22, -i D22T2 - D22, I . D22,T5 - D22 4. Let the repeated log-rank significance tests for each of
 the two separate treatment-effects on survival be designed as two-sided tests with the Armitage-
 Pocock stopping boundary (with constant nominal cutoff 2.414) corresponding to overall size .05 for
 each test. The repeated significance test for effects of treatment A (respectively, B) on survival stops

 and rejects Ho at any time Ti, i = 1, ... , 5, for which IS(j1) > 2.414 (respectively, IS(2)1 > 2.414), and
 the experimentwise significance level is .05 + .05 - (.05)2 .0975 if (2) holds. If the two log-rank
 processes were perfectly correlated, then the experimentwise significance level would be .05.

 Suppose that all survival and loss-to-follow-up times for subjects within each stratum are exponen-
 tially distributed random variables, and that

 f 3 if (1 + k) is even,
 E(XIZ = (j, k, jk)) = 1, all j, k, E(CIZ = (j, kg jk)) 1.5 if (j + k) is odd.

 This satisfies the null hypothesis H0 but not (2). Assume the treatment strata have equal size, i.e.,

 PJk = .25 for all j, k, and simultaneous entry times ei 0. Then

 D 1T D2 T=8 {L2 4 e~ J
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 1 3 3 43 3 3
 D 12,T = 8 { e- + e . 8 L20 4 5 J

 The times T I, T2, T3, T4, 75 at which the values of the asymptotic variance DI1 JD1 l are equal to .2,
 .4, .6, .8, and 1 are respectively .1508, .3459, .6220, 1.0973, and oo. Let (fi, qi) for i = 1, . . . , 5 denote
 the increments from times 0 to Tm T to T2, etc., for the log-rank process (S(1)VDIIJD11l,
 S( D22 JD22). Then (i, qi are jointly Gaussian variables, each with variance .2; each (i is
 uncorrelated with all the variables {(j, mj: j #X i}; and

 (corr(fi, i l ))5= 1 = (.0121, .0406, .0789, .1377, .2862).

 Using these correlations, which we observe to be rather small, one calculates the following stopping

 probabilities for the repeated two-component log-rank significance test under Ho:

 k tk Probability of stopping at tk Probability of stopping at tk
 with 2-component test with 1-component test

 1 .1508 .033 .01579

 2 .3459 .021 .01170

 3 .6220 .015 .00901

 4 1.097 .015 .00730

 5 00 .012 .00614

 The stopping probabilities for the two-component test were obtained by a Monte Carlo simulation

 with 10,000 replications; the probabilities for a single log-rank process were numerically integrated.

 Compare the cumulative empirical probabilities .033, .054, .069, .084, .096 of stopping and rejecting

 using the two-component test, with the corresponding probabilities .031, .054, .071, .086, .0975

 calculated from the single-component stopping probabilities as though the two components were

 independent. Calculations of power yielded similar results for the log-rank tests against alternatives

 with n = 144 and with f3i for i = 1, 2, 3 as large as ln(2); i.e., the errors were at most .01 in calculating
 experimentwise power from componentwise power as though the two component tests were

 independent.

 The primary use of approximate independence of log-rank statistics for separate main effects is as

 follows. Suppose that a trial is designed so that the experimentwise size and power are to be aA and

 1 - PA (respectively acB and 1 - JBB) for testing Ho versus the alternative that exposure to A
 (respectively, to B) multiplies the hazard by PA (resp. by PB), i.e., that /,3 = ln(pA) (/32 = ln(pB)). If
 the test statistics are S(') and S(2) and if PA and PB are at most 2, with cYA and acB equal to .05 and f3A
 and fB in the range .80-.90, then simulation studies by Lininger et al. (1979) and Gail, DeMets, and
 Slud (1982) justify the use of asymptotic theory as it relates to power and approximate independence

 of increments of log-rank numerators when 100 or more observed deaths are expected. The null

 hypothesis is rejected whenever either of the two separate log-rank tests reject at nominal sizes acA
 and acB. By approximate independence of the log-rank processes for A and B, the experimentwise
 significance level is acA + acB - aYAaYB. Similarly, the rejection probability against the alternative
 where A multiplies hazards by PA while B does not affect hazards, is approximately 1 - fBA + f3AaB.

 3.5 Early Termination of One Treatment

 One of the novel features of a factorial survival experiment is that one treatment-factor might for
 ethical reasons be eliminated or applied to all study participants before the study has ended. Assume
 here that accrual to the level k = 1 of treatment factor B is eliminated from some time on, and that
 we can exclude the need to model crossover effects, which although extremely important are beyond

 the scope of this paper. Thus we assume either that treatment B has been judged ineffective but

 toxic-a judgment based on the behavior of a statistic such as S(2) up to some time T, resulting in
 switching patients previously treated with B to an untreated status-or that for some similar reason,

 all patients accrued past time T receive level 0 of treatment B. In both cases, we are assuming that
 model (1) continues to hold for all patients, if only because ,B = 0. The joint behavior over time of
 the test statistics must then be invoked to justify significance tests for the continuing treatment A

 under study.

 Either by assuming condition (2), or by appealing to Section 3.4, we treat the main-effect log-rank

 processes S(1) and S(2) as approximately independent. Assume also that early termination is based
 only on double-blind determinations of toxicity and possibly on values of the S(2 for times r up to
 'ri. The independence of the stochastic process S(2 from s*1 with or without (2), or from S(1 if (2)
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 holds, implies that the size and power of any fixed-sample or repeated significance test of Ho A,
 respectively using S*T(I) or VI is approximately unaffected by the early termination of the B-arm of
 the study. It would be appropriate to base tests on S*1) whenever treatment B is not terminated early
 specifically for lack of effect.

 4. Discussion and Recommendations

 The reason usually advanced for performing a factorial experiment, such as a 2 x 2 factorial

 randomized clinical; trial, is the economy of performing two experiments-one trial for each of the

 two treatments-for the price of one. Apart from the logistical difficulty in securing patient com-

 pliance with two different treatment regimens, an objection sometimes raised to designing trials

 factorially is that when the interaction between treatments is opposite to the individual treatment

 effects, a factorial design and analysis may lead to nonsignificant results, especially if the trial has

 been designed to achieve .05 experimentwise Type I error rate, whereas a trial for each of the

 treatment effects might have shown a statistically significant result. Our first task in this section is

 to shed light on these questions from the large-sample viewpoint of Sections 3.1-3.3. Assume (2).

 We first compare, via asymptotic calculations under Hl,n as in Section 3.3 for one-sided tests of
 level a, the power of a 2 x 2 factorial trial to detect treatment-A effect with the power in an ordinary

 two-group trial (with population fraction a, in the treated group) or in a "three-group design" in
 which patients are never randomized to simultaneous A&B treatments. If exposure to B does not

 occur naturally in the study population, then i,3 but not /33 can be inferred from the two- or
 three-group study. The log-rank in the two-group case has power

 F(-za + cl Val (1 - a,) f Sc(t)e -AO(t) dt),

 whereas the power is (D(-Za + Cl , a1(I - a )(I - b1) f Sc(t)e-Ao(') dt) in a 2 x 2 test using S*().
 That is, sample size for inferring i,3 alone is effectively reduced by a multiple 1 - b, under a 2 x 2
 factorial design, just as though one had based inferences on only the subjects with

 Z-2) = 0. As Table 1 shows, the power of a test for ,/3 # 0 based on the MPLE using only the three
 factor-levels (Z01), Z(2)) = (0, 0) (0, 1) (1, 0) is asymptotically the same as that based on S*(l). Thus
 in the "three-group design," if none of the sample had been randomized to A&B treatment, the

 sample size in the three groups would have been larger by a multiple (1 - aI b 1)- l. The three-group
 design, with power between two-group and factorial, allows inference for both ,81 and /32 but not for
 interactions. Are the losses in effective sample size in the factorial study worth the combination of

 two trials into one? That depends on whether /31 is the interesting parameter, whether interactions
 are interesting for their own sake, and whether interactions will intensify or dilute the separate
 treatment effects. Note however that Table 1, together with the simplified expressions for the
 uncensored case, imply that whenever the interaction is in the same direction as the main A-effect,
 the stratified log-rank statistic for testing A-treatment-effect is at least as powerful as a two-group
 log-rank test within a two-group trial omitting treatment B.

 We examine next the choice of statistics and resulting power in the 2 x 2 factorial trial. A glance

 at the results (10) for cases where there is no censoring or alternatives are local to Ho, suggests that
 one need not consider the MPLE main-effect estimator in place of the stratified log-rank. Combining
 (10) and Table 2 suggests the following recommendations. If interactions are either weak or in the

 same direction as both of the separate ,B coefficients, then the (stratified) log-rank is the statistic of
 choice for each treatment effect, and can be much more powerful than the adjusted log-rank S*(i).

 For example, if a, = b1 = .5, then for detecting fixed local alternatives to Ho or HOA with equal
 coefficients c1 = C3, approximately 2 as large a sample would be required to achieve a specified large
 power with the stratified log-rank as with the log-rank S*(l). However, the situation is much different
 if the interaction /3 works strongly in the direction opposite to /3 or /2. In such cases, where for
 example C1C3 < 0 in contiguous alternatives to Ho. adjusted log-rank or three-group analysis will
 detect effects of A with greater power than log-rank or stratified log-rank whenever (1 + blc31C1)2
 < 1 - bI, in which case the factorial trial will have less power for detecting effects of A than would
 a two-group trial of the same size omitting treatment B. For alternatives contiguous to HOA with

 /32 > 0 and c1c3 > 0, Table 2 indicates that the log-rank S"1) will be less powerful than Str. A
 conservative approach would be always to test for A-effects with either SAt or S*(l). One reasonable
 approach, considering also the desirability of independent tests of A and B effects from the

 standpoint of reporting results, would be to test the treatment less likely to have a strong separate

 effect by the adjusted log-rank, and to test for the other treatment effect using stratified log-rank. If

 in advance of the trial there is good reason to suppose one effect stronger than the other, then this

 information could be used in planning sample size to achieve desired power for the analyses most
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 likely to be reported. However, the statistician should also plan a fall-back method of analysis in

 case prior expectations were to prove wrong, and if possible should allow sufficient sample size to

 achieve adequate power to detect important effects also in such a case.

 It is important to understand how much power there is for discriminating interactions as opposed

 to main effects in a factorial study. In the simplest case of a large trial with simultaneous entry

 (Ei = 0 for all i), independent random allocation to each of two treatments, and censoring the same
 in all treatment groups, formula (9) of Section 3.2 says that for Ho the standardized MPLE i,B' has
 asymptotic covariance equal to the inverse of D = 8cov(Z), and this is true also for HOA if there is
 no censoring. The information to detect 8, #X 0 divided by the information to detect 33 # 0, which
 is found as the ratio of the lower-left entry to the upper-left entry of D-1, is 1/b1. This result is the

 same as for the accelerated-failure homoscedastic linear model. Thus, for testing local alternatives

 to Ho, the importance ascribed to modelling and testing for interaction effects within a factorial
 survival study are comparable to those for ordinary factorial linear models. However, the analogy

 breaks down when testing HOA with /2 # 0, because the least squares covariance in the homosce-
 dastic linear model is always proportional to (cov(Z))-1, but formula (7) says that the asymptotic

 covariance matrix D-l for V/- under (1) is not, when there is some censoring. For example, when
 b = *5, /32 =ln(2), and censoring occurs in all treatment groups at the fixed time t = A` 1(ln(2)), the
 ratio of information for 83 to that for /3 is 5/3 for model (1) but 2 for the linear model.

 Factorial clinical trials will usually result in simultaneous reporting of statistical tests for signif-

 icance of each main effect and possibly for an interaction as well. If the test statistics for separate

 main effects of treatments A and B are independent, then significance levels and Type II error
 probabilities can be reported as though the two treatments were tested in separate clinical trials.

 Such two-in-one reporting is a very desirable feature of factorially designed trials. As we have seen,
 log-rank statistics will be independent in large-sample survival experiments with random treatment

 allocation whenever loss-to-follow-up patterns are the same for all combinations of treatments, and

 will be approximately independent even when loss-to-follow-up varies over different treatment

 groups.
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 RESUME

 Plusieurs resultats methodologiques r6cents obtenus pour des dipositifs factoriels a deux voies, dans
 des etudes de survie, sont discutes dans le cadre de la th6orie asymptotique du modele a forces de
 mortalit6 proportionnelles en presence de deux covariables binaires. Ces r6sultats incluent: la
 formulation correcte des hypotheses nulles et alternatives, le choix entre les statistiques du log-rank
 et du log-rank ajuste ou stratifi6, la correlation asymptotique entre les statistiques de test pour les
 effets principaux individualis6s, la puissance asymptotique (pour les differentes methodes d'analyse)
 des tests pour les effets principaux et les interactions, la comparaison entre la puissance pour le test
 des effets principaux dans un dispositif factoriel 2 x 2 et la puissance dans un essai a trois groupes
 sans randomisation simultanee des patients entre les traitements; enfin les problemes d'analyse
 survenant lorsque les traitements sont arretes precocemment pour des raisons ethiques.
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 APPENDIX

 Asymptotic Distributional Results

 This Appendix provides sources and theoretical justifications for the assertions of Sections 2-4. The
 approach is via stochastic integrals and compensated counting processes, as applied by Gill (1980)
 and Andersen and Gill (1982) to censored-data linear rank statistics, and by Slud (1984) and Sellke
 and Siegmund (1983) to sequential and repeated significance tests based on such statistics. The
 notations and assumptions are as in Sections 2-3. Assume also that the conditional laws of (Ti, Ai)
 given Zi = (j, k, jk)' are the same for all i, j, and k.

 A.1 Asymptotic Behavior of Fixed-Sample Statistics

 Let the process N1k(t) count individuals with Z = (j, k, jk)' who are observed to die after no more
 than time t on test. Thus

 Njk (t)- I[Z; = (j,k,jk)'] AiI[T; t N(t) N= EEN(t)-
 j k

 Under (1), it is well known (Gill, 1980, pp. 34-37, 44-49) that

 Mfl(t)-= Nk (t) - tYI (s)e (j,k,jk)'3 dAo (s)

 is a martingale in t, as is M"(t)- -E k M(t), where Yk(t) i=(kJk) Tt Here the underlying
 filtration i, is generated by the data {Zi, AiI[Tst], Tii[Tstl]: i = 1, ... , n} observable up to study time
 t. As in Andersen and Gill (1982), the partial likelihood score statistic numerator for parameter 1,
 using data up to study time t, is

 L(t, B3) = > AiI[Tj I=1(Zi-Z (3)) =E k - (U0V(s, (s 8) dMJO(s), (A.l )
 1 ~~~~~~~j,k JO Ujks,1)

 where for i = 0, 1, 2, with v?' defined as in Section 3.1,

 U (s, /3)-, k Yj()(i,kJik):.3

 j, k jkv

 Then n 1U(i)(s, /3) converges uniformly in probability as n -> oo, to u(i)(s, /) defined following (7).
 For large n, L(t, /3) is asymptotically normally distributed with mean 0 and asymptotic variance
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 D(t, ) f {uI)( ) /3) ) }u(?)(s, 1) dAo(s). (A.2)

 The MPLE / defined by (3) also satisfies under model (1)

 1 P +S(/3 /3) -(D(oo, ')-L(oo, /3) O- as n >- ??' (A.3)
 and D(oo, /3) defined in (8) consistently estimates D D(oo, /3). Note that D in (3) converges in
 probability to

 j j~~~u&s. /3U()( + us, u'(S, 0) 2
 D (?)(,B) - t {u2s/3) - 2uks, ,((0)( 0)+ (0) ) (0)( 0) ) dAo(s),

 so that S(i) - L(&)(oo, 0)!nDi(i)(I) -A 0 for i = 1, 2, 3. Under model (1) with assumption (2), it turns
 out that D(?)(0, /2, 0) = D11(oo, 0, /21 0).

 The adjusted log-rank statistics studied by Tsiatis, Rosner, and Tritchler (1985) were defined from

 numerators L(t, 13) by substituting restricted MPLEs for the nonzero components of 3 (under the

 null hypothesis). Our usage in defining S* is to replace the nonzero components of 3 by correspond-

 ing components of the unrestricted MPLE ,B, i.e., to define S* by standardizing the numerators

 L*-(L (1) (oo, 0, 1382, 133), L(2(o 1 1, IO, 133), L(3(o 13P P2, OW)

 using variance expression nDii for component i, i = 1, 2, 3. By (A.3) and the delta method, the
 components of S* differ asymptotically negligibly from the adjusted log-rank statistics of Tsiatis,
 Rosner, and Tritchler (1985) when the corresponding components of /3 are of order n-1/2. Moreover,

 under HO (respectively, under HO A), all (respectively, the first and third) components of

 n-1/2(L* - diag(Dll, D22, D33)D'-L(oo))

 converge in probability to 0. It follows immediately that under HO,A, S(2)(oo) is asymptotically
 uncorrelated (and therefore, by joint asymptotic normal distribution, independent) of (s*(1), S*(3)).
 By (A.3), n11/2 (fDi), /33/ \(D-1)33) differs asymptotically negligibly from (S*('l), S*(3)) under

 HO,A-
 In (2), we assume that the first and second components of Zi are independent, so that P1k = ajbk

 and Yi is independent of Zi. If in addition /3 = 0, then for all (j, k), Pr{Z = (j, k, jk)'LTi t} = ajbk.
 Throughout the Appendix, wherever it simplifies notation, we write a and (1 - a) instead of a1 and

 ao and b, (1 - b) instead of b1 and bo. For each t the first two components of Zi are conditionally
 independent given Ti > t. By (A.2), in this case D(t) is equal to

 a(l -a) 0 ab(l -a)

 0 b(l - b) ab(l - b) Pr(A = 1, Tt).

 ab(l - a) ab(l - b) ab(l - ab)

 Thus S(1) and S(2) are asymptotically independent, but S*(l) and S*(2) are not, since the (1, 2) entry
 of D(t)-1 is nonzero. In the setting of Tsiatis, Rosner, and Tritchler (1985), which was not factorial
 since the interaction term involving 3 was not present, we could conclude as they did that the first
 two components of S would be asymptotically equivalent to those of S*, but that is definitely not the
 case here, since S* is obtained by standardizing

 1/(1 - b) al(l - b) -1/(1 - b)\

 bl(l - a) 1/(1 - a) -1/(1 - a)

 -b(1 - ab) -a(1 -Iab) 1 - ab L(oo, 0).

 A further statistic discussed in the paper under Ho A iS the stratified log-rank (5) for testing the

 presence of a nonzero effect for A. Since the numerator of this statistic has the representation
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 1 S {~k y dM13k d k- dMk Ok + e k 2 (e P2 I+kP 3 - 1) dA (A.4)

 the stratified log-rank statistic is asymptotically equivalent to the ordinary log-rank S'1' under Ho.

 A.2 Power Formulas and Comparisons

 All of the foregoing statements about asymptotic equivalence and independence of statistics under

 null hypotheses extend automatically to contiguous alternatives, under which asymptotic formulas

 for power will now be developed, following the methods of Gill (1980) and Schoenfeld (1981). The

 alternatives are taken to be close to Ho or HO,A in a way that depends on n so as to yield a limiting
 power strictly between 0 and 1 as n -> oo, viz.

 H1,n: Zi and Ci are as under HO,A, and conditionally given Zi = (i, k, jk)', Xi is independent of
 Ci and has cumulative hazard fO exp(k/32 + jn- 112(c1(s) + kc3(s))) dAo(s),

 where c1 and c3 are fixed functions such that I e-(IcI(s)I+1c3(s)1)-exp(k/32)AO(s) dA0(s) < oo for some E > 0.

 Alternatives H1 n are contiguous to Ho,A in the LeCam-Hajek sense that any convergence in
 probability under HOA persists under H1 n (Gill, 1980).

 Assume that (2) holds, let y =1e2, and take c1 and C3 to be constants. Under alternatives Hk ,z,
 the martingales Mlj'(t)/\/7n have asymptotic means jajbk(cl + kc3) ft ykee- Ao(s)Sc(s) dAo(s) and
 asymptotic variances aJbk IO ykek Ao(s)SC(s) dAo(s), where Sc(s) = Pr(C 3 s) as in Section 3.3.
 After some algebra and the change-of-variable x = Ao(s), the asymptotic covariance matrix D of
 formula (A.2) takes the form

 j- a \0 2

 bye -7x

 D(oo, 0, 132, 0) = f , ajbkyke-7 tSc(A (x)) bye Yx + (I - b)e-x dx.
 Jik a(bAye -7? x

 bye -x + (1 - b)e x

 Further manipulations with D show that

 /DI, ? D 13

 D= 0 D22 aD 22 ,

 D D( 3 aD22 D13 +a 2D22)

 where

 (DIID-D l3 ( a(1 - a) - bye -x S c (Ao l(x)) dx,

 ye -(I + y)x

 j bye Yx + (1 - b)ex x

 so that

 I a -

 1 DI, -DI3 DI, DI,
 D1 - la +_a 2 -a .

 DI, -DI3 D22 D13 D13

 -1I - aDII ID 13 DI I D 13

 Now under H1,n the standardized MPLEs n2(1/ (D-1), 3/ 33), which are equivalent
 to (S*(l), S*(3)), have asymptotic expectations (c1/ c3/ 33). Using the displayed

 form for D -1, we find the asymptotic means c 1 /D1l1 - D1l3 for S*(l1) and c3 \D 13 - D 13/D1 l for
 S*(3). The main-effect MPLE I31 ? bf33 would be standardized by the multiple

 \/n(Dii - D13)/J1 - 2b +?211D3
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 and the standardized statistic would have asymptotic mean as given in the fourth line of Table 1.

 Using the representation (A.4) for a statistic pro ortional to S4tr, up to a nonrandom constant

 multiple, we find the asymptotic mean to equal Vn(c1D11 + c3D13) and the asymptotic standard

 deviation .nD1. Therefore the standardized statistic SXr has asymptotic mean given by the third

 line of Table 1.

 Finally, we need the asymptotic mean and variance for the log-rank statistic for treatmentA under

 H1,n. Since /32 is not 0, the two-group model that ignores treatment-B groups does not follow a
 proportional hazards model, but has hazard intensity

 Ak(tIZ(1) =1) = A' (t)eIPl bye'3 - Yej(13Ao(t) + (1 - b)e -ejP Ao(t)
 A(t0Z(l =j beyej(PI + 63)Ao(t) + (1 - b)e eI Ao() (A.5)

 Since this conditional intensity does not depend on j under Ho A, the asymptotic variance of the
 log-rank numerator L(1)(oo, 0) is still nD,1. To find the asymptotic expectation of L(1)(oo, 0) under H1,2
 for the model (A.5), one reasons as in Slud (1992, p. 624) to obtain the expression

 n a(1 - a) J Sc(s)(bye-YAo(s) + (1 - b)e-yAo(s))

 a tI )=1))
 (cl lnA(tjZ(1) = 1) + C3 /3 lnA(t|Z3) = dAo (s).

 After some algebra and the change-of-variable x = AO(s), the resulting asymptotic expectation for
 the standardized log-rank statistic S(1) reduces to the expression given in the first line of Table 1.

 In the "three-group" case where the sample of size n is split only among (Z(1), Z(2)) = (0, 0),
 (1, 0), and (0, 1) in the proportions (1 - a)(1 - b), a(l - b), and (1 - a)b, the model (1)-(2) is the

 same as a proportional hazards model with covariate g = (g,, g2)' (Z(1), Z(2)') with coefficients
 /3 = (61, 12), where Pr(g = (1, 0)') = a(1 - b)/ (1 - ab) and Pr(g = (0, 1)') = b(I - a)! (1 - ab). Under
 HO,A, the quantities u(i)(s, /3) in the formula (A.2) for matrix D D(oo, /3) must now be replaced by

 1 - ab ( kk)kex p k 1 AO (s)e

 After some algebra, the resulting information matrix D reduces to

 Dl -D13 2
 + a D22 -aD22

 D ( 1 - ab

 -aD22 D22

 where

 (1 - a)b(l - b) y _ e-(_ + __X_ _(_O__dx
 D22= J- (1 - a)bye- + (1 - b)eX Sc(Ao7l(x)) dx.

 Thus (D-1)1i = (1 - ab)/(D11 - D13), and the asymptotic mean divided by standard deviation for
 the three-group MPLE of .1 under Hj,2 is c l Dl - D13/1 - ab. In the setting of Table 1, where
 the total sample size allocated to the treatment cells (0, 0), (1, 0), and (0, 1) is (1 - ab)n instead of

 n, this asymptotic standardized mean must be multiplied by /1- ab, yielding the last line of
 Table 1.

 A.3 Extensions to Repeated Significance Tests

 Up to this point, the statistics to be used for testing have been calculated in a fixed-sample setting
 without regard to chronological times of entry. We follow Slud (1984) in extending now to signifi-

 cance testing based on statistics computed repeatedly at successive chronological times. [See the
 Appendix of Jennison and Turnbull (1985) for a simplified discussion.] Suppose that the entry times

 Ez are independent of each other and all other survival, treatment, and censoring variables and have
 distribution function FE(.). Using the additional subscript i-as indicated in Section 3.4 for statistics
 and processes to indicate that they are calculated based only on the data that would be observable

 up to chronological time i, we find that LT(t, /3) are martingales in t for each i, given as in (A.1) by
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 L7(t, /3) = E {(j, k, jk)'- U1) (s, B)/U 0)(s, /I)} dMJ.k(t)

 and have exactly uncorrelated increments with respect to T (Slud, 1984, Prop. 2.5, Thm 4.1, and

 Lemma 4.2). The asymptotic variance of LT(t, f3)/\/n is given now by formula (A.2) after inserting
 an extra factor FE(i - s) into the integrand, and again a consistent variance estimator is provided by

 DT defined in (8) with all quantities 3, Z1(/3), Ai given subscripts X, i.e., calculated based only on data
 available up to real time r. Moreover, the equivalences proved above between statistics S or S* and

 expressions involving /3 and D remain valid with subscripts T for each chronological time T.
 Similarly, assertions of approximate independence for log-rank statistics SV1I and S(21 or S"1I and
 S*(2) continue to hold for processes in T for these processes because all of them differ only by
 nonrandom functions of r from asymptotically Gaussian independent-increments processes.
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