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Two-Sample Repeated Significance Tests Based 

on the Modified Wilcoxon Statistic 
ERIC SLUD and L.J. WEI* 

The asymptotic distribution theory of sequentially com- 
puted modified-Wilcoxon scores is developed for two- 
sample survival data with random staggered entry and 
random loss to follow-up. The asymptotic covariance in- 
dicates generally dependent modified-Wilcoxon incre- 
ments, contradicting (the authors' reading of) Jones and 
Whitehead (1979). A repeated significance testing pro- 
cedure is presented for testing the equality of two survival 
distributions based on the asymptotic theory. The early 
stopping properties of this procedure are illustrated by 
a prostate cancer example. 

KEY WORDS: Consistent estimation; Dependent incre- 
ment; Gaussian process; Logrank test. 

1. INTRODUCTION 

The problem of fixed-sample comparison of survival 
data from two treatment groups in the presence of arbi- 
trary right-censoring has received a great deal of attention 
in recent statistical literature. Two commonly used test 
statistics are the logrank statistic (Mantel 1966; Peto and 
Peto 1972) and the modified-Wilcoxon statistic (Gilbert 
1962; Gehan 1965; and Breslow 1970). The choice be- 
tween these two statistics has been discussed by Tarone 
and Ware (1977) and other authors. Generally, when it 
is desired to detect treatment-group differences in sur- 
vival for relatively short times on treatment, the modified- 
Wilcoxon statistic is an especially likely tool of analysis. 
Peto and Peto (1972) and Prentice (1978) have proposed 
other generalizations of the Wilcoxon statistic that are 
less sensitive to censoring pattern (cf. Prentice and Marek 
1979). However, since Gehan's scoring procedure is easy 
to explain, is widely used (Simon and Makuch 1980), and 
yields a test in Tarone and Ware's (1977) class of large- 
sample life-table analogs of optimal contingency-table 
tests, we restrict attention in this article to Gehan's gen- 
eralization of the Wilcoxon statistic. 

In most medical trials patients enter treatment serially, 
and data on response to treatment become available se- 
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quentially in real time. Moreover, there can be a large 
ethical cost in prolonging a trial past the earliest stage 
when an important difference in treatment-group survival 
can be documented. Thus it is preferable to follow the 
results of the trial closely and continuously as they be- 
come available. However, only a few continuous-time 
sequential procedures have been proposed for testing 
equality of survival distributions with right-censored two- 
sample data. Breslow (1969) and Breslow and Haug (1972) 
provided sequential methods of comparing exponential 
survival curves. Jones and Whitehead (1979) investigated 
sequential logrank and modified-Wilcoxon tests. The dis- 
tribution theory of their test statistics was not formally 
developed, but a careful reading of Jones and Whitehead 
(1979) and Whitehead (1978) suggests that they implicitly 
assert sequentially computed logrank and modified-Wil- 
coxon scores have approximately uncorrelated incre- 
ments. Our Theorem 2 and the example in Section 5 con- 
tradict that assertion for modified-Wilcoxon statistics 
when patient entry is not simultaneous but staggered. 
Finally, Nagelkerke and Hart (1980) have given a general 
heuristic extension of the sequential probability ratio test 
using partial likelihoods. Although they obtain a sequen- 
tial test for censored survival data, they do not delimit 
conditions of applicability. 

In practice, because of reporting delays and other ad- 
ministrative difficulties, the repeated significance test is 
more feasible than continuous-time sequential proce- 
dures for large-scale medical trials (cf. Armitage 1975; 
Pocock 1977). Recently Tsiatis (1981) rigorously derived 
the asymptotic joint distribution of sequentially computed 
logrank statistics for use in repeated significance testing. 
However, his test procedure requires prior knowledge of 
the total number of patients. Also, he does not explain 
(as Jones and Whitehead 1979 do) how to use repeated 
logrank tests if there is loss to follow-up (withdrawal or 
deaths from causes not under study) during the trial. 

In this article, we assume that patients arrive according 
to a nonhomogeneous Poisson process with unknown but 
high intensity. The main theoretical result established is 
the asymptotic (for large intensity) joint normality of se- 
quentially computed modified-Wilcoxon scores, along 
with consistency of an estimator of asymptotic covari- 
ance. Although the modified-Wilcoxon statistics at dif- 
ferent time points have correlated increments, a repeated 
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significance test can be performed using the above 
asymptotic theory in the following manner: at each time 
tl < t2 .. < tK, a test is carried out to give nullhypoth- 
etical probability oxi of stopping and rejecting at ti, where 

, . . ., CLK are chosen in advance so that the overall 
significance level aL = Ef= I ati. The test boundary is 
determined through the asymptotic conditional distribu- 
tion of the test statistic at ti given continuation to ti. 
Precise formulation of this repeated testing procedure is 
given in Section 4 and illustrated with real data in Section 
5. 

2. DEFINITIONS AND TEST STATISTIC 

Suppose that experimental subjects enter a clinical trial 
for the comparison of two treatments, A and B, according 
to a nonhomogeneous Poisson process with unknown but 
fixed high intensity function XA(t). Let the successive 
entry times be denoted by U1, U2, . F or mathematical 
convenience we assume that XA(t) = cX(t), where X(c) 
is a nonnegative function and c is a positive constant that 
we will allow to become large. The arrival point-process 
is the superposition of two independent Poisson pro- 
cesses with intensities cXA(t) and CXB(t) governing entry 
to treatments A and B, respectively, so that X(t) = XA(t) 

+ XB(t). We let Zi be the indicator variable equal to 1 
if the arrival at time Ui is assigned to group A. For fixed 
Zi, the ith patient has independent latent times Xi and Y, 
of survival and loss to follow-up (due to withdrawal from 
the trial or death from causes other than the one under 
study). The pairs {(Xi, Yi)} are assumed conditionally 
independent of each other and of { Ui} given {Zi}. 

Let FA (FB) denote the distribution function of the 
survival time under treatment A (B), and let GA (GB) be 
the corresponding distribution function of the time until 
loss to follow-up. Throughout the article we use overbars 
above distribution functions to denote survival functions; 
for example, FA = 1 - FA. Let NA(t) and NB(t) be the 
numbers of group A and group B patients entered by time 
t, with N(t) NA(t) + NB(t), and define AA(t) = ' 

XA(x)dx, AB(t) = fh XAB(x)dx, A(t) = AA(t) + AB(t). 
Then NA(t) and NB(t) are independent Poisson variables 
with means cAA(t) and cAB(t). 

The observable data at time t consist of the quantities 
NA(t), N 0(t), Zi, Ti(t) = min(Xi, Yi, t - Ui), and Ai(t) 
= I[Xi c min(Yi, t - Ui)] for i = 1, . . ., N(t), where 
IH] denotes indicator function. The hypothesis we are 
interested in testing is HO FA = FB. The Gehan-Gilbert 
score function + is defined by 

[ 1, if a<b,8= 1, 
(a,8; b,= E -1, if a>b, E = 1, 

O, otherwise. 

The modified-Wilcoxon statistic at time t is given by 
N(t) N(t) 

WC(t) = (NA(t)NB(t)N(t))-"'2 z E ZI(C - Zj) 
i=l1 1=1 

whenever both NA(t) and NB (t) 2 1, and WC(t) = 0 
otherwise. 

3. THE ASYMPTOTIC DISTRIBUTION OF Wc(t) 

The asymptotic joint normality of (W,(tl), ... 
W,(tK)) as c -X 00 is provided for the general case FA 

=A FB by the following theorem. A closed-form expression 
for the limiting covariance under the null hypothesis FA 
= FB is presented in Theorem 2, and the corollary gives 
consistent covariance-estimators. All proofs, and some 
technical comments regarding weak convergence of Wc () 
suitably standardized to a Gaussian process, are deferred 
to the Appendix. 

Theorem 1. Let 

p(t) = [AA(t)AB(t)]' fAA(t - x)AB(t - x) 

X OA (X) GB(x)(FB(x)dFA(x) - FA(X) dFB (X)), 

let 

4 ij(t) = )( Ti(t) d i(); Tj(t), 4(t)) 

and 

Wc*(t) = [NA(t)NB(t)N(t)0-1j2 
N(t) N(t) 

x I Ea 40( - ZiM)(ii(t) - p(t)). 
i=1 j=1 

Then, for fixed 0 < t, < t2 < ... < tK < X with A(t1) 
> 0, as c -x o, (WC*(tl), . .. , Wc*(tK)) converges in 
distribution to a multivariate normal random vector. 

Remark. It is not difficult to see that the limiting normal 
distribution Theorem 1 is nonsingular if A(t), AXB(t) are 
everywhere strictly positive and t1 is large enough that 
P(A1(t1) = 1) > 0. 

Theorem 2. Under the null hypothesis Hog p(t) = 0 for 
t > 0, and if s c t, (Wc*(s), WC*(t)) = (Wc(s), WC(t)) 
converges in distribution as c -X 00 to a bivariate normal 
with mean 0 and covariance 

u(s, t) = lim E(WJ(s)WJ(t)) 
c-xo 

= [A(s)A(t)AA(s)AA(t)AB(s)AB(t)] - 1/2 

x f F2(x)AA(s - x)AB(s - X)GA(X)GB(X) 

X (AB (t - X)OGB(X) + AA(t - x)GA(x))dF(x), 

where F = FA= FB. 

A consistent estimator of u(s, t) can be formed by 
sutstituting empirical estimators into the above integral 
(for details and further justification, see Appendix), 
yielding 

Corollary. Under the null hypothesis Ho, as c X~0 the 
covariance E( We(s) Wc(t)) can be consistently estimated 
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Table 1. VACURG Study 1 Stage 1 Prostatic Cancer Data 

Group A (Prostatectomy and Estrogen) 
(10,84), (18,63), (52,143*), (54,65), (70,117), (79,0), 
(11,61), (46,157*), (50,77), (65,136*), (25,75), (29,117), 
(47,19), (10,20), (13,45), (24,151*), (27,30), (30,0), 
(32,68), (40,140), (59,5), (78,108*), (28,163*), (66,66), 
(81,12), (33,0), (48,144*), (52,4), (59,33), (57,128), 
(36,199*), (36,55), (38,172), (53,6), (57,177*), (58,93), 
(78,107), (58,171), (61,26), (65,140*), (69,13) (45,37), 
(49,14), 

Group B (Prostatectomy and Placebo) 
(5,84), (45,46), (42,112), (51,60), (53,142*), (70,125*), 
(77,119*), (11,142), (60,146*), (61,76), (62,38), (14,89), 
(50,45), (26,111), (11,178*), (14,5), (16,173*), (19,89), 
(27,133), (30,163*), (41,155*), (64,28), (76,114), (10,32), 
(22,166*), (61,26), (30,192*), (39,155*), (41,93), (42,29), 
(49,65), (57,130), (72,120*), (77,103), (30,110), (37,98), 
(38,95), (41,70), (58,156*), (70,113), (70,38), (74,148*), 
(63,131*), (62,61), (77,117*), (73,56), 

NOTE: In each pair (s, t), s is the entry time in months after 1960 and t is the time of survival or loss to follow-up in months. Loss to follow-up is indicated by 

for 0 < s ' t by 

&(s, t) = [N(s)N(t)NA(s)NA(t)NB(s)NB(t)]-1/2 

N(t) N(s) N(s) 

x z z z Ai(t)Zj(l - Zk) 
i=1 j=1 k=1 

x I [Ti ft) -- min( Tj(s), Tk(S))] . 

Remark. For fixed t, and arbitrary i = 1, ... , N(t) 
and 0 c u ? t, let 

N(u) 

pi(U) - z ZkI[Xk(U) 2 X(t)], 
k== I 

N(u) 

ri(u) - I[Xk(U) 2- XMA)] 
k= I 

Then the triple sum in the expression for &5(s, t) is simply 

z Ai(t)pi(s)(ri(s) - pi(s)). 
i:O' TXt) 's 

This formula for (J(s, t) in terms of rank statistics shows 
that &5(s, s) agrees precisely with the variance estimator 
that Tarone and Ware (1977) proposed by analogy with 
Mantel-Haenszel denominators. 

4. THE REPEATED SIGNIFICANCE TEST 

Suppose that significance tests based on the modified- 
Wilcoxon statistic are to be performed at time points tl1 
< t2 < .. < tK, proceeding to tK only if Ho has not 
previously been rejected. The significance levels aq, 
.. ., AK must be prespecified as in Section 1 so that the 
overall significance level ot = z K= 1 oxi is fixed. At time 
point ti, 1 c 1 s K, the cutoff or boundary point d, can 
be determined as follows: let (V1, . . . , VI) be multivar- 
iate normal with mean 0 and variance-covariance matrix 

= (ij), where rij = (t9, b)I(&(t9, ti)&(tj, tj))"12, 1 
i i ' j c 1. Then 

P( V, < di, . . ,|V-,_I < di,_, 

IViI?di) =a. (4.1) 
If the observed Wilcoxon score I W,(t,) | 2 d,[&(t,, 
tI)]1/2, we reject the null hypothesis Ho at t,. For future 
reference, we also define the p value at t, in the event of 
no rejection of Ho before t, by 

pl = P(I V1 I< d, . , I V1-1 |< di1, 

l V,1 2_ WC(t1)/[A(t1, t1)]1/2). 

Table 2. Summary of VACURG Study 1 Stage 1 Data 

Time Intervals fyears) 

0-3 3-5 5-6 6-9 9-10 10-12 12-15 15-20 Total 

Group A Entrants 15 18 6 4 0 0 0 0 43 
(estrogen) Deaths 3 4 4 11 1 2 3 3 31 
Group B Entrants 14 16 10 6 0 0 0 0 46 
(placebo) Deaths 1 1 1 9 3 7 4 3 29 
20-Year Summary Statistics 

(normal deviates): 
Mantel-Haenszel = 1.442, p = .149 
Gehan-Wilcoxon = 1.946, p = .052 
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Table 3. Estimated Covariance Matrices and Standardized Modified-Wilcoxon Values 

t (years) 

3 6 9 12 5 10 15 20 

&(s, t) .0959 .0391 .0420 .0420 .0700 .0777 .0777 .0777 
Matrices .0391 .0862 .1045 .1046 .0777 .2262 .2350 .2350 

.0420 .1045 .2019 .2104 .0777 .2350 .3047 .3082 

.0420 .1046 .2104 .2763 .0777 .2350 .3082 .3146 
WC (ty ( (t, t)) 12 .9931 2.299 2.780 2.312 1.740 2.611 2.068 1.946 

To evaluate (4.1), multivariate normal integrals are re- 
quired. Several numerical methods are available for cal- 
culating these (cf. Johnson and Kotz 1972, p. 43). Our 
computations for this article were made with the multi- 
variate normal integral package of Milton (1972), which 
he kindly supplied us. 

In practice, the necessity of computing i-dimensional 
integrals to find the boundary values d, and p values pi 
may deter casual or experimental application of the 
method, although the calculations are quite feasible (say 
for K - 8, using Milton's 1972 program) both for the 
design and the analysis of real clinical trials. A simple 
but effective approximate technique of calculation should 
facilitate experimentation with these repeated signifi- 
cance tests, namely: when oij&jk is nearly equal to 0ik 

for all 1 i i kj -k 1, (V1, . . . , VI) can be treated 
as a Gaussian Markov sequence, and a,/(I - I ai) 
is approximated by the bivariate-normal conditional 
probability P( I VI I 2 di I I VI-, I < di1-). This approx- 
imation was quite accurate for calculations in the example 
of Section 5, yielding errors in d, and p, uniformly less 
than .035 and .0025, respectively. 

5. AN EXAMPLE 

The data in Table 1 are taken from Study .1 (of Stage 
I prostatic cancer) conducted by the Veterans Admin- 
istration Cooperative Urological Research Group 
(VACURG). The study is explained and the data are 
provisionally displayed in Byar (1972). Patients were ad- 
mitted between 1960 and 1967 and randomly allocated to 
one or two treatment groups. Group A patients were 
treated by radical prostatectomy and 5.0 mg estrogen 

(DES) daily by mouth, while group B had prostatectomy 
followed by daily oral placebo. Out of 120 patients, 31 
were later excluded from analysis for failure to adhere 
to protocol. Of the 29 patients not known to have died, 
all but two (one from each group) were still alive and in 
the study at the end of the 15th year (1974). The times 
on study and times of entry have been grouped by months 
and reported in Table 2 by years from January 1, 1960. 

The summary Mantel-Haenszel and Gehan-Wilcoxon 
(two-sided) p values differ mainly because of excess 
deaths in Group A, which occurred both chronologrically 
early and at times-on-study of less than two years. There- 
fore it is of interest to compute sequential modified-Wil- 
coxon values and observe the behavior of our repeated 
significance test on this set of data. Table 3 shows the 
modified-Wilcoxon scores (computed from data grouped 
by months) and estimated variance-covariance matrices 
cr(s, t). 

The 4 x 4 cr matrices were used in a repeated two- 
sided significance test with four looks, at times 3, 6, 9, 
12 or 5, 10, 15, 20 (years after 1960). In accordance with 
our recommendations in Section 6, we chose significance 
levels oxi increasing in order to achieve a two-sided stop- 
ping boundary narrowing as time increases. The bound- 
ary values and p values are displayed in Table 4 for two 
such sets of (xi. Rejection of the null hypothesis (and early 
stopping) would have occurred in 1969 if analysis were 
performed every three years and in 1970 if every 5. It is 
interesting to note that the final boundary values (at time 
12 or 20) would not have been inordinately larger than 
the fixed-sample cut-off 1.96. 

The bivariate-normal computations for this example 
were performed with IMSL routine MDBNOR; the mul- 

Table 4. Repeated Significance Test Boundaries and p Valuesa: a = .05 

ti 

3 6 9 12 5 10 15 20 

a, .0075 .0125 .0150 .015 .0075 .0125 .0150 .015 
Boundary 2.674 2.478 2.307 2.162 2.674 2.453 2.240 2.041 
p value .321 .020 .008 .008 .082 .008 .027 .024 

a, .0050 .0100 .0150 .020 .0050 .0100 .0150 .020 
Boundary 2.807 2.560 2.325 2.095 2.807 2.540 2.272 2.002 
p value .321 .021 .003 .009 .082 .008 .029 .026 

a As defined in Section 4. 

This content downloaded from 128.8.206.49 on Mon, 30 Nov 2015 20:30:32 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


866 Journal of the American Statistical Association, December 1982 

tivariate normal integrals of dimensions three and four 
were computed with Milton's (1972) Fortran subroutine. 
All triple integrals (for significance levels and p values) 
are accurate to within .0001; the quadruple integrals are 
accurate to within .001 for the five-year between looks 
cases, and to within .0025 for the three-year cases. 

6. DISCUSSION 

The treatment of purely sequential modified-Wilcoxon 
tests given by Jones and Whitehead (1979) is correct, as 
their simulations show, if all patients enter simultane- 
ously. It can be seen from our Theorem 2 that cr(s, s) 
= or(s, t) if all the Ui take the value 0 with probability 
1. However, if patient entry is staggered in time, it is 
impossible to provide a test boundary of predetermined 
shape (for W,(t)I&3(t, t)1/2) that achieves a preset overall 
significance level (x. Note that this objection applies gen- 
erally to repeated significance tests even in the case of 
independent increments since variance increments can- 
not ordinarily be assumed equal. For example, to use the 
repeated logrank test of Tsiatis (1981) or a repeated test 
using the Prentice (1978) or Peto and Peto (1972) gener- 
alized Wilcoxon, developed in Tsiatis (1982), the stopping 
boundary must depend on the data through the estimated 
variance increments. In all such situations, the approach 
of our Section 4 yields easily constructed data-dependent 
boundaries. 

Further insight into the nature of correlation between 
modified-Wilcoxon increments can be gained from the 
final result of the Appendix. The generality of the as- 
sumption of that lemma suggests (at least when arrival 
times follow approximately homogeneous Poisson pro- 
cesses) that under Ho strictly negatively correlated in- 
crements are the typical case. The lemma applies (but is 
not restricted) to cases where the underlying survival 
density is nonincreasing on [0, oo). Moreover, the as- 
sumption becomes easier to satisfy in the presence of an 
increasing hazard from competing causes of death. The 
importance of the lemma lies in pointing up the undesir- 
ability for repeated modified-Wilcoxon tests of stopping 
boundaries with di nearly equal. If Wa(t1)I(6-(ti, ti))"2 > 
di (but is not too much greater), then negatively correlated 
increments and di+ 2 di would imply under the null 
hypothesis that Wj(ti+,)I(&(t +1, ti+1))"2 is likely to be 
less than di+1. If for some reason a decision to stop a 
trial based on WC(t1) did not take effect until t4+1, an 
upsetting and paradoxical situation could arise in prac- 
tice, since a new analysis at ti+ 1 is likely to show a non- 
significant result. For this reason, we recommend that 
our repeated significance-testing procedure be used only 
with a steadily increasing sequence of ai (to achieve a 
fixed a with steadily decreasing cutoffs d1). This rec- 
ommendation is strengthened by the practical desire- 
tempered by considerations of ethical costs versus max- 
imum power, which are particular to each clinical trial- 
that the final cutoff dK not be too much larger than the 
fixed-sample cutoff F - 1(1 - (x/2). 

The problem of properly choosing sequences (x, . . .. 
AK and t1, * . ., tK for the design and analysis of se- 
quential trials is currently being investigated. Two pos- 
sible methods of prescribing oxi are given by 

ai = P I V1 < d V-i I d'.-1, I Vi | 2 d'i), 

where (V1, . . , VK) is multivariate normal with mean 
0 and cov(Vi, Vj) = min(i, j)(i, j)112, and d'i can be taken 
constant corresponding to the boundary of Armitage 
(1975) and Pocock (1977), or according to a Wald se- 
quential probability ratio test (SPRT) boundary. 

APPENDIX 

A.1 Proof of Theorem 1 

For fixed NA(t), NB(t), the entry times of group A and 
B patients up to time t are random samples from the 
distribution functions AA(-)/AA(t) and AB(-)/AB(t), re- 
spectively, on [0, t]. Hence the random variable WC*(t) 
can be viewed as a U statistic (cf. Hoeffding 1948). If we 
let WC**(t) be the projection (Lehmann 1975, p. 362) of 
Wc*(t), then it follows from a similar argument provided 
by Wei (1980) that 

E((WC* (t) - WC**(t))2 I NA(t), NB(t)) 2/(N(t) + 1). 

Therefore if A(t) > 0, as c --> 0, E(Wc*(t) - WC**(t))2 
-> 0. By Corollary 6 of Lehmann (1975, p. 389), asymp- 
totically the vector (WC*(ti), . . ., Wc*(tK)) has the same 
distribution as (WC**(tl), . . ., Wc**(tK)). By the Weak 
Law of Large Numbers, as c -> oo, the vectors (NA(tl)I 

c, . . . I NA(tK)Ic) and (NB(t1)Ic, . . . , NB(tK)Ic) con- 
verge in probability to constant vectors. Now the Cramer- 
Wold device (Billingsley 1968, Theorem 7.7) and Billing- 
sley's Theorem 17.1 imply the asymptotic joint normality 
of (WC**(ti), . .. , Wc**(tK)? and hence of 

( WC*( t I), . ... WC*( tK)) K 

A.2 Weak Convergence of W *(.) 
The method of proving weak convergence of Wc*(.) to 

a Gaussian process is to verify Billingsley's (1968, 15.44) 
criterion with a = 1, -y = 2 in Theorem 15.7, proving 
tightness of {Wc*(Q): c - 1} in D[TO, T] whenever 
AA(To)AB(TO) > 0 and T> To. The derivation of an upper 
bound on E((Wc* (t) - 14C*(S))2(WC*(U) - WC*(t))2) re- 
quired to prove (15.44) is straightforward but lengthy, 
and we omit it. Together with the weak convergence of 
finite-dimensional distributions proved in Theorem 1, 
tightness implies weak convergence to a Gaussian proc- 
ess in D[T, T. 

A.3 Proof of Theorem 2 

For group -y (-y = A, B) given Ny(t), let {(Xyi, Ywi, 
Uyi): i = 1, . . . , Nw(t)} denote the randomly permuted 
set of triples (Xj, Yj, Uj) corresponding to arrivals of 
group Zy patients up to time t. Then let Tn,1(u) = min(Xn1,, 
Ywi, U.s), Awi(u) = IX = Tw1(u)] for u = s, t, where 
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s < t is fixed. Note that given N,(t), the triples (X-yi, Y-y, 
U.i) are independent and identically distributed. 

Now 

E(W,(s) Wc(t) I N-y(s), Ny (t), y = A, B) 

= [NA(s)NB(s)NA(t)NB(t)N(s)N(t)] - 1/2 

NA(t) NB(t) NA(t) NB(t) 

x I I I I g (i, j,kg,l), 
i=1 j=1 k=1 1=1 

where 

g(i,j, k, 1) = E[p(TAi(s), AAi(S); TB(S), ABj(S)) 

X (P(TAk(t), AAk(t) TBl(t), 

AB(t)) Ny(s), N,(t), y = A, B]. 

Note that the variable whose expectation defines g(i, j, 
k, 1) can be nonzero only when UAi, UBj - s. 

If i = k and j = 1, under the null hypothesis g(i, j, k, 
1) = 0. On the other hand, the number of terms for which 
i = k andj = 1 is NA(t)NB(t), and since g is bounded 
by 1, as c -* o these terms are asymptotically negligible 
in the conditional expectation of Wj(s)Wj(t). 

To treat the terms with i = k, j # 1, we apply the 
definition of the score function 4 to obtain 

g(i, j, k, 1) = {P[XAi < min(XBj, XBI, R) or 

max(XB1, XBI) < min(XAi, R)] 

- P[XBI < XAi < min(XBj, R) or 

XBj < XAi < min(XBI, R)]}, 

where we have written R = min( YA1, YBj, YBI, s - ,UAi, 

s - UBj, t - UBI). Using the conditional exchangeability 
given R of XAi, XBj, XBI (in fact, independence with com- 
mon distribution function FA = FB = F under HO), we 
conclude 

g(i,j, k, I) = [A A(2(X) AA x) 

AB(S - x) AB(t - X) 1 NA(S) NB(S) 
- dF(x) x- 

AB(S) AB(t) NA(t) NB(t) 

and there are NA(t)NB(t)(NB(t) - 1) such terms. Sim- 
ilarly, calculating the terms g(i, j, k, j) with i # k, then 
applying the convergence in probability of NA(I)IC, NB(.)I 

c to AA(), AB(-) as c -- oo, and taking the expectation 
of the conditional expectation of WC(S) Wj(t), finishes the 
proof of Theorem 2. 

A.4 Proof of Corollary 

Using the notations of the previous proof, we can ex- 
press the covariance 

=r AA ( 11 

x {AB(t) X P[AA1(t) = 1, 

TA 1(t) C min(s, TB 1 (s), TA2(s))] 

+ AA(t) x P[ABl(t) = 1, 

TB1 (t) C< min(s , TA , (s), TB2(5))]} 

Substituting the consistent estimates NA(-)Ic, NB(-)Ic for 
AA(-) and ABQ), and replacing the bracketed probabilities 
by their empirical estimators, gives the form &3(s, t) as 
stated in our corollary. 

A.5 Lemma: Condition for Negatively Correlated 
Increments of W,(.) Under Ho 

Under the null hypothesis Ho, if XAA) a Aand XA) 
X are constant with XA/X = , and if 
t 

FA (x) GA (x) GB (X)( GA (X) + (1 - X) GB(X))dFA(x) 

is concave in t, then for all 0 < t < u, u(t, t) > c(t, u). 
The proof follows from the formula from Theorem 2, 

substituting XA(Q)/IX(-)a 

F(tq u) - cr(t, t) = FA (X)GA(X)GB(X)(qGA(X) 

[A(t ) 1 
+ (1 - 

j) GB(X)) A(t)J 

[(A(t)\1 A(u - x) A(t - x)1 dFA(x). 
LX A(ugs A() - A(t) 198 

[Received August 1981. Revised February 1982.1 
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