A SHORT PROOF THAT ALL LINEAR CODES ARE WEAKLY ALGEBRAIC-GEOMETRIC USING A THEOREM OF B. POONEN

SRIMATHY SRINIVASAN

ABSTRACT. In this paper we give a simpler proof of a deep theorem proved by Pellikan, Shen and van Wee that all linear codes are weakly algebraic-geometric using a theorem of B.Poonen.

1. INTRODUCTION

Coding theory, the study of designing efficient codes that help in reliable data transmission, is an integral component of any communication system. Let q be some power of a prime number. The basic idea is to “encode” the q-ary message to be transmitted by adding redundant information to immunize against errors and “decode” at the receiver thereby achieving reliability.

One way to encode is by linearly embedding the k bit message space \mathbb{F}_q^k into \mathbb{F}_q^n using a $k \times n$ matrix called the generator matrix and transmit the vectors in the image of the embedding. We call the image a code and the vectors in it codewords. Minimum distance d, the minimum number of positions in which any two distinct codes differ, is an important parameter of a code that measures its error correcting capability. Typically, we need codes with relative parameters $\delta = \frac{d}{n}$ and $R = \frac{k}{n}$ to be as large as possible. In fact, one of the important problems in coding theory is to construct a sequence of codes with $n \to \infty$ such that the limit (δ, R) of relative parameters is non-zero. Such a sequence of codes is called a sequence of good codes.

It is well known that the maximal achievable R for a given δ, denoted as $\alpha_q(\delta)$, is a continuous decreasing function of δ. Although the exact function $\alpha_q(\delta)$ is not known, there are many lower bounds for it. One significant bound is the Gilbert-Varshamov bound which was known to be the best until algebraic-geometric codes were discovered. These codes are constructed by picking rational points on smooth projective curves and evaluating global sections of a suitable line bundle at these points. The parameters of these codes are easily estimated using the Riemann-Roch theorem and good parameters can be obtained by choosing good curves with many rational points. One such example of a family of good curves is the family of modular curves. These curves have a lot of rational points thereby yielding a good family of codes that beat the Gilbert-Varshamov bound.

One can generalize the construction of codes on curves to codes on surfaces or any other higher dimensional variety in an analogous manner: Pick a set of \mathbb{F}_q rational points on the variety and evaluate the global sections of a line bundle at these points to get a linear code. In this case, estimating the parameters of the code is harder than in the case of curves as we need Riemann-Roch in higher dimensions. In this paper we show that every linear code can be realized on a variety obtained by blowing up projective space at a finite set of points. Then we show that codes realized over smooth geometrically integral varieties can be realized as codes on curves using Bertini theorems of B.Poonen ([5], [6]) over finite fields. This gives an alternate proof of a deep theorem of Pellikan, Shen and van Wee ([4]) that every linear code is weakly algebraic-geometric (see Definition 2).

2. CODING THEORY BACKGROUND

An $(n, k, d)_q$-code is a k-dimensional subspace of an n-dimensional vector space over \mathbb{F}_q. The vectors in a code are called codewords. The parameter d is called the minimum distance. It is the minimum of Hamming distances between any two distinct codewords. Since a code is a linear subspace, it is also
equal to the minimum of Hamming weights of all the non-zero codewords. Finding minimum distance given a basis for the code is NP-hard. For practical purposes we need the dimension \(k \) and the minimum distance \(d \) of a code to be large as possible for a given length. So for an \((n,k,d)\) - code \(C \), we define the relative dimension or code rate, \(R(C) = \frac{k}{n} \) and relative minimum distance, \(\delta(C) = \frac{d}{n} \). The pair \((\delta(C), R(C))\) denotes a point in \([0, 1] \times [0, 1]\). A sequence of codes \(\{C_i\} \) is said to be asymptotically good if \(\lim_{i \to \infty} \delta(C_i) > 0 \) and \(\lim_{i \to \infty} R(C_i) > 0 \).

Define,

\[
U_q = \{(\delta, R) \mid \text{there exists a sequence of codes } \{C_i\} \text{ with } \lim_{i \to \infty} (\delta(C_i), R(C_i)) = (\delta, R)\}
\]

Then, it is know that there is a continuous decreasing function \(\alpha_q(\delta) \) such that \(U_q = \{(\delta, R) \mid 0 \leq R \leq \alpha_q(\delta)\} \). The exact function \(\alpha_q(\delta) \) is unknown although few upper and lower bounds for the function is known. One lower bound is given by the Gilbert-Varshamov(GV) bound:

\[
\alpha_q(\delta) \geq 1 - (\delta \cdot \log_q(q - 1) - \delta \cdot \log_q(\delta) - (1 - \delta) \cdot \log_q(1 - \delta))
\]

It was the best known bound for many years until the invention of algebraic-geometric (AG) Codes. When \(q \) is a square, one can construct algebraic-geometric codes on curves with good asymptotic behavior. This yields the algebraic geometry (AG) bound,

\[
\alpha_q(\delta) \geq 1 - \frac{1}{\sqrt{q} - 1} - \delta
\]

which beats the Gilbert-Varshamov bound in a region along \(\delta \) for \(q \geq 49 \).

3. ALGEBRAIC-GEOMETRIC CODES

Algebraic-geometric codes were first discovered by Goppa ([2]) and was further developed by Tsfasman,Vladut ([7]) and many others along the way. We start by briefly recalling the construction of algebraic-geometric codes. The text [3] by Hartshorne is a good reference for all the basic algebraic geometry and notations we use in this paper.

Definition 1. Let \(X \) be a smooth projective variety defined over \(\mathbb{F}_q \) and let \(\mathcal{P} = \{P_1, P_2, \cdots, P_n\} \subseteq X(\mathbb{F}_q) \). Let \(D \) be a divisor on \(X \) such that the support of \(D \) is disjoint from \(\mathcal{P} \). Define

\[
L(D) = \{f \in \mathbb{F}_q(X)^* | (f) + D \geq 0\} \cup \{0\}
\]
and consider the evaluation map:

\[Ev_P : L(D) \rightarrow \mathbb{F}_q^n \]

\[f \mapsto [f(P_1), f(P_2), \ldots, f(P_n)] \]

The image of the map gives a linear code \(C = C_L(X, \mathcal{P}, D) \) and we say that \(C \) is an algebraic-geometric code realized over \(X \).

Given the data \(X, \mathcal{P}, D \) as above, let \(\mathcal{L} \) denote the line bundle associated to \(D \) and \(H^0(X, \mathcal{L}) \) denote its global sections. Then we can get a code \(C(X, \mathcal{P}, \mathcal{L}) \) equivalent to \(C_L(X, \mathcal{P}, D) \) as follows. First note that the local ring \(\mathcal{L}_{P_i} \) modulo the maximal ideal of sections vanishing at \(P_i \) denoted by \(\mathcal{L}_{P_i} \) is isomorphic to \(\mathbb{F}_q \) by a choice of local trivialisation. Then the image of the germ map

\[\alpha_P : H^0(X, \mathcal{L}) \rightarrow \bigoplus \mathcal{L}_{P_i} \cong \mathbb{F}_q^n \]

gives a linear code \(C(X, \mathcal{P}, \mathcal{L}) \) that is same as the code \(C_L(X, \mathcal{P}, D) \) up to monomial equivalence.

Remark: In Definition 1, if \(X \) is a smooth curve, we get the original construction of Goppa (Goppa codes [2]). In this case, the parameters of the code are easily estimated using the Riemann-Roch theorem. However, it is not so easy for codes over higher dimensional varieties as invoking Riemann-Roch brings higher cohomology groups come into picture.

4. All Linear Codes are Weakly Algebraic-Geometric

In this section we give a shorter proof of a theorem of Pellikkan, Shen, van Wee ([4]). Recall the definition of weakly algebraic-geometric code from [4]:

Definition 2. A q-ary linear code \(C \) is said to be weakly algebraic geometric if there exists a projective non-singular absolutely irreducible curve \(X \) defined over \(\mathbb{F}_q \), \(n \) distinct points \(\mathcal{P} = \{ P_1, P_2, \ldots, P_n \} \) on \(X \) and a divisor \(D \) with support disjoint from \(\mathcal{P} \) such that \(C = C_L(X, \mathcal{P}, D) \).

We now show that algebraic-geometric codes are ubiquitous in the sense that every linear code can be realized over some smooth variety. In fact we have the following stronger result.

Theorem 1. Let \(C \) be a linear code. Then \(C = C_L(X, \mathcal{P}, D) \) where \(X \) is the blow up of some projective space at finitely many points, \(\mathcal{P} \) is a finite set of distinct \(\mathbb{F}_q \)-points in \(X \) and \(D \) is a divisor such that the support of \(D \) is disjoint from \(\mathcal{P} \).

Proof. Let \(C \) be a \((n, k, d)_q\) linear code with \(k \times n \) generator matrix \(G \). Then the columns \(C_1, C_2, \ldots, C_n \) of \(G \) form (not necessarily distinct) points of \(\mathbb{A}^k \). Then we can find an integer \(r \geq 2 \) and \(n \) distinct points \(P_1, P_2, \ldots, P_n \) in \(\mathbb{A}^{r+k} \) such that the projection map

\[\phi : \mathbb{A}^{r+k} \rightarrow \mathbb{A}^k \]

\[[y_1, y_2, \ldots, y_r, x_1, x_2, \ldots, x_k] \rightarrow [x_1, x_2, \ldots, x_n] \]

takes \(P_i \) to \(C_i \). Let \(y_0, y_1, \ldots, y_r, x_1, x_2, \ldots, x_k \) denote the coordinates of \(\mathbb{P}^{r+k} \). Identify \(\mathbb{A}^{r+k} \) with the open affine set \(y_0 = 1 \) in \(\mathbb{P}^{r+k} \). For \(1 \leq i \leq r \), let \(V_i \) denote the point in \(\mathbb{P}^{r+k} \) with \(y_0 = y_i = 1 \) and all other coordinates 0. By choosing \(r \) large enough we can assume that \(V_i \neq P_j \ \forall i, j \). Let \(X \) be the smooth geometrically integral variety obtained via the blow up \(\pi : X \rightarrow \mathbb{P}^{r+k} \) at the points \(V_i \) with the corresponding exceptional divisor \(E_i \). Denote by \(H \) the hyperplane section \(y_0 = 0 \) in \(\mathbb{P}^{r+k} \). Then the global sections of the line bundle associated to the divisor \(D = \mathcal{L}(\pi^*H - \sum_i E_i) \) is generated by \(x_0, x_1, \ldots, x_k \). It is easy to see that code \(C = C(X, \mathcal{P}, D) \) where \(\mathcal{P} \) is the set \(\{ \pi^{-1}P_1, \pi^{-1}P_2, \ldots, \pi^{-1}P_n \} \). \(\square \)
Let us now restate the results on Bertini theorems over finite fields due to B. Poonen. We refer the reader to Theorem 1.1 in [6] and remarks below Theorem 3.3 in [5] for more details.

Theorem 2 (Poonen). Let X be a smooth, projective geometrically integral variety of \mathbb{P}^n of dimension $m \geq 2$ over \mathbb{F}_q, and let $\mathcal{P} \subset X$ be a finite set of closed points. Then, given any integer d_0, there exists a hypersurface $H \subset \mathbb{P}^n$ of degree $d \geq d_0$ such that $Y = H \cap X$ is smooth, projective and geometrically integral of dimension $m - 1$ and contains \mathcal{P}.

Example. Consider $X = \mathbb{P}^2$ over \mathbb{F}_2. Let \mathcal{P} be the set of all 7 \mathbb{F}_2-points. Then, the curve $Y = y^3z + y^2z^2 + x^2y^2 + x^3z$ is a smooth curve passing through \mathcal{P}. In fact, one can show that there are 24 smooth curves of degree 4 passing through \mathcal{P}.

Using Theorem 2 we now show that codes realized over higher dimensional varieties can be realized over curves. Although there are papers [1] that apply Poonen’s theorem to algebraic-geometric codes, there does not seem to be any literature that states this result.

Theorem 3. Let $\mathcal{C} = C(X, \mathcal{P}, \mathcal{L})$ be a code on a geometrically integral smooth projective variety $X \subseteq \mathbb{P}^k$ of dimension $m \geq 2$ over \mathbb{F}_q. Then \mathcal{C} can be realized over a smooth projective geometrically integral curve. In particular, there exists a geometrically integral smooth projective curve Z containing \mathcal{P} such that $\mathcal{C} = C(Z, \mathcal{P}, \mathcal{L}|_Z)$.

Proof. Let $Y = H \cap X$ be as Theorem 2 with degree d of H large enough and let $i : Y \hookrightarrow X$ denote the inclusion morphism. Then, we have the following short exact sequence on X:

$$0 \longrightarrow i_*\mathcal{O}_Y \longrightarrow \mathcal{O}_X \longrightarrow \mathcal{I}_Y \longrightarrow 0$$

where $\mathcal{I}_Y = \mathcal{O}_X(-d)$. Tensoring with \mathcal{L} we get

$$0 \longrightarrow \mathcal{L} \otimes \mathcal{I}_Y \longrightarrow \mathcal{L} \longrightarrow \mathcal{L} \otimes i_*\mathcal{O}_Y \longrightarrow 0$$

(Here tensoring is over \mathcal{O}_X). The above short exact sequence gives rise to a long exact sequence in cohomology on X

$$0 \longrightarrow H^0(\mathcal{L} \otimes \mathcal{I}_Y, X) \longrightarrow H^0(\mathcal{L}) \longrightarrow H^0(\mathcal{L} \otimes i_*\mathcal{O}_Y, X) \longrightarrow H^1(\mathcal{L} \otimes \mathcal{I}_Y, X) \longrightarrow \cdots$$

By duality, we have

$$H^i(\mathcal{L} \otimes \mathcal{I}_Y, X) \simeq H^{m-i}(\omega_X \otimes \mathcal{I}_Y^\vee \otimes \mathcal{L}^\vee, X) \simeq H^{m-i}(\omega_X \otimes \mathcal{L}^\vee \otimes \mathcal{O}_X(d), X)$$

where ω_X is the canonical sheaf on X. Since $\mathcal{O}_X(1)$ is ample, for large enough d, $H^0(\mathcal{L} \otimes \mathcal{I}_Y, X)$ and $H^1(\mathcal{L} \otimes \mathcal{I}_Y, X)$ vanishes and we get a canonical isomorphism obtained via restriction

$$H^0(\mathcal{L}) \longrightarrow H^0(\mathcal{L} \otimes i_*\mathcal{O}_Y, X) \simeq H^0(\mathcal{L}|_Y \otimes \mathcal{O}_Y, Y) \simeq H^0(\mathcal{L}|_Y, Y)$$

Inducting the above argument by replacing the m-dimensional variety X with $(m - 1)$-dimensional variety Y and \mathcal{L} with $\mathcal{L}|_Y$ we get the result.

Hence, given a code over a geometrically integral smooth projective variety, we have realized it over a geometrically integral smooth projective curve. As a consequence we get:

Corollary 4 (Pellikan, Shen, van Wee). All linear codes are weakly algebraic-geometric.

Proof. This easily follows from Theorem 1 and Theorem 3.

ACKNOWLEDGEMENTS. I would like to thank Prof. Patrick Brosnan and Prof. Lawrence Washington for their valuable comments and discussions. I would also like to thank Richard Rast for writing a computer program to verify some results.
REFERENCES

DEPARTMENT OF MATHEMATICS, 1301 MATHEMATICS BUILDING, UNIVERSITY OF MARYLAND, COLLEGE PARK, MD 20742-4015, USA