49) [D-F] 14.4 #1 (10 points). Determine the Galois closure of \(\mathbb{Q}(\sqrt{1+\sqrt{2}}) \) over \(\mathbb{Q} \).

Let \(F/\mathbb{Q} \) be any finite extension. By the primitive element theorem \(F = \mathbb{Q}(\alpha) \) for some \(\alpha \in F \subset \mathbb{C} \). Let \(f(X) \in \mathbb{Q}[X] \) be the irreducible polynomial of \(\alpha \) over \(\mathbb{Q} \). Let \(L \subset \mathbb{C} \) be the splitting field of \(f(X) \) over \(\mathbb{Q} \). Clearly \(F \subset L \) is Galois. Moreover if \(K/\mathbb{Q} \) is any Galois extension with \(F \subset K \subset \mathbb{C} \), then \(L \subset K \) (because any irreducible polynomial over a field \(k \) which has a root in a Galois extension of \(k \) is separable and splits completely in the Galois extension). Thus the Galois closure of \(F \) is the splitting field of \(f(X) \). In the present problem \(\alpha = \sqrt{1+\sqrt{2}} \) and \(f(X) = X^4 - 2X^2 - 1 \), thus the Galois closure of \(\mathbb{Q}(\alpha) \) is \(\mathbb{Q}(\sqrt{1+\sqrt{2}}, \sqrt{1-\sqrt{2}}) \).

50) [D-F] 14.4 #2 (10 points). Find a primitive generator for \(F = \mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5}) \).

Consider \(\alpha = a\sqrt{2} + b\sqrt{3} + c\sqrt{5} \in F \) with \(a, b, c \in \mathbb{Q} \setminus \{0\} \). We recall from Problem 40) of HW 9 that \(F/\mathbb{Q} \) is Galois with the eight automorphisms of \(F/\mathbb{Q} \) being \((\sqrt{2}, \sqrt{3}, \sqrt{5}) \mapsto (\pm\sqrt{2}, \pm\sqrt{3}, \pm\sqrt{5}) \). Thus \(\alpha \) has eight Galois conjugates. We also recall that in a Galois extension \(K/k \), the number of Galois conjugates of any \(\alpha \in K \) is \([\text{Gal}(K/k) : \text{Gal}(K/k(\alpha))] = [k(\alpha) : k] \). In the present problem this shows that \(\mathbb{Q}(\alpha)/\mathbb{Q} \) is a degree eight extension and hence \(\mathbb{Q}(\alpha) = F \). In other words \(\alpha \) is a primitive generator. Any other \(\alpha \) which has eight Galois conjugates will also work.

51 [D-F], 14.7 #3 (5 points). State and prove a necessary and sufficient condition on \(\alpha, \beta \in F \) so that \(F(\sqrt{\alpha}) = F(\sqrt{\beta}) \) assuming \(\text{char}(F) \neq 2 \). Use this to determine if \(\mathbb{Q}(i, \sqrt{2}) = \mathbb{Q}(\sqrt{1+\sqrt{2}}) \).

\(F(\sqrt{\alpha}) = F(\sqrt{\beta}) \iff [F(\sqrt{\alpha}, \sqrt{\beta}) : F] = 2 \iff \alpha\beta \text{ is a square in } F \) (by problem 27 of HW7). Letting \(F = \mathbb{Q}(\sqrt{2}) \), \(\alpha = -1 \) and \(\beta = 1 - \sqrt{2} \), we see that \(\alpha\beta = -1 + \sqrt{2} \) is not a square in \(F \) (because squares in \(F \) are of the form \(a^2 + 2b^2 + 2ab\sqrt{2} \) where \(a, b \in \mathbb{Q} \)) and hence \(\mathbb{Q}(i, \sqrt{2}) \neq \mathbb{Q}(\sqrt{1+\sqrt{2}}) \).

51 [D-F], 14.7 #12 (5 points). Let \(L \) be the Galois closure of the finite extension \(\mathbb{Q}(\alpha)/\mathbb{Q} \). For any prime \(p \) dividing the order of \(\text{Gal}(L/\mathbb{Q}) \) prove that there is a subfield \(F \subset L \) with \([L : F] = p \).
and \(L = F(\alpha) \).

Since \(p \) divides \(|G| \) where \(G = \text{Gal}(L/\mathbb{Q}) \), there exist subgroups \(H < G \) of order \(p \), and hence fields \(\mathbb{Q} \subset F \subset L \) with \([L : F] = p \). We will show that \(F \) can be chosen such that \(\alpha \notin F \), so that \(F(\alpha) \) will necessarily equal \(L \). We give two proofs for why \(F \) can be chosen such that \(\alpha \notin F \).

a) If \(\alpha \in F \) for all \(F/\mathbb{Q} \) with \([L : F] = p \), we see that \(E := \cap_{\sigma \in G} \sigma F \) contains \(\mathbb{Q}(\alpha) \). We observe that \(\sigma E = E \) for all \(\sigma \in G \). We recall that every \(\tau \in \text{Aut}(\mathbb{Q}/\mathbb{Q}) \) is an extension of a \(\sigma \in G \). Thus \(\tau E = E \) for all \(\tau \in \text{Aut}(\mathbb{Q}/\mathbb{Q}) \), and thus \(E/\mathbb{Q} \) satisfies the definition of a finite normal extension. It is automatically separable since \(\text{char}(\mathbb{Q}) = 0 \). Thus \(E/\mathbb{Q} \) is Galois and contains \(\mathbb{Q}(\alpha) \), therefore \(L = E \), but this contradicts \([L : E] \geq [L : F] = p \).

b) If \(f(X) \in \mathbb{Q}[X] \) is the irreducible polynomial for \(\alpha \) over \(\mathbb{Q} \), then as observed in the solution to Problem 49) above, \(L/\mathbb{Q} \) is the splitting field of \(f(X) \). We recall that \(G \) acts transitively on the \(d = [\mathbb{Q}(\alpha) : \mathbb{Q}] \) roots \(\{\alpha_1, \ldots, \alpha_d\} \) of \(f(X) \) in \(L \). Now, there exists an \(\alpha_i \notin F \), because otherwise \(F = L \) contradicting \([L : F] = p \). We pick a \(g \in G \) such that \(g(\alpha_i) = \alpha \), and observe that \(F' := g(F) \) satisfies \(\alpha \notin F' \) and \([L : F'] = p \).

53 [D-F], 14.8 #4 (10 points). We verify directly that the given quintic \(f(X) \) has \(\alpha \) as a root where \(\alpha = \xi + \xi^{-1}, \xi = \xi_{11} \). Since \(\alpha \) clearly has five Galois conjugates in the cyclotomic field \(\mathbb{Q}(\xi) \), we see that the minimal polynomial for \(\alpha \) over \(\mathbb{Q} \) is a quintic and hence must be \(f(X) \). Since \(\mathbb{Q}(\xi)/\mathbb{Q} \) is an abelian extension, we know that \(\mathbb{Q}(\alpha)/\mathbb{Q} \) is a Galois extension of degree five, and hence \(f(X) \) splits completely in \(\mathbb{Q}(\alpha) \). Thus \(\mathbb{Q}(\alpha)/\mathbb{Q} \) is the splitting field of \(f(X) \) and \(\text{Gal}(\mathbb{Q}(\alpha)/\mathbb{Q}) = \mathbb{Z}/5\mathbb{Z} \).