Survey of Affine Deligne-Lusztig Varieties

Thomas J. Haines

Mathematics Department
University of Maryland

March 5, 2009
Outline

1. A Question in σ-linear algebra
2. Basic Questions about ADLVs
3. Isocrystals and Mazur’s inequality
4. Non-emptiness of ADLVs in the affine Grassmannian
5. Dimensions of ADLVs in the affine Grassmannian
6. ADLVs in the affine flag variety
A question in σ-linear algebra

- Let $k = \mathbb{F}_q$. $\text{Gal}(\overline{k}/k)$ has a canonical generator $\sigma : x \mapsto x^q$.
- Let $\mathcal{O} := \overline{k}[[\epsilon]]$ and $\text{Frac}(\mathcal{O}) = L = \overline{k}((\epsilon))$. The Frobenius automorphism σ of L is defined by
 $$\sigma\left(\sum_i a_i \epsilon^i\right) = \sum_i a_i^q \epsilon^i.$$
- We have $L^\sigma = F := k((\epsilon))$ and $\mathcal{O}^\sigma = \mathcal{O}_F := k[[\epsilon]]$.
- σ-Linear Algebra Question: Given $b \in \text{GL}_n(L)$ and $\mu = (\mu_1, \ldots, \mu_n) \in \mathbb{Z}^n$, does there exist an \mathcal{O}-lattice $\Lambda \subset L^n$ such that $b \sigma(\Lambda) \subseteq \Lambda$, and
 $$\Lambda / b \sigma(\Lambda) \cong \mathcal{O} / \epsilon^{\mu_1} \oplus \cdots \oplus \mathcal{O} / \epsilon^{\mu_n},$$
in other words, such that $\text{inv}(\Lambda, b \sigma(\Lambda)) = \mu$? If yes, what is the dimension of the “space of such Λ’s”?
- Goal: Explain why this question is interesting and how it is answered.
A question in σ-linear algebra

- Let $k = \mathbb{F}_q$. \(\text{Gal}(\overline{k}/k)\) has a canonical generator $\sigma : x \mapsto x^q$.
- Let $\mathcal{O} := \overline{k}[[\epsilon]]$ and $\text{Frac}(\mathcal{O}) =: L = \overline{k}((\epsilon))$. The **Frobenius automorphism** σ of L is defined by

$$\sigma\left(\sum_i a_i \epsilon^i\right) = \sum_i a_i^q \epsilon^i.$$

- We have $L^\sigma = F := k((\epsilon))$ and $\mathcal{O}^\sigma = \mathcal{O}_F := k[[\epsilon]]$.
- **\(\sigma\)-Linear Algebra Question:** Given $b \in \text{GL}_n(L)$ and $\mu = (\mu_1, \ldots, \mu_n) \in \mathbb{Z}^n$, does there exist an \mathcal{O}-lattice $\Lambda \subset L^n$ such that $b\sigma(\Lambda) \subseteq \Lambda$, and

$$\Lambda/b\sigma(\Lambda) \cong \mathcal{O}/\epsilon^{\mu_1} \oplus \cdots \oplus \mathcal{O}/\epsilon^{\mu_n},$$

in other words, such that $\text{inv}(\Lambda, b\sigma(\Lambda)) = \mu$? If yes, what is the **dimension** of the “space of such Λ’s”?
- **Goal:** Explain why this question is interesting and how it is answered.
A question in σ-linear algebra

- Let $k = \mathbb{F}_q$. Gal(\overline{k}/k) has a canonical generator $\sigma : x \mapsto x^q$.
- Let $\mathcal{O} := \overline{k}[[\epsilon]]$ and Frac(\mathcal{O}) =: $L = \overline{k}((\epsilon))$. The Frobenius automorphism σ of L is defined by
 \[\sigma(\sum_i a_i \epsilon^i) = \sum_i a_i^q \epsilon^i. \]

- We have $L^\sigma = F := \mathbb{k}((\epsilon))$ and $\mathcal{O}^\sigma = \mathcal{O}_F := \mathbb{k}[[\epsilon]]$.
- σ-Linear Algebra Question: Given $b \in \text{GL}_n(L)$ and $\mu = (\mu_1, \ldots, \mu_n) \in \mathbb{Z}^n$, does there exist an \mathcal{O}-lattice $\Lambda \subset L^n$ such that $b\sigma(\Lambda) \subseteq \Lambda$, and
 \[\Lambda/b\sigma(\Lambda) \cong \mathcal{O}/\epsilon^{\mu_1} \oplus \cdots \oplus \mathcal{O}/\epsilon^{\mu_n}, \]
 in other words, such that $\text{inv}(\Lambda, b\sigma(\Lambda)) = \mu$? If yes, what is the dimension of the “space of such Λ’s”?
- Goal: Explain why this question is interesting and how it is answered.
A question in σ-linear algebra

- Let $k = \mathbb{F}_q$. $\text{Gal}(\overline{k}/k)$ has a canonical generator $\sigma : x \mapsto x^q$.
- Let $O := \overline{k}[[\epsilon]]$ and $\text{Frac}(O) =: L = \overline{k}((\epsilon))$. The Frobenius automorphism σ of L is defined by

$$\sigma\left(\sum_i a_i \epsilon^i\right) = \sum_i a_i^q \epsilon^i.$$

- We have $L^\sigma = F := k((\epsilon))$ and $O^\sigma = O_F := k[[\epsilon]]$.
- σ-Linear Algebra Question: Given $b \in \text{GL}_n(L)$ and $\mu = (\mu_1, \ldots, \mu_n) \in \mathbb{Z}^n$, does there exist an O-lattice $\Lambda \subset L^n$ such that $b\sigma(\Lambda) \subseteq \Lambda$, and

$$\Lambda/b\sigma(\Lambda) \cong O/\epsilon^{\mu_1} \oplus \cdots \oplus O/\epsilon^{\mu_n},$$

in other words, such that $\text{inv}(\Lambda, b\sigma(\Lambda)) = \mu$? If yes, what is the dimension of the “space of such Λ’s”?

- Goal: Explain why this question is interesting and how it is answered.
A question in σ-linear algebra

- Let $k = \overline{F}_q$. $Gal(\overline{k}/k)$ has a canonical generator $\sigma : x \mapsto x^q$.
- Let $\mathcal{O} := \overline{k}[[\epsilon]]$ and $\text{Frac}(\mathcal{O}) =: L = \overline{k}((\epsilon))$. The Frobenius automorphism σ of L is defined by

$$\sigma(\sum_i a_i \epsilon^i) = \sum_i a_i^q \epsilon^i.$$

- We have $L^\sigma = F := k((\epsilon))$ and $\mathcal{O}^\sigma = \mathcal{O}_F := k[[\epsilon]]$.
- σ-Linear Algebra Question: Given $b \in \text{GL}_n(L)$ and $\mu = (\mu_1, \ldots, \mu_n) \in \mathbb{Z}^n$, does there exist an \mathcal{O}-lattice $\Lambda \subset L^n$ such that $b \sigma(\Lambda) \subseteq \Lambda$, and

$$\Lambda/b \sigma(\Lambda) \cong \mathcal{O}/\epsilon^{\mu_1} \oplus \cdots \oplus \mathcal{O}/\epsilon^{\mu_n},$$

in other words, such that $\text{inv}(\Lambda, b \sigma(\Lambda)) = \mu$? If yes, what is the dimension of the “space of such Λ’s”?

- Goal: Explain why this question is interesting and how it is answered.
Examples

- Define $X_{\mu}^{\text{GL}_n}(b) = \{ \Lambda \subset L^n \mid \text{inv}(\Lambda, b\sigma(\Lambda)) = \mu \}$. Call it the **Affine Deligne-Lusztig Variety (ADLV)** associated to GL_n, b, and μ.

- (I) $n = 2$, $b = 1$, and $\mu = (0, 0)$. Then

 $X_{\mu}^{\text{GL}_2}(b) = \{ \Lambda \mid \sigma(\Lambda) = \Lambda \}$

 $= \{ \mathcal{O}_F\text{-lattices } \Lambda_F \subset F^2 \}$

 $= \text{the vertices in the building (a tree) for } \text{GL}_2(F)$. This is an infinite discrete set ($\dim = 0$).

- (II) $n = 2$, $b = 1$ and $\mu = (\mu_1, \mu_2)$, where $\mu_1 \geq \mu_2$. Then

 $$
 \dim X_{\mu}^{\text{GL}_2}(b) = \begin{cases}
 -\infty, & \text{if } \mu_1 + \mu_2 \neq 0 \\
 \mu_1, & \text{if } \mu_1 + \mu_2 = 0.
 \end{cases}
 $$

Thomas J. Haines

Survey of Affine Deligne-Lusztig Varieties
Examples

- Define $X_{\mu}^{GL_n}(b) = \{ \Lambda \subset L^n \mid \inv(\Lambda, b\sigma(\Lambda)) = \mu \}$. Call it the **Affine Deligne-Lusztig Variety (ADLV)** associated to GL_n, b, and μ.

- (I) $n = 2$, $b = 1$, and $\mu = (0, 0)$. Then
 - $X_{\mu}^{GL_2}(b) = \{ \Lambda \mid \sigma(\Lambda) = \Lambda \}$
 - $= \{ \mathcal{O}_F\text{-lattices } \Lambda_F \subset F^2 \}$
 - $= \text{the vertices in the building (a tree) for } GL_2(F)$. This is an infinite discrete set ($\dim = 0$).

- (II) $n = 2$, $b = 1$ and $\mu = (\mu_1, \mu_2)$, where $\mu_1 \geq \mu_2$. Then
 - $\dim X_{\mu}^{GL_2}(b) = \begin{cases} -\infty, & \text{if } \mu_1 + \mu_2 \neq 0 \\ \mu_1, & \text{if } \mu_1 + \mu_2 = 0. \end{cases}$
Examples

- Define $X_{\mu}^{GL_n}(b) = \{\Lambda \subset L^n \mid \text{inv}(\Lambda, b\sigma(\Lambda)) = \mu\}$. Call it the **Affine Deligne-Lusztig Variety (ADLV)** associated to GL_n, b, and μ.

- (I) $n = 2$, $b = 1$, and $\mu = (0, 0)$. Then

 $X_{\mu}^{GL_2}(b) = \{\Lambda \mid \sigma(\Lambda) = \Lambda\}$

 $= \{\mathcal{O}_F\text{-lattices } \Lambda_F \subset F^2\}$

 $= \text{the vertices in the building (a tree) for } GL_2(F)$. This is an infinite discrete set (dim = 0).

- (II) $n = 2$, $b = 1$ and $\mu = (\mu_1, \mu_2)$, where $\mu_1 \geq \mu_2$. Then

 $\dim X_{\mu}^{GL_2}(b) = \begin{cases}
 -\infty, & \text{if } \mu_1 + \mu_2 \neq 0 \\
 \mu_1, & \text{if } \mu_1 + \mu_2 = 0.
 \end{cases}$
Examples

- Define \(X^{GL_n}_\mu(b) = \{ \Lambda \subset L^n \mid \text{inv}(\Lambda, b\sigma(\Lambda)) = \mu \} \). Call it the **Affine Deligne-Lusztig Variety (ADLV)** associated to \(GL_n, b, \) and \(\mu \).

- (I) \(n = 2, b = 1,\) and \(\mu = (0, 0) \). Then

 \[
 X^{GL_2}_\mu(b) = \{ \Lambda \mid \sigma(\Lambda) = \Lambda \}
 \]

 \[
 = \{ \mathcal{O}_F\text{-lattices } \Lambda_F \subset F^2 \}
 \]

 = the vertices in the building (a tree) for \(GL_2(F) \). This is an infinite discrete set (dim = 0).

- (II) \(n = 2, b = 1 \) and \(\mu = (\mu_1, \mu_2) \), where \(\mu_1 \geq \mu_2 \). Then

 \[
 \dim X^{GL_2}_\mu(b) = \begin{cases}
 -\infty, & \text{if } \mu_1 + \mu_2 \neq 0 \\
 \mu_1, & \text{if } \mu_1 + \mu_2 = 0.
 \end{cases}
 \]
Examples

- Define $X^{GL_n}_\mu(b) = \{\Lambda \subset L^n \mid \text{inv}(\Lambda, b\sigma(\Lambda)) = \mu\}$. Call it the **Affine Deligne-Lusztig Variety (ADLV)** associated to GL_n, b, and μ.

- (I) $n = 2$, $b = 1$, and $\mu = (0, 0)$. Then

 $X^{GL_2}_\mu(b) = \{\Lambda \mid \sigma(\Lambda) = \Lambda\}$

 $= \{O_F\text{-lattices } \Lambda_F \subset F^2\}$

 $= \text{the vertices in the building (a tree) for } GL_2(F)$. This is an infinite discrete set ($\text{dim} = 0$).

- (II) $n = 2$, $b = 1$ and $\mu = (\mu_1, \mu_2)$, where $\mu_1 \geq \mu_2$. Then

$$\dim X^{GL_2}_\mu(b) = \begin{cases} -\infty, & \text{if } \mu_1 + \mu_2 \neq 0 \\ \mu_1, & \text{if } \mu_1 + \mu_2 = 0. \end{cases}$$
Examples

- Define $X_{\mu}^{GL_n}(b) = \{\Lambda \subset L^n \mid \text{inv}(\Lambda, b\sigma(\Lambda)) = \mu\}$. Call it the **Affine Deligne-Lusztig Variety (ADLV)** associated to $GL_n, b,$ and μ.

 1. $n = 2, b = 1,$ and $\mu = (0, 0)$. Then

 $$X_{\mu}^{GL_2}(b) = \{\Lambda \mid \sigma(\Lambda) = \Lambda\}$$

 $$= \{O_F\text{-lattices } \Lambda_F \subset F^2\}$$

 $$= \text{the vertices in the building (a tree) for } GL_2(F).$$

 This is an infinite discrete set ($\dim = 0$).

 2. $n = 2, b = 1$ and $\mu = (\mu_1, \mu_2), \text{ where } \mu_1 \geq \mu_2.$ Then

 $$\dim X_{\mu}^{GL_2}(b) = \begin{cases}
 -\infty, & \text{if } \mu_1 + \mu_2 \neq 0 \\
 \mu_1, & \text{if } \mu_1 + \mu_2 = 0.
 \end{cases}$$
Examples

- Define $X_{\mu}^{GL_n}(b) = \{ \Lambda \subset L^n \mid \text{inv}(\Lambda, b\sigma(\Lambda)) = \mu \}$. Call it the **Affine Deligne-Lusztig Variety (ADLV)** associated to GL_n, b, and μ.

- (I) $n = 2$, $b = 1$, and $\mu = (0, 0)$. Then

$$X_{\mu}^{GL_2}(b) = \{ \Lambda \mid \sigma(\Lambda) = \Lambda \}$$

$$= \{ \mathcal{O}_F\text{-lattices } \Lambda_F \subset F^2 \}$$

$$= \text{the vertices in the building (a tree) for } GL_2(F). \text{ This is an infinite discrete set (dim = 0).}$$

- (II) $n = 2$, $b = 1$ and $\mu = (\mu_1, \mu_2)$, where $\mu_1 \geq \mu_2$. Then

$$\dim X_{\mu}^{GL_2}(b) = \begin{cases} -\infty, & \text{if } \mu_1 + \mu_2 \neq 0 \\ \mu_1, & \text{if } \mu_1 + \mu_2 = 0. \end{cases}$$
It is instructive to prove that **non-emptiness implies** $\mu_1 + \mu_2 = 0$.

Let $\Lambda_0 = \mathcal{O} e_1 \oplus \mathcal{O} e_2$. Let $K = \text{GL}_2(\mathcal{O}) = \text{Stab}_{\text{GL}_2(L)}(\Lambda_0)$.

Write $\Lambda = g \Lambda_0$ for $g \in \text{GL}_2(L)$.

Theory of elementary divisors implies

$$\Lambda \in X_{\mu}^{\text{GL}_2}(1) \iff g^{-1} \sigma(g) \in K \begin{bmatrix} \epsilon^{\mu_1} & 0 \\ 0 & \epsilon^{\mu_2} \end{bmatrix} K.$$

Taking determinants, the above implies

$$\epsilon^{\mu_1+\mu_2} \in \det(g^{-1} \sigma(g)) \mathcal{O}^x = \mathcal{O}^x,$$

and thus $\mu_1 + \mu_2 = 0$.
It is instructive to prove that **non-emptiness implies** $\mu_1 + \mu_2 = 0$.

Let $\Lambda_0 = \mathcal{O}e_1 \oplus \mathcal{O}e_2$. Let $K = \text{GL}_2(\mathcal{O}) = \text{Stab}_{\text{GL}_2(L)}(\Lambda_0)$.

Write $\Lambda = g\Lambda_0$ for $g \in \text{GL}_2(L)$.

Theory of elementary divisors implies

$$\Lambda \in X_{\mu}^{\text{GL}_2}(1) \Leftrightarrow g^{-1}\sigma(g) \in K \begin{bmatrix} \epsilon^{\mu_1} & 0 \\ 0 & \epsilon^{\mu_2} \end{bmatrix} K.$$

Taking determinants, the above implies

$$\epsilon^{\mu_1+\mu_2} \in \det(g^{-1}\sigma(g))\mathcal{O}_x = \mathcal{O}_x^\times,$$

and thus $\mu_1 + \mu_2 = 0$.
It is instructive to prove that non-emptiness implies $\mu_1 + \mu_2 = 0$.

Let $\Lambda_0 = \mathcal{O}e_1 \oplus \mathcal{O}e_2$. Let $K = \text{GL}_2(\mathcal{O}) = \text{Stab}_{\text{GL}_2(L)}(\Lambda_0)$.

Write $\Lambda = g\Lambda_0$ for $g \in \text{GL}_2(L)$.

Theory of elementary divisors implies

$$\Lambda \in X^{\text{GL}_2}(1) \iff g^{-1}\sigma(g) \in K \begin{bmatrix} \epsilon^{\mu_1} & 0 \\ 0 & \epsilon^{\mu_2} \end{bmatrix} K.$$

Taking determinants, the above implies

$$\epsilon^{\mu_1 + \mu_2} \in \text{det}(g^{-1}\sigma(g))\mathcal{O}^\times = \mathcal{O}^\times,$$

and thus $\mu_1 + \mu_2 = 0$.
It is instructive to prove that non-emptiness implies $\mu_1 + \mu_2 = 0$.

Let $\Lambda_0 = \mathcal{O}e_1 \oplus \mathcal{O}e_2$. Let $K = \text{GL}_2(\mathcal{O}) = \text{Stab}_{\text{GL}_2(L)}(\Lambda_0)$.

Write $\Lambda = g\Lambda_0$ for $g \in \text{GL}_2(L)$.

Theory of elementary divisors implies

$$\Lambda \in X_{\mu}^{\text{GL}_2}(1) \iff g^{-1}\sigma(g) \in K \begin{bmatrix} \epsilon^{\mu_1} & 0 \\ 0 & \epsilon^{\mu_2} \end{bmatrix} K.$$

Taking determinants, the above implies

$$\epsilon^{\mu_1 + \mu_2} \in \det(g^{-1}\sigma(g))\mathcal{O}^\times = \mathcal{O}^\times,$$

and thus $\mu_1 + \mu_2 = 0$.
It is instructive to prove that non-emptiness implies $\mu_1 + \mu_2 = 0$.

Let $\Lambda_0 = \mathcal{O}e_1 \oplus \mathcal{O}e_2$. Let $K = \text{GL}_2(\mathcal{O}) = \text{Stab}_{\text{GL}_2(L)}(\Lambda_0)$.

Write $\Lambda = g\Lambda_0$ for $g \in \text{GL}_2(L)$.

Theory of elementary divisors implies

$$\Lambda \in X_{\mu}^{\text{GL}_2}(1) \Leftrightarrow g^{-1}\sigma(g) \in K \begin{bmatrix} \epsilon^{\mu_1} & 0 \\ 0 & \epsilon^{\mu_2} \end{bmatrix} K.$$

Taking determinants, the above implies

$$\epsilon^{\mu_1 + \mu_2} \in \det(g^{-1}\sigma(g))\mathcal{O}^\times = \mathcal{O}^\times,$$

and thus $\mu_1 + \mu_2 = 0$.
ADLVs for general G

- Let G denote a (split) connected reductive group, and put $K = G(O)$.
- Examples: GL_n, SL_n, $SO(n)$, $Sp(2n)$, G_2, E_8, etc.
- The analog of $\mu = (\mu_1, \ldots, \mu_2) \in \mathbb{Z}^n$, with $\mu_1 \geq \cdots \geq \mu_n$ is a dominant cocharacter $\mu : \mathbb{G}_m \to A$, for A a (split) maximal torus in G. Denote these by $X_\ast(A)_{\text{dom}}$.
- Cartan Decomposition: $G(L) = \bigsqcup_{\mu \in X_\ast(A)_{\text{dom}}} K \mu(\epsilon) K$.
- Define $X_\mu^G(b) = \{ gK \in G(L)/K \mid g^{-1}b\sigma(g) \in K\mu(\epsilon)K \}$.
- This is a locally closed, finite-dimensional subvariety of the affine Grassmannian $G'(L)/K$.
ADLVs for general G

- Let G denote a (split) connected reductive group, and put $K = G(\mathcal{O})$.
- Examples: GL_n, SL_n, $SO(n)$, $Sp(2n)$, G_2, E_8, etc.
- The analog of $\mu = (\mu_1, \ldots, \mu_2) \in \mathbb{Z}^n$, with $\mu_1 \geq \cdots \geq \mu_n$ is a dominant cocharacter $\mu : \mathbb{G}_m \rightarrow A$, for A a (split) maximal torus in G. Denote these by $X^*_{\text{dom}}(A)$.
- Cartan Decomposition: $G(L) = \bigsqcup_{\mu \in X^*_{\text{dom}}(A)} K\mu(\epsilon)K$.
- Define $X^G_\mu(b) = \{gK \in G(L)/K \mid g^{-1}b\sigma(g) \in K\mu(\epsilon)K\}$.
- This is a locally closed, finite-dimensional subvariety of the affine Grassmannian $G'(L)/K$.

Thomas J. Haines
Survey of Affine Deligne-Lusztig Varieties
ADLVs for general G

- Let G denote a (split) connected reductive group, and put $K = G(\mathcal{O})$.
- Examples: GL_n, SL_n, $\text{SO}(n)$, $\text{Sp}(2n)$, G_2, E_8, etc.
- The analog of $\mu = (\mu_1, \ldots, \mu_2) \in \mathbb{Z}^n$, with $\mu_1 \geq \cdots \geq \mu_n$ is a dominant cocharacter $\mu : \mathbb{G}_m \to A$, for A a (split) maximal torus in G. Denote these by $X_\ast(A)_{\text{dom}}$.
- **Cartan Decomposition:** $G(L) = \coprod_{\mu \in X_\ast(A)_{\text{dom}}} K\mu(\epsilon)K$.
- Define $X^G_\mu(b) = \{gK \in G(L)/K \mid g^{-1}b\sigma(g) \in K\mu(\epsilon)K\}$.
- This is a locally closed, finite-dimensional subvariety of the affine Grassmannian $G'(L)/K$.

ADLVs for general G

- Let G denote a (split) connected reductive group, and put $K = G(O)$.
- Examples: GL_n, SL_n, $\text{SO}(n)$, $\text{Sp}(2n)$, G_2, E_8, etc.
- The analog of $\mu = (\mu_1, \ldots, \mu_2) \in \mathbb{Z}^n$, with $\mu_1 \geq \cdots \geq \mu_n$ is a dominant cocharacter $\mu : \mathbb{G}_m \to A$, for A a (split) maximal torus in G. Denote these by $X_\ast(A)_{\text{dom}}$.
- **Cartan Decomposition:** $G(L) = \bigsqcup_{\mu \in X_\ast(A)_{\text{dom}}} K \mu(\epsilon) K$.
- Define $X^G_{\mu}(b) = \{gK \in G(L)/K \mid g^{-1}b\sigma(g) \in K \mu(\epsilon) K\}$.
- This is a locally closed, finite-dimensional subvariety of the affine Grassmannian $G'(L)/K$.
ADLVs for general G

- Let G denote a (split) connected reductive group, and put $K = G(\mathcal{O})$.
- Examples: GL_n, SL_n, $\text{SO}(n)$, $\text{Sp}(2n)$, G_2, E_8, etc.
- The analog of $\mu = (\mu_1, \ldots, \mu_2) \in \mathbb{Z}^n$, with $\mu_1 \geq \cdots \geq \mu_n$ is a dominant cocharacter $\mu : \mathbb{G}_m \to A$, for A a (split) maximal torus in G. Denote these by $X_*(A)_{\text{dom}}$.
- **Cartan Decomposition:** $G(L) = \bigsqcup_{\mu \in X_*(A)_{\text{dom}}} K \mu(\epsilon)K$.
- Define $X^G_\mu(b) = \{gK \in G(L)/K \mid g^{-1}b\sigma(g) \in K \mu(\epsilon)K\}$.
- This is a locally closed, finite-dimensional subvariety of the affine Grassmannian $G(L)/K$.

Thomas J. Haines
Survey of Affine Deligne-Lusztig Varieties
ADLVs for general G

- Let G denote a (split) connected reductive group, and put $K = G(O)$.
- Examples: GL_n, SL_n, $\text{SO}(n)$, $\text{Sp}(2n)$, G_2, E_8, etc.
- The analog of $\mu = (\mu_1, \ldots, \mu_2) \in \mathbb{Z}^n$, with $\mu_1 \geq \cdots \geq \mu_n$ is a dominant cocharacter $\mu : \mathbb{G}_m \to A$, for A a (split) maximal torus in G. Denote these by $X^*_\mu(A)_{\text{dom}}$.

Cartan Decomposition: $G(L) = \bigsqcup_{\mu \in X^*_\mu(A)_{\text{dom}}} K\mu(\epsilon)K$.

- Define $X^G_\mu(b) = \{gK \in G(L)/K \mid g^{-1}b\sigma(g) \in K\mu(\epsilon)K\}$.
- This is a locally closed, finite-dimensional subvariety of the **affine Grassmannian** $G(L)/K$.
Classical Deligne-Lusztig varieties

- Let $B \subset G$ be a Borel subgroup containing A, and let $W = N_G(A)/A$ be the Weyl group.
- **Bruhat Decomposition** $G = \coprod_{w \in W} BwB$, where $G = G(\overline{k})$ and $B = B(\overline{k})$ here.
- Define $X_w = \{gB \in G/B \mid g^{-1}\sigma(g) \in BwB\}$.
- This is a locally closed subvariety of the flag variety G/B which is non-empty, smooth, and has dimension equal to $\ell(w)$.
- Deligne and Lusztig introduced these and they are a crucial tool in the representation theory of the finite groups of Lie type, i.e., the finite groups $G(\mathbb{F}_q)$.

...
Classical Deligne-Lusztig varieties

- Let $B \subset G$ be a Borel subgroup containing A, and let $W = N_G(A)/A$ be the Weyl group.

- **Bruhat Decomposition** $G = \bigsqcup_{w \in W} BwB$, where $G = G(\overline{k})$ and $B = B(\overline{k})$ here.

- Define $X_w = \{gB \in G/B \mid g^{-1} \sigma(g) \in BwB\}$.

- This is a locally closed subvariety of the flag variety G/B which is non-empty, smooth, and has dimension equal to $\ell(w)$.

- Deligne and Lusztig introduced these and they are a crucial tool in the representation theory of the finite groups of Lie type, i.e., the finite groups $G(F_q)$.

Classical Deligne-Lusztig varieties

- Let $B \subset G$ be a Borel subgroup containing A, and let $W = N_G(A)/A$ be the Weyl group.

- **Bruhat Decomposition** $G = \bigsqcup_{w \in W} BwB$, where $G = G(\overline{k})$ and $B = B(\overline{k})$ here.

- Define $X_w = \{ gB \in G/B \mid g^{-1}\sigma(g) \in BwB \}$.

- This is a locally closed subvariety of the flag variety G/B which is non-empty, smooth, and has dimension equal to $\ell(w)$.

- Deligne and Lusztig introduced these and they are a crucial tool in the representation theory of the finite groups of Lie type, i.e., the finite groups $G(\mathbb{F}_q)$.
Classical Deligne-Lusztig varieties

- Let $B \subset G$ be a Borel subgroup containing A, and let $W = N_G(A)/A$ be the Weyl group.
- **Bruhat Decomposition** $G = \coprod_{w \in W} BwB$, where $G = G(\overline{k})$ and $B = B(\overline{k})$ here.
- Define $X_w = \{ gB \in G/B \mid g^{-1}\sigma(g) \in BwB \}$.
- This is a locally closed subvariety of the flag variety G/B which is **non-empty**, **smooth**, and has **dimension** equal to $\ell(w)$.
- Deligne and Lusztig introduced these and they are a crucial tool in the representation theory of the finite groups of Lie type, i.e., the finite groups $G(\mathbb{F}_q)$.
Classical Deligne-Lusztig varieties

- Let $B \subset G$ be a Borel subgroup containing A, and let $W = N_G(A)/A$ be the Weyl group.

- **Bruhat Decomposition** $G = \bigsqcup_{w \in W} BwB$, where $G = G(\overline{k})$ and $B = B(\overline{k})$ here.

- Define $X_w = \{ gB \in G/B \mid g^{-1}\sigma(g) \in BwB \}$.

- This is a locally closed subvariety of the flag variety G/B which is **non-empty**, **smooth**, and has **dimension** equal to $\ell(w)$.

- Deligne and Lusztig introduced these and they are a crucial tool in the representation theory of the finite groups of Lie type, i.e., the finite groups $G(\mathbb{F}_q)$.
Basic Questions about ADLVs

- (I) For which \((\mu, b)\) is \(X^G_\mu(b) \neq \emptyset\)?

- (II) If non-empty, is \(X^G_\mu(b)\) equidimensional, and is there a formula for its dimension?

- (III) What is the geometric structure of \(X^G_\mu(b)\) (irreducible components, singularities, etc.)?

The fact that \(X^G_\mu(b)\) can be empty should be contrasted with the classical case.

Also, there are many different "Frobenius elements" \(b_\sigma\) (in the classical case there is only one, so only \(b = 1\) appears).

ADLVs arise from Shimura varieties over finite fields and isocrystals with additional structure.
Basic Questions about ADLVs

- (I) For which (μ, b) is $X^G_\mu(b) \neq \emptyset$?
- (II) If non-empty, is $X^G_\mu(b)$ equidimensional, and is there a formula for its dimension?
- (III) What is the geometric structure of $X^G_\mu(b)$ (irreducible components, singularities, etc.)?

The fact that $X^G_\mu(b)$ can be empty should be contrasted with the classical case.

Also, there are many different "Frobenius elements" b_σ (in the classical case there is only one, so only $b = 1$ appears).

ADLVs arise from Shimura varieties over finite fields and isocrystals with additional structure.
Basic Questions about ADLVs

(I) For which (μ, b) is $X^G_{\mu}(b) \neq \emptyset$?

(II) If non-empty, is $X^G_{\mu}(b)$ equidimensional, and is there a formula for its dimension?

(III) What is the geometric structure of $X^G_{\mu}(b)$ (irreducible components, singularities, etc.)?

The fact that $X^G_{\mu}(b)$ can be empty should be contrasted with the classical case.

Also, there are many different "Frobenius elements" $b\sigma$ (in the classical case there is only one, so only $b = 1$ appears).

ADLVs arise from Shimura varieties over finite fields and isocrystals with additional structure.
Basic Questions about ADLVs

(I) For which \((\mu, b)\) is \(X^G_\mu(b) \neq \emptyset\)?

(II) If non-empty, is \(X^G_\mu(b)\) equidimensional, and is there a formula for its dimension?

(III) What is the geometric structure of \(X^G_\mu(b)\) (irreducible components, singularities, etc.)?

The fact that \(X^G_\mu(b)\) can be empty should be contrasted with the classical case.

Also, there are many different ”Frobenius elements” \(b_\sigma\) (in the classical case there is only one, so only \(b = 1\) appears).

ADLVs arise from Shimura varieties over finite fields and isocrystals with additional structure.
Basic Questions about ADLVs

(I) For which (μ, b) is $X^G_\mu(b) \neq \emptyset$?

(II) If non-empty, is $X^G_\mu(b)$ equidimensional, and is there a formula for its dimension?

(III) What is the geometric structure of $X^G_\mu(b)$ (irreducible components, singularities, etc.)?

The fact that $X^G_\mu(b)$ can be empty should be contrasted with the classical case.

Also, there are many different ”Frobenius elements” $b\sigma$ (in the classical case there is only one, so only $b = 1$ appears).

ADLVs arise from Shimura varieties over finite fields and isocrystals with additional structure.
Basic Questions about ADLVs

(I) For which (μ, b) is $X^G_\mu(b) \neq \emptyset$?

(II) If non-empty, is $X^G_\mu(b)$ equidimensional, and is there a formula for its dimension?

(III) What is the geometric structure of $X^G_\mu(b)$ (irreducible components, singularities, etc.)?

The fact that $X^G_\mu(b)$ can be empty should be contrasted with the classical case.

Also, there are many different "Frobenius elements" $b\sigma$ (in the classical case there is only one, so only $b = 1$ appears).

ADLVs arise from Shimura varieties over finite fields and isocrystals with additional structure.
Isocrystals

- **Usual context is** p-adic: $F = \mathbb{Q}_p$, $\mathcal{O}_F = \mathbb{Z}_p$, $L = \widehat{\mathbb{Q}}_{p}^{\text{un}}$, $\mathcal{O} = \text{ring of integers in } L$, $k = \mathbb{F}_p = \mathcal{O}_F/p\mathcal{O}_F$.

- σ is the Frobenius automorphism: either $x \mapsto x^p \in \text{Gal}(\overline{\mathbb{F}}_p/\mathbb{F}_p)$, or as the element of $\text{Gal}(L/F)$, defined by

$$
\sigma\left(\sum_{i \gg -\infty} a_ip^i\right) = \sum_{i \gg -\infty} a_ip^{p^i}.
$$

- An **isocrystal** is a pair (V, Φ), where V is a finite-dimensional L-vector space, and $\Phi : V \rightarrow V$ is a σ-linear bijection:

$$
\Phi(\alpha v) = \sigma(\alpha)\Phi(v), \quad \forall v \in V, \quad \alpha \in L.
$$

- If V_0 is an F-vector space and $V = V_0 \otimes_F L$, then all (V, Φ) are of form $(V, b(1 \otimes \sigma))$, for $b \in \text{GL}(V) = \text{GL}_n(L)$.
Isocrystals

- Usual context is p-adic: $F = \mathbb{Q}_p$, $\mathcal{O}_F = \mathbb{Z}_p$, $L = \hat{\mathbb{Q}}_{un}$, $\mathcal{O} =$ ring of integers in L, $k = \mathbb{F}_p = \mathcal{O}_F/p\mathcal{O}_F$.

- σ is the Frobenius automorphism: either $x \mapsto x^p \in \text{Gal}(\overline{\mathbb{F}}_p/\mathbb{F}_p)$, or as the element of $\text{Gal}(L/F)$, defined by

$$
\sigma\left(\sum_{i \gg -\infty} a_ip^i \right) = \sum_{i \gg -\infty} a_i^p p^i.
$$

- An isocrystal is a pair (V, Φ), where V is a finite-dimensional L-vector space, and $\Phi : V \rightarrow V$ is a σ-linear bijection:

$$
\Phi(\alpha v) = \sigma(\alpha)\Phi(v), \quad \forall v \in V, \quad \alpha \in L.
$$

- If V_0 is an F-vector space and $V = V_0 \otimes_F L$, then all (V, Φ) are of form $(V, b(1 \otimes \sigma))$, for $b \in \text{GL}(V) = \text{GL}_n(L)$.

Isocrystals

- Usual context is p-adic: $F = \mathbb{Q}_p$, $\mathcal{O}_F = \mathbb{Z}_p$, $L = \widehat{\mathbb{Q}}^{\text{un}}$, $\mathcal{O} =$ ring of integers in L, $k = \mathbb{F}_p = \mathcal{O}_F/p\mathcal{O}_F$.

- σ is the Frobenius automorphism: either $x \mapsto x^p \in \text{Gal}(\overline{\mathbb{F}}_p/\mathbb{F}_p)$, or as the element of $\text{Gal}(L/F)$, defined by

 $$\sigma\left(\sum_{i \gg -\infty} a_ip^i\right) = \sum_{i \gg -\infty} a_ip^{ip}.$$

- An isocrystal is a pair (V, Φ), where V is a finite-dimensional L-vector space, and $\Phi : V \to V$ is a σ-linear bijection:

 $$\Phi(\alpha v) = \sigma(\alpha)\Phi(v), \quad \forall v \in V, \quad \alpha \in L.$$

- If V_0 is an F-vector space and $V = V_0 \otimes_F L$, then all (V, Φ) are of form $(V, b(1 \otimes \sigma))$, for $b \in \text{GL}(V) = \text{GL}_n(L)$.
Isocrystals

- Usual context is p-adic: $F = \mathbb{Q}_p$, $O_F = \mathbb{Z}_p$, $L = \hat{\mathbb{Q}}_p^{un}$, $O = \text{ring of integers in } L$, $k = \mathbb{F}_p = O_F/pO_F$.

- σ is the Frobenius automorphism: either $x \mapsto x^p \in \text{Gal}(\overline{\mathbb{F}_p}/\mathbb{F}_p)$, or as the element of $\text{Gal}(L/F)$, defined by

$$\sigma\left(\sum_{i \gg -\infty} a_i p^i\right) = \sum_{i \gg -\infty} a_i^p p^i.$$

- An isocrystal is a pair (V, Φ), where V is a finite-dimensional L-vector space, and $\Phi : V \rightarrow V$ is a σ-linear bijection:

$$\Phi(\alpha v) = \sigma(\alpha)\Phi(v), \quad \forall v \in V, \quad \alpha \in L.$$

- If V_0 is an F-vector space and $V = V_0 \otimes_F L$, then all (V, Φ) are of form $(V, b(1 \otimes \sigma))$, for $b \in \text{GL}(V) = \text{GL}_n(L)$.
Dieudonne’s classification of isocrystals

Dieudonne proved that the category of isocrystals is abelian and semi-simple. The simple objects, parametrized by $\lambda = r/s \in \mathbb{Q}$, are of form

$$V_\lambda := (L^s, b_{r,s}\sigma)$$

where

$$b_{r,s} = \begin{bmatrix} 0 & 1 & & \\ & \ddots & \ddots & \\ & & 0 & 1 \\ p^r & & & 0 \end{bmatrix} \in \text{GL}_s(L).$$

- The s-tuple $(r/s, \cdots, r/s)$ is called the Newton vector of V_λ.
- Any (V, Φ) has a Newton vector $\bar{\nu}(V, \Phi) = (\lambda_1, \lambda_2, \ldots, \lambda_n) \in \mathbb{Q}^n_{\text{dom}}$ by decomposing (V, Φ) as a sum of simple objects and stringing together all the Newton vectors of the simple objects, in non-increasing order.
- Given $b \in GL(V)(L)$, define its Newton point $\bar{\nu}_b \in \mathbb{Q}^n_{\text{dom}}$ to be the Newton vector of the isocrystal $(L^n, b\sigma)$.
Dieudonne’s classification of isocrystals

- Dieudonne proved that the category of isocrystals is abelian and semi-simple. The simple objects, parametrized by $\lambda = r/s \in \mathbb{Q}$, are of form

$$V_{\lambda} := (L^s, b_{r,s}\sigma)$$

where

$$b_{r,s} = \begin{bmatrix} 0 & 1 & & & \\ & \ddots & \ddots & & \\ & & 0 & 1 & \\ p^r & & & 0 \end{bmatrix} \in \text{GL}_s(L).$$

- The s-tuple $(r/s, \cdots, r/s)$ is called the Newton vector of V_{λ}.
- Any (V, Φ) has a Newton vector $\nu(V, \Phi) = (\lambda_1, \lambda_2, \ldots, \lambda_n) \in \mathbb{Q}^n_{\text{dom}}$ by decomposing (V, Φ) as a sum of simple objects and stringing together all the Newton vectors of the simple objects, in non-increasing order.
- Given $b \in GL(V)(L)$, define its Newton point $\nu_b \in \mathbb{Q}^n_{\text{dom}}$ to be the Newton vector of the isocrystal $(L^n, b\sigma)$.

Thomas J. Haines

Survey of Affine Deligne-Lusztig Varieties
Dieudonne’s classification of isocrystals

- Dieudonne proved that the category of isocrystals is abelian and semi-simple. The simple objects, parametrized by \(\lambda = r/s \in \mathbb{Q} \), are of form

\[
V_\lambda := (L^s, b_{r,s}\sigma)
\]

where

\[
b_{r,s} = \begin{bmatrix}
0 & 1 & \cdots & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
p^r & 0 & 1 \\
0 & \cdots & \cdots & \cdots & \cdots \\
\end{bmatrix} \in \text{GL}_s(L).
\]

- The \(s \)-tuple \((r/s, \cdots, r/s)\) is called the Newton vector of \(V_\lambda \).

- Any \((V, \Phi)\) has a Newton vector \(\nu(V, \Phi) = (\lambda_1, \lambda_2, \ldots, \lambda_n) \in \mathbb{Q}^n_{\text{dom}} \) by decomposing \((V, \Phi)\) as a sum of simple objects and stringing together all the Newton vectors of the simple objects, in non-increasing order.

- Given \(b \in GL(V)(L) \), define its Newton point \(\nu_b \in \mathbb{Q}^n_{\text{dom}} \) to be the Newton vector of the isocrytal \((L^n, b\sigma)\).
Dieudonné’s classification of isocrystals

- Dieudonné proved that the category of isocrystals is abelian and semi-simple. The simple objects, parametrized by $\lambda = r/s \in \mathbb{Q}$, are of form

\[V_\lambda := (L^s, b_{r,s} \sigma) \]

where

\[b_{r,s} = \begin{bmatrix}
0 & 1 \\
\vdots & \ddots & \ddots \\
0 & 1 \\
p^r & 0 & \cdots & \cdots & 0
\end{bmatrix} \in \text{GL}_s(L). \]

- The s-tuple $(r/s, \ldots, r/s)$ is called the Newton vector of V_λ.

- Any (V, Φ) has a Newton vector $\bar{\nu}(V, \Phi) = (\lambda_1, \lambda_2, \ldots, \lambda_n) \in \mathbb{Q}_{\text{dom}}^n$ by decomposing (V, Φ) as a sum of simple objects and stringing together all the Newton vectors of the simple objects, in non-increasing order.

- Given $b \in GL(V)(L)$, define its **Newton point** $\bar{\nu}_b \in \mathbb{Q}_{\text{dom}}^n$ to be the Newton vector of the isocrystal $(L^n, b\sigma)$.
Elementary computation of Newton points

- $\overline{\nu}_b$ is unchanged if b is replaced with $g^{-1}b\sigma(g)$ (since isomorphism class of $(V, b\sigma)$ is unchanged).
- Therefore we can replace b with an element of form $\epsilon^\lambda w$, i.e., a monomial matrix in $\text{GL}_n(L)$.
- Let N be the order of the permutation matrix w. Then $\overline{\nu}_b$ is the unique dominant element in $\mathbb{Q}^n_{\text{dom}}$ which is some permutation of $\frac{1}{N} \sum_{i=0}^{N-1} w^i(\lambda)$.
- For general groups G, Kottwitz defined Newton points for $b \in G(L)$, and a similar result holds.
Elementary computation of Newton points

- $\bar{\nu}_b$ is unchanged if b is replaced with $g^{-1}b\sigma(g)$ (since isomorphism class of $(V, b\sigma)$ is unchanged).

- Therefore we can replace b with an element of form $\epsilon^\lambda w$, i.e., a monomial matrix in $\text{GL}_n(L)$.

- Let N be the order of the permutation matrix w. Then $\bar{\nu}_b$ is the unique dominant element in $\mathbb{Q}^n_{\text{dom}}$ which is some permutation of

$$\frac{1}{N} \sum_{i=0}^{N-1} w^i(\lambda).$$

- For general groups G, Kottwitz defined Newton points for $b \in G(L)$, and a similar result holds.
Elementary computation of Newton points

- $\overline{\nu}_b$ is unchanged if b is replaced with $g^{-1}b\sigma(g)$ (since isomorphism class of $(V, b\sigma)$ is unchanged).

- Therefore we can replace b with an element of form $\epsilon^\lambda w$, i.e., a monomial matrix in $\text{GL}_n(L)$.

- Let N be the order of the permutation matrix w. Then $\overline{\nu}_b$ is the unique dominant element in $\mathbb{Q}^n_{\text{dom}}$ which is some permutation of $\frac{1}{N} \sum_{i=0}^{N-1} w^i(\lambda)$.

- For general groups G, Kottwitz defined Newton points for $b \in G(L)$, and a similar result holds.
Elementary computation of Newton points

- $\bar{\nu}_b$ is unchanged if b is replaced with $g^{-1}b\sigma(g)$ (since isomorphism class of $(V, b\sigma)$ is unchanged).

- Therefore we can replace b with an element of form $\epsilon^\lambda w$, i.e., a monomial matrix in $GL_n(L)$.

- Let N be the order of the permutation matrix w. Then $\bar{\nu}_b$ is the unique dominant element in $\mathbb{Q}^n_{\text{dom}}$ which is some permutation of $\frac{1}{N} \sum_{i=0}^{N-1} w^i(\lambda)$.

- For general groups G, Kottwitz defined Newton points for $b \in G(L)$, and a similar result holds.
Mazur’s inequality and its converse

- For an \(O \)-lattice \(\Lambda \subset V \), define its **Hodge point** \(\mu = \mu(\Lambda) \in \mathbb{Z}^n_{\text{dom}} \) by \(\text{inv}(\Lambda, \Phi(\Lambda)) = \mu \). This makes sense even when \(\Phi(\Lambda) \not\subset \Lambda \).

- **Mazur’s inequality**: For every lattice \(\Lambda \subset V \), \(\mu(\Lambda) \geq \nu(V, \Phi) \).
 (This holds in either function-field or p-adic context.)

- That is, The Hodge polygon lies above the Newton polygon (with same endpoints).

- Gives a necessary condition for non-emptiness of \(X_{\mu}^{GL_n}(b) \).

- Question: does the converse of Mazur’s \(\leq \) hold? That is, given \(\mu \geq \nu(V, \Phi) \), does there exist a lattice \(\Lambda \in V \) whose Hodge point is \(\mu \)?

- The answer is yes (Kottwitz-Rapoport). In other words \(X_{\mu}^{GL_n}(b) \neq \emptyset \) iff \(\nu_b \geq \mu \).
Mazur’s inequality and its converse

- For an \mathcal{O}-lattice $\Lambda \subset V$, define its **Hodge point** $\mu = \mu(\Lambda) \in \mathbb{Z}^n_{\text{dom}}$ by $\text{inv}(\Lambda, \Phi(\Lambda)) = \mu$. This makes sense even when $\Phi(\Lambda) \notin \Lambda$.

- **Mazur’s inequality**: For every lattice $\Lambda \subset V$, $\mu(\Lambda) \geq \nu(V, \Phi)$. (This holds in either function-field or p-adic context.)

- That is, The Hodge polygon lies above the Newton polygon (with same endpoints).

- Gives a necessary condition for non-emptiness of $X_{\mu}^{\text{GL}_n}(b)$.

- Question: does the converse of Mazur’s \leq hold? That is, given $\mu \geq \nu(V, \Phi)$, does there exist a lattice $\Lambda \in V$ whose Hodge point is μ?

- The answer is yes (Kottwitz-Rapoport). In other words $X_{\mu}^{\text{GL}_n}(b) \neq \emptyset$ iff $\nu_b \geq \mu$.
Mazur’s inequality and its converse

- For an \mathcal{O}-lattice $\Lambda \subset V$, define its Hodge point $\mu = \mu(\Lambda) \in \mathbb{Z}^n_{\text{dom}}$ by $\text{inv}(\Lambda, \Phi(\Lambda)) = \mu$. This makes sense even when $\Phi(\Lambda) \not\subset \Lambda$.

- **Mazur’s inequality**: For every lattice $\Lambda \subset V$, $\mu(\Lambda) \geq \bar{\nu}(V, \Phi)$.
 (This holds in either function-field or p-adic context.)

- That is, The Hodge polygon lies above the Newton polygon (with same endpoints).

- Gives a necessary condition for non-emptiness of $X^\text{GL}_n(\mu)(b)$.

- Question: does the converse of Mazur’s \leq hold? That is, given $\mu \geq \bar{\nu}(V, \Phi)$, does there exist a lattice $\Lambda \subset V$ whose Hodge point is μ?

- The answer is yes (Kottwitz-Rapoport). In other words $X^\text{GL}_n(\mu)(b) \neq \emptyset$ iff $\bar{\nu}_b \geq \mu$.
Mazur’s inequality and its converse

- For an \mathcal{O}-lattice $\Lambda \subset V$, define its **Hodge point** $\mu = \mu(\Lambda) \in \mathbb{Z}^n_{\text{dom}}$ by $\text{inv}(\Lambda, \Phi(\Lambda)) = \mu$. This makes sense even when $\Phi(\Lambda) \not\subset \Lambda$.
- **Mazur’s inequality**: For every lattice $\Lambda \subset V$, $\mu(\Lambda) \geq \nu(V, \Phi)$. (This holds in either function-field or p-adic context.)
- That is, **The Hodge polygon lies above the Newton polygon (with same endpoints)**.
 - Gives a necessary condition for non-emptiness of $X_{\mu}^{GL_n}(b)$.
 - Question: does the converse of Mazur’s \leq hold? That is, given $\mu \geq \nu(V, \Phi)$, does there exist a lattice $\Lambda \subset V$ whose Hodge point is μ?
 - The answer is yes (Kottwitz-Rapoport). In other words $X_{\mu}^{GL_n}(b) \neq \emptyset$ iff $\nu_b \geq \mu$.
Mazur’s inequality and its converse

- For an \(\mathcal{O} \)-lattice \(\Lambda \subset V \), define its **Hodge point** \(\mu = \mu(\Lambda) \in \mathbb{Z}_{\text{dom}}^n \) by \(\text{inv}(\Lambda, \Phi(\Lambda)) = \mu \). This makes sense even when \(\Phi(\Lambda) \not\subset \Lambda \).

- **Mazur’s inequality**: For every lattice \(\Lambda \subset V \), \(\mu(\Lambda) \geq \bar{\nu}(V, \Phi) \).
 (This holds in either function-field or p-adic context.)

- That is, **The Hodge polygon lies above the Newton polygon (with same endpoints)**.

- Gives a necessary condition for non-emptiness of \(X_{\mu}^{\text{GL}_n}(b) \).

- Question: does the converse of Mazur’s \(\leq \) hold? That is, given \(\mu \geq \bar{\nu}(V, \Phi) \), does there exist a lattice \(\Lambda \in V \) whose Hodge point is \(\mu \)?

- The answer is yes (Kottwitz-Rapoport). In other words \(X_{\mu}^{\text{GL}_n}(b) \neq \emptyset \) iff \(\bar{\nu}_b \geq \mu \).
Mazur’s inequality and its converse

- For an O-lattice $\Lambda \subset V$, define its **Hodge point** $\mu = \mu(\Lambda) \in \mathbb{Z}_\text{dom}^n$ by $\text{inv}(\Lambda, \Phi(\Lambda)) = \mu$. This makes sense even when $\Phi(\Lambda) \not\subset \Lambda$.

- **Mazur’s inequality**: For every lattice $\Lambda \subset V$, $\mu(\Lambda) \geq \overline{\nu}(V, \Phi)$.
 (This holds in either function-field or p-adic context.)

- That is, The Hodge polygon lies above the Newton polygon (with same endpoints).

- Gives a necessary condition for non-emptiness of $X_{\mu}^{\text{GL}_n}(b)$.

- **Question**: does the converse of Mazur’s \leq hold? That is, given $\mu \geq \overline{\nu}(V, \Phi)$, does there exist a lattice $\Lambda \in V$ whose Hodge point is μ?

- The answer is yes (Kottwitz-Rapoport). In other words $X_{\mu}^{\text{GL}_n}(b) \neq \emptyset$ iff $\overline{\nu}_b \geq \mu$.
Mazur’s inequality and its converse

- For an \mathcal{O}-lattice $\Lambda \subset V$, define its **Hodge point** $\mu = \mu(\Lambda) \in \mathbb{Z}_\text{dom}^n$ by $\text{inv}(\Lambda, \Phi(\Lambda)) = \mu$. This makes sense even when $\Phi(\Lambda) \not\subset \Lambda$.

- **Mazur’s inequality:** For every lattice $\Lambda \subset V$, $\mu(\Lambda) \geq \nu(V, \Phi)$. (This holds in either function-field or p-adic context.)

- That is, The **Hodge polygon lies above the Newton polygon (with same endpoints).**

- Gives a necessary condition for non-emptiness of $X_{\mu}^{GL_n}(b)$.

- Question: does the converse of Mazur’s \leq hold? That is, given $\mu \geq \nu(V, \Phi)$, does there exist a lattice $\Lambda \in V$ whose Hodge point is μ?

- The answer is yes (Kottwitz-Rapoport). In other words $X_{\mu}^{GL_n}(b) \neq \emptyset$ iff $\nu_b \geq \mu$.
Newton and Hodge Polygons

Example

\[(1, 1, 0, 0, 0) \geq (\frac{1}{2}, \frac{1}{2}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3})\]
Mazur inequality and non-emptiness in general

- For general G, Kottwitz defined notions of G-isocrystal, and also the **Newton point** $\bar{\nu}_b \in X_*(A)_{\mathbb{Q}, \text{dom}}$ for $b \in G(L)$.

- The inequality $\mu \geq \bar{\nu}_b$ now is for usual dominance order on $X_*(A)_{\mathbb{R}, \text{dom}}$.

Theorem

$$X^G_\mu(b) \neq \emptyset \iff \mu \geq \bar{\nu}_b.$$
Mazur inequality and non-emptiness in general

- For general G, Kottwitz defined notions of G-isocrystal, and also the **Newton point** $\bar{\nu}_b \in X_*(A)_{\mathbb{Q},\text{dom}}$ for $b \in G(L)$.
- The inequality $\mu \geq \bar{\nu}_b$ now is for usual dominance order on $X_*(A)_{\mathbb{R},\text{dom}}$.

Theorem

$$X^G_\mu(b) \neq \emptyset \iff \mu \geq \bar{\nu}_b.$$

- Kottwitz-Rapoport (GL$_n$ and GSp$_{2n}$ and reduced general case to problem on root systems), C. Lucarelli (split classical groups), Q. Gashi (general split groups).
- Other special cases handled by Fontaine-Rapoport, and Wintenberger.
- Upshot: We know exactly when ADLVs in any affine Grassmannian are non-empty.
Mazur inequality and non-emptiness in general

- For general G, Kottwitz defined notions of G-isocrystal, and also the **Newton point** $\bar{\nu}_b \in X_*(A)_{\mathbb{Q},\text{dom}}$ for $b \in G(L)$.
- The inequality $\mu \geq \bar{\nu}_b$ now is for usual dominance order on $X_*(A)_{\mathbb{R},\text{dom}}$.

Theorem

$X^G_\mu(b) \neq \emptyset \iff \mu \geq \bar{\nu}_b$.

- Kottwitz-Rapoport (GL_n and GSp_{2n} and reduced general case to problem on root systems), C. Lucarelli (split classical groups), Q. Gashi (general split groups).
- Other special cases handled by Fontaine-Rapoport, and Wintenberger.
- Upshot: We know exactly when ADLVs in any affine Grassmannian are non-empty.

Thomas J. Haines
Survey of Affine Deligne-Lusztig Varieties
Mazur inequality and non-emptiness in general

- For general G, Kottwitz defined notions of G-isocrystal, and also the **Newton point** $\bar{\nu}_b \in X_*(A)_{\mathbb{Q}, \text{dom}}$ for $b \in G(L)$.
- The inequality $\mu \geq \bar{\nu}_b$ now is for usual dominance order on $X_*(A)_{\mathbb{R}, \text{dom}}$.

Theorem

\[X^G_\mu(b) \neq \emptyset \iff \mu \geq \bar{\nu}_b. \]

- Kottwitz-Rapoport (GL_n and GSp_{2n} and reduced general case to problem on root systems), C. Lucarelli (split classical groups), Q. Gashi (general split groups).
- Other special cases handled by Fontaine-Rapoport, and Wintenberger.
- Upshot: We know exactly when ADLVs in any affine Grassmannian are non-empty.
Mazur inequality and non-emptiness in general

- For general G, Kottwitz defined notions of G-isocrystal, and also the **Newton point** $\bar{\nu}_b \in X_*(A)_{\mathbb{Q},\text{dom}}$ for $b \in G(L)$.
- The inequality $\mu \geq \bar{\nu}_b$ now is for usual dominance order on $X_*(A)_{\mathbb{R},\text{dom}}$.

Theorem

$$X_{\mu}^G(b) \neq \emptyset \iff \mu \geq \bar{\nu}_b.$$

- Kottwitz-Rapoport (GL_n and GSp_{2n} and reduced general case to problem on root systems), C. Lucarelli (split classical groups), Q. Gashi (general split groups).
- Other special cases handled by Fontaine-Rapoport, and Wintenberger.
- Upshot: We know exactly when ADLVs in any affine Grassmannian are non-empty.
Mazur inequality and non-emptiness in general

- For general G, Kottwitz defined notions of G-isocrystal, and also the Newton point $\bar{\nu}_b \in X_*(A)_{\mathbb{Q},\text{dom}}$ for $b \in G(L)$.
- The inequality $\mu \geq \bar{\nu}_b$ now is for usual dominance order on $X_*(A)_{\mathbb{R},\text{dom}}$.

Theorem

$$X^G_\mu (b) \neq \emptyset \iff \mu \geq \bar{\nu}_b.$$

- Kottwitz-Rapoport (GL_n and GSp_{2n} and reduced general case to problem on root systems), C. Lucarelli (split classical groups), Q. Gashi (general split groups).
- Other special cases handled by Fontaine-Rapoport, and Wintenberger.
- Upshot: We know exactly when ADLVs in any affine Grassmannian are non-empty.
Application of G-isocrystals: moduli of abelian varieties over \overline{k}

- Dieudonné: every polarized n-dim'lk abelian variety \mathcal{A} over \overline{k} gives rise to a GSp_{2n}-isocrystal $(L^{2n}, b\sigma)$. The Newton point $\overline{\nu}_b$ is therefore an invariant of \mathcal{A}.

- Define the **Newton stratum** \mathcal{S}_b in the moduli space of all \mathcal{A} to consist of those \mathcal{A} with fixed Newton point $\overline{\nu}_b$.

- Examples: ordinary abelian varieties form a single Newton stratum (which is open and dense in the moduli space). Supersingular AVs form another Newton stratum.
Application of G-isocrystals: moduli of abelian varieties over \bar{k}

- Dieudonné: every polarized n-dim'l abelian variety \mathcal{A} over \bar{k} gives rise to a GSp_{2n}-isocrystal $(L^{2n}, b\sigma)$. The Newton point $\bar{\nu}_b$ is therefore an invariant of \mathcal{A}.

- Define the **Newton stratum** S_b in the moduli space of all \mathcal{A} to consist of those \mathcal{A} with fixed Newton point $\bar{\nu}_b$.

- Examples: ordinary abelian varieties form a single Newton stratum (which is open and dense in the moduli space). Supersingular AVs form another Newton stratum.
Application of G-isocrystals: moduli of abelian varieties over \overline{k}

- Dieudonné: every polarized n-dim‘l abelian variety A over \overline{k} gives rise to a GSp_{2n}-isocrystal $(L^{2n}, b\sigma)$. The Newton point $\overline{\nu}_b$ is therefore an invariant of A.

- Define the **Newton stratum** S_b in the moduli space of all A to consist of those A with fixed Newton point $\overline{\nu}_b$.

- Examples: ordinary abelian varieties form a single Newton stratum (which is open and dense in the moduli space). Supersingular AVs form another Newton stratum.
What about \(\dim X_{\mu}^G(b) \)?

Theorem (GHKR + Viehmann)

If \(X_{\mu}^G(b) \neq \emptyset \), then

\[
\dim X_{\mu}^G(b) = \langle \rho, \mu - \nu_b \rangle - \frac{1}{2}(\text{rk}_F G - \text{rk}_F J_b).
\]

We write \(\text{def}_G(b) := \text{rk}_F G - \text{rk}_F J_b \).
Remarks

- $J_b(F) = \{ g \in G(L) \mid g^{-1}b\sigma(g) = b \}$.
- Conjectured by Rapoport, who pointed out the similarity with Chai’s conjecture.
- In particular, if $b = 1$, get $\dim X^G_{\mu}(1) = \langle \rho, \mu \rangle$ (cf. GL$_2$ example).
- After some work, Chai’s conjecture takes the form surprising form

$$\dim(S_b) = \langle \rho, \mu + \bar{\nu}_b \rangle - \frac{1}{2}(\text{rk}_FG - \text{rk}_FJ_b),$$

where $\mu = (1^n, 0^n)$, a cocharacter for GSp$_{2n}$. There is a geometric reason for this similarity.
- $X^G_{\mu}(b)$ is conjectured to be equidimensional. This is proved when $b \in A(L)$ [GHKR] and when b is "basic" [Hartl-Viehmann].
Remarks

- $J_b(F) = \{ g \in G(L) \mid g^{-1} b \sigma(g) = b \}$.
- Conjectured by Rapoport, who pointed out the similarity with Chai's conjecture.
 - In particular, if $b = 1$, get $\dim X^G_{\mu}(1) = \langle \rho, \mu \rangle$ (cf. GL$_2$ example).
 - After some work, Chai's conjecture takes the form surprising form
 \[
 \dim(S_b) = \langle \rho, \mu + \nu_b \rangle - \frac{1}{2}(\text{rk}_F G - \text{rk}_F J_b),
 \]
 where $\mu = (1^n, 0^n)$, a cocharacter for GSp$_{2n}$. There is a geometric reason for this similarity.
- $X^G_{\mu}(b)$ is conjectured to be equidimensional. This is proved when $b \in A(L)$ [GHKR] and when b is "basic" [Hartl-Viehmann].
Remarks

- $J_b(F) = \{ g \in G(L) \mid g^{-1}b\sigma(g) = b \}$.
- Conjectured by Rapoport, who pointed out the similarity with Chai’s conjecture.
- In particular, if $b = 1$, get $\dim X^G_\mu(1) = \langle \rho, \mu \rangle$ (cf. GL$_2$ example).
- After some work, Chai’s conjecture takes the form surprising form

$$\dim(S_b) = \langle \rho, \mu + \nu_b \rangle - \frac{1}{2}(\text{rk}_F G - \text{rk}_F J_b),$$

where $\mu = (1^n, 0^n)$, a cocharacter for GSp$_{2n}$. There is a geometric reason for this similarity.

- $X^G_\mu(b)$ is conjectured to be equidimensional. This is proved when $b \in A(L)$ [GHKR] and when b is ”basic” [Hartl-Viehmann].
Remarks

- \(J_b(F) = \{ g \in G(L) \mid g^{-1}b\sigma(g) = b \} \).
- Conjectured by Rapoport, who pointed out the similarity with Chai's conjecture.
- In particular, if \(b = 1 \), get \(\dim X^G_{\mu}(1) = \langle \rho, \mu \rangle \) (cf. GL\(_2\) example).
- After some work, Chai's conjecture takes the form surprising form

\[
\dim(S_b) = \langle \rho, \mu + \bar{\nu}_b \rangle - \frac{1}{2} (\text{rk}_F G - \text{rk}_F J_b),
\]

where \(\mu = (1^n, 0^n) \), a cocharacter for GSp\(_{2n}\). There is a geometric reason for this similarity.

- \(X^G_\mu(b) \) is conjectured to be equidimensional. This is proved when \(b \in A(L) \) [GHKR] and when \(b \) is "basic" [Hartl-Viehmann].
Remarks

- $J_b(F) = \{ g \in G(L) \mid g^{-1}b\sigma(g) = b \}$.
- Conjectured by Rapoport, who pointed out the similarity with Chai's conjecture.
- In particular, if $b = 1$, get $\dim X^G_{\mu}(1) = \langle \rho, \mu \rangle$ (cf. GL$_2$ example).
- After some work, **Chai's conjecture** takes the form surprising form
 \[
 \dim(S_b) = \langle \rho, \mu + \overline{\nu}_b \rangle - \frac{1}{2}(\text{rk}_F G - \text{rk}_F J_b),
 \]
 where $\mu = (1^n, 0^n)$, a cocharacter for GSp$_{2n}$. There is a geometric reason for this similarity.
- $X^G_{\mu}(b)$ is conjectured to be equidimensional. This is proved when $b \in A(L)$ [GHKR] and when b is "basic" [Hartl-Viehmann].
ADLVs in the affine flag variety

- Let $I \subset G(L)$ be an Iwahori subgroup, and call $G(L)/I$ the affine flag variety.

- $I\backslash G(L)/I = \tilde{W} = X_*(A) \rtimes W$.

- For $x \in \tilde{W}$ and $b \in G(L)$, define

$$X_{x}^{G}(b) = \{gI \in G(L)/I \mid g^{-1}b\sigma(g) \in IxI\}.$$

Questions: When are $X_{x}^{G}(b) \neq \emptyset$? Are they equidimensional? Is there a formula for the dimensions?

- Much less is known, but progress has been made.

- The following picture shows the dimensions of ADLVs for $G = G_2$, $b = 1$.

Thomas J. Haines
Survey of Affine Deligne-Lusztig Varieties
ADLVs in the affine flag variety

- Let $I \subset G(L)$ be an Iwahori subgroup, and call $G(L)/I$ the **affine flag variety**.
- $I \backslash G(L)/I = \widehat{W} = X_*(A) \rtimes W$.
- For $x \in \widehat{W}$ and $b \in G(L)$, define

$$X^G_x(b) = \{gI \in G(L)/I \mid g^{-1}b\sigma(g) \in IxI\}.$$

Questions: When are $X^G_x(b) \neq \emptyset$? Are they equidimensional? Is there a formula for the dimensions?

- Much less is known, but progress has been made.
- The following picture shows the dimensions of ADLVs for $G = G_2, b = 1$.
ADLVs in the affine flag variety

- Let $I \subset G(L)$ be an Iwahori subgroup, and call $G(L)/I$ the affine flag variety.
- $I \backslash G(L)/I = \widetilde{W} = X_*(A) \rtimes W$.
- For $x \in \widetilde{W}$ and $b \in G(L)$, define

$$X^G_x(b) = \{ gI \in G(L)/I \mid g^{-1}b\sigma(g) \in IxI \}.$$

Questions: When are $X^G_x(b) \neq \emptyset$? Are they equidimensional? Is there a formula for the dimensions?

- Much less is known, but progress has been made.
- The following picture shows the dimensions of ADLVs for $G = G_2$, $b = 1$.

ADLVs in the affine flag variety

- Let $I \subset G(L)$ be an Iwahori subgroup, and call $G(L)/I$ the **affine flag variety**.
- $I \backslash G(L)/I = \widetilde{W} = X_*(A) \rtimes W$.
- For $x \in \widetilde{W}$ and $b \in G(L)$, define

$$X^G_x(b) = \{ gI \in G(L)/I \mid g^{-1}b\sigma(g) \in IxI \}.$$

Questions: When are $X^G_x(b) \neq \emptyset$? Are they equidimensional? Is there a formula for the dimensions?

- Much less is known, but progress has been made.
- The following picture shows the dimensions of ADLVs for $G = G_2$, $b = 1$.

A Question in σ-linear algebra

- Basic Questions about ADLVs
- Isocrystals and Mazur’s inequality
- Non-emptiness of ADLVs in the affine Grassmannian
- Dimensions of ADLVs in the affine Grassmannian
- ADLVs in the affine flag variety
ADLVs in the affine flag variety

- Let $I \subset G(L)$ be an Iwahori subgroup, and call $G(L)/I$ the **affine flag variety**.
- $I \backslash G(L)/I = \widetilde{W} = X_*(A) \rtimes W$.
- For $x \in \widetilde{W}$ and $b \in G(L)$, define
 \[X^G_x(b) = \{ gI \in G(L)/I \mid g^{-1}b\sigma(g) \in IxI \}. \]

Questions: When are $X^G_x(b) \neq \emptyset$? Are they equidimensional? Is there a formula for the dimensions?

- Much less is known, but progress has been made.
- The following picture shows the dimensions of ADLVs for $G = G_2$, $b = 1$.

Survey of Affine Deligne-Lusztig Varieties

Thomas J. Haines
ADLVs in the affine flag variety

- Let $I \subset G(L)$ be an Iwahori subgroup, and call $G(L)/I$ the affine flag variety.
- $I \backslash G(L)/I = \widetilde{W} = X_*(A) \rtimes W$.
- For $x \in \widetilde{W}$ and $b \in G(L)$, define

$$X^G_x(b) = \{ gI \in G(L)/I \mid g^{-1}b \sigma(g) \in IxI \}.$$

Questions: When are $X^G_x(b) \neq \emptyset$? Are they equidimensional? Is there a formula for the dimensions?

- Much less is known, but progress has been made.
- The following picture shows the dimensions of ADLVs for $G = G_2$, $b = 1$.

Thomas J. Haines
Survey of Affine Deligne-Lusztig Varieties
Some results

Theorem (GHKR)

(i) There is an algorithm, in terms of foldings in Bruhat-Tits building of $G(L)$, to compute $\dim X^G_x(b)$ for all $G, x,$ and b.

(ii) There is a conjectural (non-algorithmic) description of when $X^G_x(b)$ is empty, for b "basic", and we can prove emptiness occurs when predicted.

(iii) There is a conjectural formula for x "generic" and b "basic" which is supported by computer evidence: write $x = w_2 e^\lambda w_1 w_2^{-1}$, for $w_i \in W$ and $\lambda \in X_*(A)_{\text{dom}}$. Conjecture:

\[X_x(b) \neq \emptyset \iff w_1 \notin \bigcup_{T \subset S} W_T, \text{ in which case} \]

\[\dim X^G_x(b) = \frac{1}{2}(\ell(x) + \ell(w_1) - \text{def}_G(b)). \]