1. (a) (5 points) Let G be a finite group of order pq, where p and q are (not necessarily distinct) prime numbers. Prove that either G is abelian, or $Z(G) = 1$.

ANSWER: If $Z(G)$ has order p or q, then $G/Z(G)$ has prime order hence is cyclic. But then it follows that G is abelian, and thus $Z(G) = G$, a contradiction. So $Z(G)$ has order pq or 1.

(b) (5 points) In case $Z(G) = 1$, exhibit G as a semi-direct product of cyclic groups, and explain why this is not a direct product.

ANSWER: Let P denote a p-Sylow subgroup, and Q a q-Sylow subgroup. We must have, WLOG, $p < q$ (since if $p = q$, then G has order p^2 and then G would be abelian). But then the index of Q is the smallest prime dividing $|G|$, hence Q is normal in G. Since $Q \cap P = 1$, G is the (internal) semi-direct product $Q \rtimes P$. It can't be a direct product, because then G would be abelian.

2. Suppose $n \geq 2$.

(a) (5 points) Describe the conjugacy class of the element $(1 \ 2 \ \cdots \ n)$ in S_n. How many elements does it have?

ANSWER: The conjugacy class consists of all n-cycles. The number of n-cycles is $n!/n = (n - 1)!$.

(b) (5 points) Determine the centralizer of the element $(1 \ 2 \ \cdots \ n)$ in S_n.

ANSWER: Let C denote the centralizer of $\pi = (1 \ 2 \ \cdots \ n)$, and let K denote the conjugacy class of π. We know $|G|/|C| = |K|$, and so $|C| = n!/(n - 1)! = n$. Now C is a group of order n, which obviously contains $\langle \pi \rangle$, which is also of order n. Hence $C = \langle \pi \rangle$.

3. (10 points) Let $K = \mathbb{F}_q$, the finite field with q elements, and let $R = K[X]$. Up to isomorphism, how many R-modules V are there which satisfy $\dim_K V = 2$? Explain your answer.

ANSWER: Clearly V is a f.g. R-module, and R is a PID. Since $\dim_K V < \infty$, it is also clear that V is a torsion module. We use the classification of torsion R-modules. We either have $V = R/(a_1) \oplus R/(a_2)$ where $a_1|a_2$ are both monic polynomials in $\mathbb{F}_q[X]$ of degree one (hence $a_1 = a_2$), or $V = R/(a)$, where a is a monic polynomial in $\mathbb{F}_q[X]$ of degree 2. We count the polynomials in each case. For the first case, there are q possibilities. In the second case, there are q^2 possibilities. All together, we thus get $q + q^2$ modules.
4. Let R be a ring (commutative, with identity).
(a) (5 points) Suppose we have an exact sequence in the category R-Mod
\[0 \to M' \to M \to M'' \to 0 \]
where M' and M'' are Noetherian. Show that M is Noetherian.

ANSWER: Suppose $N \subseteq M$ is a submodule. Denote the map $M \to M''$ by ϕ. We know that $\phi(N)$ in M'' is finitely-generated: choose a finite set of generators for this image, and then choose lifts y_1, \ldots, y_r in N which map to those generators. Also, $N \cap M'$ is finitely-generated; choose generators x_1, \ldots, x_s for $N \cap M'$.

We claim (and this is enough to complete the proof) that N is generated by the finite set $\{ x_1, \ldots, x_s, y_1, \ldots, y_r \}$. Indeed, given $n \in N$ write $\phi(n) = a_1 \phi(y_1) + \cdots + a_r \phi(y_r)$ for certain $a_i \in R$. Then note that $n - \sum_i a_i y_i \in N \cap \ker \phi = N \cap M'$, so we can write $n - \sum_i a_i y_i = \sum_j b_j x_j$, for some $b_j \in R$. This proves the claim.

(b) (5 points) Suppose we have an R-module M equipped with a filtration by R-submodules
\[M = M_0 \supset M_1 \supset M_2 \supset \cdots \supset M_n = 0, \]
where M_i/M_{i+1} is a Noetherian R-module for each $i = 0, 1, \ldots, n - 1$. Prove that M is a Noetherian R-module.

ANSWER: We argue by induction on n. If $n = 0$, or $n = 1$, the result is obvious. Assume $n > 1$ and that the result holds for chains of length $n - 1$. Our induction hypothesis implies that M_1 is Noetherian. Applying (a) to the exact sequence
\[0 \to M_1 \to M_0 \to M_0/M_1 \to 0 \]
then shows that M_0 is also Noetherian, and we are done.

5. Let K denote a field.
(a) (5 points) Show that $K[X] \otimes_K K[Y] \cong K[X,Y]$ as K-algebras.

ANSWER: The map $f(X) \otimes g(Y) \mapsto f(X)g(Y)$ is a well-defined K-algebra homomorphism from $K[X] \otimes_K K[Y]$ to $K[X,Y]$. (I will omit the easy verification that this it is well-defined and a map of K-algebras). To see it is an isomorphism, it is enough to note that it sends the K-vector space basis element $X^i \otimes Y^j$ of $K[X] \otimes_K K[Y]$ to the K-vector space basis element X^iY^j of $K[X,Y]$ (the map is therefore an isomorphism of K-vector spaces, and in particular is one-to-one and onto).

(b) (5 points) Show that $K[X] \otimes_K K[Y]$ is a Noetherian ring. State in full any theorems you invoke.

ANSWER: By two applications of the Hilbert Basis Theorem, $K[X,Y] \cong K[X][Y]$ is Noetherian (since K is). Now use part (a) to finish.
6. (a) (5 points) Let \(R = \mathbb{Z}/6\mathbb{Z} \). Show that the \(R \)-module \(V = 3R \) is projective but not free.

ANSWER: From \(\mathbb{Z} = 2\mathbb{Z} \oplus 3\mathbb{Z} \) it follows easily that \(R = 2R \oplus 3R \). Since \(3R \) is a direct summand of a free \(R \)-module (\(R \) itself), by a theorem proved in class \(3R \) is a projective \(R \)-module. On the other hand, \(3R \) has only 2 elements in it, and the cardinality of any free \(R \)-module is either a finite multiple of 6, or infinity. So, \(3R \) is not a free \(R \)-module.

(b) (5 points) Let \(R \) be any commutative ring. Suppose that the \(R \)-modules \(M \) and \(N \) are projective. Show that \(M \otimes_R N \) is projective.

ANSWER: We know that the projective modules are precisely the direct summands of free modules. Write \(R^I = M \oplus M' \) and \(R^J = N \oplus N' \), for some index sets \(I, J \) and some complements \(M', N' \). By properties of tensor products we have

\[
R^I \otimes_R R^J = M \otimes_R N \bigoplus M \otimes_R N' \bigoplus M' \otimes_R N \bigoplus M' \otimes_R N'.
\]

Since \(R^I \otimes_R R^J \cong R^{I \times J} \) is \(R \)-free, we see that \(M \otimes_R N \) is a direct summand of a free \(R \)-module, hence is projective.

ANSWER ONLY ONE OF THE FOLLOWING TWO QUESTIONS. Indicate which problem you want graded, by writing “GRADE” on the appropriate page in your answer book.

7. Let \(p \) denote an odd prime.

(a) (5 points) Show that the number of \(p \)-Sylow subgroups in the symmetric group \(S_p \) is \((p-2)! \).

ANSWER: Any \(p \)-Sylow subgroup is cyclic of order \(p \) and has precisely \(p-1 \) generators. Moreover, if two \(p \)-Sylow subgroups share a generator, they are identical. So, the elements of order \(p \) are partitioned according to which \(p \)-Sylow subgroup they belong to. We need to count the number of elements of order exactly \(p \). This is precisely the number of distinct \(p \)-cycles, which is \(p!/p = (p-1)! \). Grouping them into distinct \(p \)-Sylow subgroups (with \(p-1 \) in each clump), we see that the number of \(p \)-Sylow subgroups is \((p-1)!/(p-1) = (p-2)! \).

(b) (2 points) Using the result of (a) and a Sylow theorem, give a proof of Wilson’s theorem: \((p-1)! \equiv -1 \pmod{p} \).

ANSWER: By a Sylow theorem, the number \(n_p \) of \(p \)-Sylow subgroups satisfies \(n_p \equiv 1 \pmod{p} \). By part (a) we get \((p-2)! \equiv 1 \pmod{p} \). Multiplying both sides by \(p-1 \equiv -1 \pmod{p} \) yields the result.

(c) (3 points) Let \(P = \langle (1 \ 2 \ \cdots \ p) \rangle \), a \(p \)-Sylow subgroup of \(S_p \). Let \(N(P) \) denote the normalizer of \(P \) in \(S_p \). Find the order of \(N(P) \).

ANSWER: A Sylow theorem states that all \(p \)-Sylow subgroups are conjugate. It follows that \(n_p = |G|/|N(P)| \). We get \(|N(P)| = p!/(p-2)! = p(p-1) \).
(d) (5 points EXTRA CREDIT) Find an element in $N(P)$ which is not in P. Use this to determine the structure of $N(P)$.

ANSWER: Write $\pi = (1 2 \cdots p)$. Choose an integer g with $2 \leq g \leq p - 1$ which is a primitive root modulo p (meaning: the order of g in $(\mathbb{Z}/p\mathbb{Z})^\times$ is $p - 1$). Now π^g is still a p-cycle, so is conjugate to π; choose $\sigma \in S_p$ with $\sigma \pi \sigma^{-1} = \pi^g$. It is clear that σ normalizes $\langle \pi \rangle = P$, hence is in $N(P)$, but is not in P itself (since P is abelian and σ does not commute with π). Note that for all $i = 1, 2, \ldots$ we have $\sigma^i \pi \sigma^{-i} = \pi^{g^i}$. This shows that the order of σ is at least $p - 1$. Since it can’t be $p(p - 1)$ (since $N(P)$ is not abelian), it must be exactly $p - 1$. Now $\langle \pi, \sigma \rangle$ is a group of order $p(p - 1)$, hence is all of $N(P)$. Thus, $N(P)$ is a semi-direct product of a cyclic group of order p (which is normal) and a cyclic group of order $p - 1$.

(a) (5 points) Show that $N \cap P$ is a p-Sylow subgroup of N.

ANSWER: Since N is normal, NP is a group. Furthermore, a basic isomorphism theorem says $NP/N \cong P/N \cap P$. It follows that $|NP|/|N| = |P|/|N \cap P|$, and after rearranging this, that $[NP : P] = [N : N \cap P]$. Now P is a p-Sylow subgroup of NP, so p is coprime with $[NP : P]$, thus also with $[N : N \cap P]$. Now $N \cap P$ is a p-group, and the above remark says it is a p-Sylow subgroup of N.

(b) (5 points) Show that the hypothesis “N is normal” is essential in part (a). In other words, find a group G, a subgroup H and a p-Sylow subgroup $P \subset G$ such that $H \cap P$ is not a p-Sylow subgroup of H.

ANSWER: Let G be any group which has at least two p-Sylow subgroups P and P'. Take $H = P'$. Clearly $H \cap P$ is not H, so is not a p-Sylow subgroup of H.

There are many such groups. The smallest example is A_4: it has four 3-Sylow subgroups (see p. 111 of Dummit-Foote).