52. Dummit-Foote, 10.3, #16-18.

53. (5 points) Suppose \(f : V \to V \) is a homomorphism of the \(R \)-module \(V \) to itself. Suppose that \(f^2 = f \). Prove that \(V \cong \ker(f) \oplus \operatorname{im}(f) \) as \(R \)-modules.

54. (a) (5 points) (Cramer’s Rule). Here \(R \) is any commutative ring with 1. Let \(X \) be any \(n \times n \) matrix over \(R \). Define the adjoint matrix \(\operatorname{adj}(X) \) by

\[
\operatorname{adj}(X)_{ij} = (-1)^{i+j} \det(X_{ji}),
\]

where \(X_{ji} \in M_{n-1}(R) \) is \(X \) without its \(j \)th row and \(i \)th column. Prove Cramer’s Rule

\[
X \cdot \operatorname{adj}(X) = \operatorname{adj}(X) \cdot X = \det(X) I_n.
\]

HINT: You may assume the result for \(R \) any field. The identity is equivalent to \(2n^2 \) polynomial relations in the entries of \(X \). It is enough to prove these relations hold in the polynomial ring \(\mathbb{Z}[X_{ij}] \) in \(n^2 \) variables \(X_{ij} \). Explain why and show that these follow from Cramer’s rule for the field \(\mathbb{Q}(X_{ij}) = \operatorname{Frac}(\mathbb{Z}[X_{ij}]) \).

(b) (5 points) Similarly, show that \(\det(XY) = \det(X) \det(Y) \) for any \(X, Y \in M_n(R) \), assuming this fact holds for \(R \) any field.

(c) (5 points) Deduce that \(A \in M_n(R) \) has a multiplicative inverse in \(M_n(R) \) if and only if \(\det(A) \in R^* \).

55. Here \(R \) is any commutative ring with 1.

(a) (10 points) If \(A \in M_d(R) \) has \(\det(A) = 0 \), then there exists \(x \neq 0 \) in \(R^d \) with \(Ax = 0 \). HINT: WLOG \(A \) is not the zero matrix. Consider the largest non-vanishing minor in \(A \) and use Cramer’s rule.

(b) (5 points) If \(V \) is any \(R \)-module generated by \(n \) elements \(x_1, \ldots, x_n \), and \(y_1, \ldots, y_d \) is any set of \(d \) elements in \(V \) which are linearly independent over \(R \), then \(d \leq n \).

56. Let \(R \) be a Noetherian ring (as usual, commutative with 1). Let \(M \) be any \(R \)-module with \(M \neq 0 \). Show that there exists \(x \in M \) with \(\operatorname{Ann}(x) \) a prime ideal in \(R \).