61. Let F be any field, and $E \supseteq F$ any extension field. Let $A, B \in M_n(F)$. Suppose that A and B are similar when viewed as elements of $M_n(E)$. Show that A and B are similar as elements of $M_n(F)$.

62. Let F be any field, and $A, B \in M_n(F)$. Show that A and B are similar if and only if the matrices $XI - A$ and $XI - B$ have the same Smith forms in $M_n(F[X])$.

63. Prove that any matrix $A \in M_n(F)$ is similar to its transpose $A^t \in M_n(F)$.

64. (a) Let $A \in M_n(F)$. Let \overline{F} be an algebraic closure of F (you may assume this exists). Show that the minimal polynomial $\min(A)$ and the characteristic polynomial $\text{char}(A)$ have the same roots in \overline{F} (neglecting multiplicities).

(b) Suppose that A is a 2×2 or a 3×3 matrix over a field F. Show that the invariant factors of A (hence the rational canonical form of A) can be computed once one knows $\text{char}(A)$ and $\min(A)$.

65. We say $A \in M_n(F)$ is diagonalizable over F if there exists $P \in \text{GL}_n(F)$ such that $P^{-1}AP$ is a diagonal matrix.

(a) Let \overline{F} denote an algebraic closure of F. Show that $A \in M_n(\overline{F})$ is diagonalizable over \overline{F} if and only if its Jordan form in $M_n(\overline{F})$ is diagonal.

(b) Let $A \in M_n(F)$. Show that A is diagonalizable over F if and only $\min(A)$ factors in $F[X]$ as a product of pairwise distinct linear factors.

66. Use the “minors algorithm” discussed in class to find the invariant factors and the RCF for the matrix

$$
\begin{bmatrix}
-1 & -2 & 6 \\
-1 & 0 & 3 \\
-1 & -1 & 4
\end{bmatrix}
$$

(To check your answer compare it with what you can derive just using #64 (b) above.)