61. Suppose that $A, B \in M_n(F)$ are similar over E, and let M_A and M_B be their rational canonical forms computed over F. Then M_A and M_B satisfy the definition of rational canonical form when viewed as matrices with entries in E. But over E, A and B are similar, thus they have the same rational canonical form. Hence $M_A = M_B$, and it follows that A and B are similar over F.

62. Recall that for a matrix $A \in M_n(F)$, the Smith Normal Form of $XI - A$ is a diagonal matrix with $(1, \ldots, 1, a_1(x), \ldots, a_m(x))$ along the diagonal, where $a_1(x)| \cdots |a_m(x)$ are the invariant factors of A. Obviously then, $XI - A$ and $XI - B$ have the same Smith Normal Form if and only if A and B have the same invariant factors. But A and B have the same invariant factors if and only if they have the same rational canonical form.

63. By the previous problem, we must show that $XI - A$ and $XI - A^t = (XI - A)^t$ have the same Smith form. Whatever row and column operations must be done to get $XI - A$ in its Smith form, we can perform the “transpose” operations to $(XI - A)^t$, and the result will be the transpose of the Smith form of $XI - A$. But the Smith form of $XI - A$ is diagonal and hence equal to its own transpose. Thus $XI - A$ and $(XI - A)^t$ have the same Smith form, which shows that A and A^t are similar.

64. (a) Let $a_1(x)| \cdots |a_m(x)$ be the invariant factors of A. Then $\text{min}(A) = a_m(x)$ and $\text{char}(A) = \prod a_i(x)$. Thus the minimal polynomial divides the characteristic polynomial, so every root of the minimal polynomial is a root of the characteristic polynomial. Conversely, every root of every a_i is a root of the minimal polynomial by the divisibility condition. Hence every root of the characteristic polynomial is a root of the minimal polynomial, therefore they have the same roots.

(b) First note that for any $n \times n$ matrix A with invariant factors $a_1(x)| \cdots |a_m(x)$, we have $\text{char}(A) = \prod a_i(x)$, and $\deg(\text{char}(A)) = n$. Thus $\sum \deg(a_i(x)) = n$.

Suppose that A is 2×2. The characteristic polynomial $c(x)$ of A is degree two. If the minimal polynomial $m(x)$ is degree one, then the invariant factors of A are $m(x), m(x)$ and $m(x)^2 = c(x)$.

Now we suppose A is 3×3, then $c(x)$ is degree three. If $m(x)$ is degree one, then the invariant factors are $m(x), m(x), m(x)$ and $m(x)^3 = c(x)$. If $m(x)$ is degree two, then the invariant factors are $c(x)/m(x), m(x)$. If $m(x)$ is degree three, then it is the only invariant factor, and $m(x) = c(x)$.

65. (a) Suppose that the Jordan form of A is diagonal. Since every matrix is similar to its Jordan form, this shows that A is diagonalizable. Conversely, if A is diagonalizable such that $P^{-1}AP$ is diagonal, then $P^{-1}AP$ is the Jordan form of A by uniqueness of the Jordan form. So the Jordan form of A is diagonal.

(b) Suppose that A is diagonalizable. Since $\text{min}(A)$ depends only on the similarity class of A, we may assume A is diagonal. The minimal polynomial of a diagonal matrix with (a_1, \ldots, a_n) down
the diagonal is

\[m(X) = \prod_{\text{distinct } a_i} (X - a_i), \]

which proves the assertion.

Conversely, suppose that \(a_1(x) | \cdots | a_m(x) \) are the invariant factors of \(A \). Since \(a_m(x) \) splits as a product of distinct linear factors, so must all of the other \(a_i(x) \)'s. We know that

\[V = F[x]/(a_1(x)) \oplus \cdots \oplus F[x]/(a_m(x)) \]

so by the Chinese Remainder Theorem, we have that

\[V = \bigoplus_{\alpha} F[x]/(x - \alpha) \]

for some \(\alpha \)'s. But this says that the matrix \(A \) acts on \(V \) as a direct sum of \(1 \times 1 \) matrices, that is, diagonally.

66. The rational canonical form of

\[
\begin{pmatrix}
-1 & -2 & 6 \\
-1 & 0 & 3 \\
-1 & -1 & 4
\end{pmatrix}
\]

is

\[
\begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 2
\end{pmatrix}.
\]

The invariant factors are \(x - 1, (x - 1)^2 \).