12. (a) (5 points) Show that any group of order 33 is cyclic.

(b) (5 points) Show that any group of order 35^2 is abelian. Up to isomorphism, how many groups of order 35^2 are there?

13. (5 points) Let G be a p-group. Show that G possesses a chain of subgroups $1 < H_1 < \cdots < H_n = G$, each normal in its successor, such that each quotient group H_i/H_{i-1} is cyclic.

14. Let p denote a prime number and let \mathbb{F}_p denote the finite field of cardinality p. Let $G = \text{GL}_n(\mathbb{F}_p)$.

(a) (5 points) Show that $|G| = (p^n - 1)(p^n - p)\cdots(p^n - p^{n-1})$. HINT: Let $g \in \text{GL}_n(\mathbb{F}_p)$. The first column of g may be any non-zero vector. The second column may be any vector not in the \mathbb{F}_p-span of the first column. Etc.

(b) (5 points) Find a p-Sylow subgroup of G. Hint: For $n = 2$ i.e. for $G = \text{GL}_2(\mathbb{F}_p)$, the group U of elements of the form $\begin{bmatrix} 1 & x \\ 0 & 1 \end{bmatrix}$ for $x \in \mathbb{F}_p$ is a p-Sylow subgroup. Check this and try to generalize to general n.

(c) (5 points) For $n = 2$, show that the normalizer of U above contains B, the subgroup consisting of the upper triangular matrices in $\text{GL}_2(\mathbb{F}_p)$.

(d) (5 points) For $n = 2$, show that the number of p-Sylow subgroups in G is $1 + p$ and simultaneously show that the normalizer of U above is precisely the subgroup B.

(e) (BONUS 10 points extra credit) For n general, find the normalizer of your p-Sylow subgroup from part (b), and use this information to prove that the number of p-Sylow subgroups in G is

$$\frac{p^n - 1}{p - 1} \cdot \frac{p^{n-1} - 1}{p - 1} \cdots \frac{p^2 - 1}{p - 1} \cdot \frac{p - 1}{p - 1}.$$

(Or, you are welcome to find another way to compute the number of p-Sylow subgroups.)

15. Prove the following assertions (the first two we made in lecture).

(a) (5 points) The only elements in S_5 which commute with $\pi := (1\ 2\ 3\ 4\ 5)$ are even. In fact, show the centralizer of π is simply $\langle \pi \rangle$.

(b) (5 points) The elements $(1\ 2\ 3\ 4\ 5)$ and $(1\ 3\ 5\ 2\ 4)$ are conjugate in S_5 but not in A_5.

(c) (5 points) Show that $(1\ 2\ 3\ 4\ 5)$ and $(1\ 3\ 5\ 2\ 4)$ are conjugate as members of A_7 but not as members of A_6.
16. (10 points) Show that a d-cycle in S_n cannot be written as a product of fewer than $d-1$ transpositions. HINT: Say $\gamma = \sigma_1 \cdots \sigma_k$, where σ_i is a transposition. Consider $P(\gamma) = P(\sigma_1) \cdots P(\sigma_k)$ in $\text{GL}_n(\mathbb{C})$. Let $H_i = \ker(P(\sigma_i) - 1)$ and $K = \ker(P(\gamma) - 1)$. Show that $K \supseteq \cap_i H_i$. On the other hand, show that $\dim(\cap_i H_i) \geq n - k$ and $\dim(K) = (n - d) + 1$.