17. (10 points) Let G be a finite group acting on a finite set X. For $g \in G$, let $f(g)$ denote the number of elements in X which are fixed by g. Prove Burnside’s formula

$$\frac{1}{|G|} \sum_{g \in G} f(g) = \text{number of orbits}.$$

HINT: Count the set $\{(g, x) \mid gx = x\}$ in two different ways.

18. (5 points) Suppose $n \geq 5$. Show that the only normal subgroups of S_n are 1, A_n, and S_n. You may use the fact, proved in class, that A_n is simple.

19. (a) (5 points) Let G be a p-group, $G \neq 1$. Let $N \trianglelefteq G$, $N \neq 1$. Show that $N \cap Z(G) \neq 1$.

(b) (5 points) Let G be a non-abelian group of order p^3 (where p is prime). Show that $|Z(G)| = p$ and that $Z(G)$ has no complement in G.

20. (10 points) Show that a group of order $2^2 \cdot 5 \cdot 19$ is not simple.

21. (15 points) Let G be a finite group of order p^bn (here we do not assume $(p, n) = 1$). Let H be a subgroup of order p^a, where $0 \leq a \leq b$. Let $N(p^b, H)$ denote the number of subgroups of G which contain H and have order p^b. The following steps will prove that $N(p^b, H) \equiv 1 \mod p$. (This gives another proof of a (stronger) version of Sylow’s theorems.)

(a) Let Ω denote the set of subsets of G which have order p^b and are stable under left multiplication by elements of H. The group G acts on Ω by $M \mapsto Mg$. Let $\{T_i\}_{i \in I}$ denote the orbits. For $M_i \in T_i$, let G_i denote the stabilizer of M_i. Show that $|G_i|$ is a divisor of p^b.

(b) Show that $|T_i| = n \Leftrightarrow |G_i| = p^b$. Show also that $|T_i| \neq n \Leftrightarrow |G_i| < p^b$, in which case $|T_i| \equiv 0 \mod p$.

(c) Prove that there is a 1-1 correspondence between orbits T_i having length exactly n and subgroups U of G which contain H and have order exactly p^b.

(d) Deduce that

$$|\Omega| \equiv \sum_{|T_i| = n} |T_i| \equiv nN(p^b, H) \mod p.$$

(e) Show that $|\Omega| = \binom{p^b-a}{p^b-a} \cdot nN(p^b, H) \mod p$.

$$\binom{p^b-a}{p^b-a} \equiv nN(p^b, H) \mod p.$$
(f) By considering the above equation in the case of a cyclic group of order p^n, show that

$$\binom{p^n - a}{p^n} \equiv n \pmod{p}.$$

(g) Conclude that $N(p^n, H) \equiv 1 \pmod{p}$.

22. (10 points) Let P be a p-Sylow subgroup of a finite group G. Show that $N_G(N_G(P)) = N_G(P)$.