Solutions to Homework 12
Math 601, Spring 2008

Exam II problems

1) a) For any automorphism from \(f : \mathbb{Q}(\sqrt{2}) \to \mathbb{Q}(\sqrt{3}) \), \(f(\sqrt{2}) \) must be a root of \(X^2 - 2 \), in other words \(f(\sqrt{2}) = \pm \sqrt{2} \). But it is easy to check that \(\pm \sqrt{2} \notin \mathbb{Q}(\sqrt{3}) \).

b) As mentioned above \(\sqrt{2} \notin \mathbb{Q}(\sqrt{3}) \), thus \(|\mathbb{Q}(\sqrt{2}, \sqrt{3}) : \mathbb{Q}| = |\mathbb{Q}(\sqrt{3}) : \mathbb{Q}| = 2 \cdot 2 = 4 \).

c) \(\sqrt{2} + \sqrt{3} \) is a primitive generator for \(\mathbb{Q}(\sqrt{2}, \sqrt{3}) \) because it has 4 Galois conjugates under the Galois group \((\sqrt{2}, \sqrt{3}) \leftrightarrow (\pm \sqrt{2}, \pm \sqrt{3}) \).

2) a) Let \(E = F(\alpha) \) with \([E : F] = 2 \), then \(E \) is the splitting field of the irred. polynomial over \(F \) of \(\alpha \), thus \(E \) is normal by Problem 44), HW10.

b) Let \(F \subset K \subset L \) be \(\mathbb{Q} \subset \mathbb{Q}(\sqrt{2}) \subset \mathbb{Q}(\sqrt{1 + \sqrt{2}}) \). By part a) \(K/F \) and \(L/K \) are normal, but if \(L/F \) were normal, it would be Galois (since we are in char. zero) contradicting Problem 49) HW11 according to which the Galois closure of \(L/F \) is \(L(i) \) or equivalently \(L(\sqrt{1 - \sqrt{2}}) \).

3) a) Let \(\Phi : \overline{\mathbb{F}}_p \to \overline{\mathbb{F}}_p \) be the Frobenius automorphism. Then \(\mathbb{F}_{p^n} \) is the fixed field of the group of automorphisms \(\langle \Phi^n \rangle \). Thus \(\mathbb{F}_{p^n} \cap \mathbb{F}_{p^m} \) is the fixed field of \(\langle \Phi^n, \Phi^m \rangle = \langle \Phi^{(m,n)} \rangle \) where \((m, n) \) is the gcd of \(m \) and \(n \). Thus \(\mathbb{F}_{p^n} \cap \mathbb{F}_{p^m} = \mathbb{F}_{p^{\gcd(m,n)}} \).

b) \(\alpha \) has order 5 in \(\mathbb{F}_{p^n} = \mathbb{Z}/(p - 1)\mathbb{Z} \) and thus \(p \equiv 1 \mod 5 \).

4) Let \(E/\mathbb{Q} \) be the splitting fld. of \(X^5 + 2 \). We will show \([E : \mathbb{Q}] = 5 \cdot 4 = 20\) as a particular case of the following claim:

Claim: Let \(E/\mathbb{Q} \) be the splitting field of \(X^p - n \), where \(p \) is a prime and \(n \in \mathbb{Z} \) is not a \(p \)-th power, then \([E : \mathbb{Q}] = p \cdot (p - 1)\).

Proof: Let \(\xi = \xi_p \) be a primitive \(p \)-th root of unity. We have \([E : \mathbb{Q}] = [\mathbb{Q}(\xi) : \mathbb{Q}] [E : \mathbb{Q}(\xi)] = (p - 1)[E : \mathbb{Q}(\xi)] \). Observe that \(E/\mathbb{Q}(\xi) \) is Galois, and \(\text{Gal}(E/\mathbb{Q}(\xi)) \) is a subgroup of the group of permutations of the roots \(\{n^{1/p} \xi^i \mid 1 \leq i \leq p\} \) and fixing \(\xi \), i.e., \(\text{Gal}(E/\mathbb{Q}(\xi)) \) is a subgroup of the cyclic group \(\mathbb{Z}/p\mathbb{Z} \) generated by \(n^{1/p} \mapsto n^{1/p} \xi \). Thus we only need to show that \(\text{Gal}(E/\mathbb{Q}(\xi)) \) is not
trivial, i.e. that \(E \neq \mathbb{Q}(\xi) \). Indeed, if \(E = \mathbb{Q}(\xi) \), then \([E : \mathbb{Q}] = p - 1 \) implies \(p \nmid [E : \mathbb{Q}] \) and hence \(X^p - n \) must be reducible over \(\mathbb{Q} \). We show two ways to prove that \(X^p - n \) is irreducible (assuming \(n \) is not a \(p \)-th power):

i) If \(E = \mathbb{Q}(\xi) \), then \(\text{Gal}(E/\mathbb{Q}) = \mathbb{Z}/(p - 1)\mathbb{Z} \) is abelian and hence any intermediate extension \(F/\mathbb{Q} \) with \(\mathbb{Q} \subset F \subset E \) is Galois. Suppose \(X^p - n \) is reducible and let \(F = \mathbb{Q}(\alpha) \) where \(\alpha \) is a root of an irreducible factor \(f(X) \) of \(X^p - n \) of degree \(2 \leq m \leq p - 2 \). (If \(m = 1 \) or \(p - 1 \) then \(X^p - n \) has a linear factor, i.e \(n \) is a \(p \)-th power). Since \(F/\mathbb{Q} \) is Galois and \(f(X) \) is an irreducible polynomial, it splits completely in \(F \). This implies \(\xi \in F \) because \(m \geq 2 \) and the roots of \(f(X) \) in \(E \) are \(\{\alpha \xi^i\} \). Thus \(F = \mathbb{Q}(\xi) \), but then \(m = [F : \mathbb{Q}] = p - 1 \) contradicting \(2 \leq m \leq p - 2 \).

ii) We showed in the Proposition in the solution of Problem 32, HW7 without explicitly using Galois theory, that \(X^p - n \) is irreducible if \(n \) is not a \(p \)-th power.

5) Show that \(G := \text{Gal}(X^3 - 2) = S_3 \). Let \(K \) be the splitting field in question. Clearly \(|G| = [E : \mathbb{Q}] \leq 3 \cdot 2 = 6 \). \(H := \text{Gal}(K/\mathbb{Q}(\xi_3)) \) is a nontrivial subgroup of the cyclic group of order 3 generated by \(2^{1/3} \mapsto 2^{1/3}\xi_3 \) and hence equal to it. (If \(|H| = 1 \) then \(E = \mathbb{Q}(\xi_3) \), again implying \(X^3 - 2 \) reducible, which implies \(2^{1/3} \in \mathbb{Q} \)). Similarly \(K := \text{Gal}(E/\mathbb{Q}(2^{1/3})) \) is cyclic of order 2 generated by \(\xi_3 \mapsto \xi_3^{-1} \). It is easy to check that \(HK < G \) is \(S_3 \), hence \(G = S_3 \).

b) The quadratic extension of \(Q \) in question is \(Q(\xi_3)/\mathbb{Q} \).

6) The cyclotomic extension \(Q(\xi)/\mathbb{Q} \) is a simple extension of degree \(\phi(n) \), the irreducible polynomial of \(\xi = \xi_n \) being the \(n \)-th cyclotomic polynomial \(\Phi_n(X) \). The roots of the \(\Phi_n(X) \) in \(Q(\xi) \) are the primitive roots of unity (by definition). It follows that the \(\text{Gal}(Q(\xi)/\mathbb{Q}) \) consists of the automorphisms \(\xi \mapsto \xi^i \) such that \(\xi^i \) is a primitive root of unity. Thus \(\text{Gal}(Q(\xi)/\mathbb{Q}) = (\mathbb{Z}/n\mathbb{Z})^\times \).

7) Let \(G \hookrightarrow S_n \) be a monomorphism. We have a Galois extension \(Q(s_1, \ldots, s_n) \subset Q(X_1, \ldots, X_n) =: K \) with Galois group \(S_n \), where the \(s_i \) are the elementary symmetric polynomials in \([X_1, \ldots, X_n] \). Let \(Q(s_1, \ldots, s_n) \subset F \subset K \) be the intermediate field corresponding to \(G \subset S_n \). We thus have a Galois extension \(K/F \) with Galois group \(G \), and we can find an intermediate field \(F \subset E \subset K \) with \(\text{Gal}(K/E) = H \) and \(\text{Gal}(E/F) = G/H \).

HW 12 problems, Section 18.1 [D-F]
55) [D-F] 18.1 #6 (10 points). It is straight-forward to write down the matrices.

56) [D-F] 18.1 #8 (10 points). \(\sigma \cdot v = v \) forces the entries of \(v \) to be identical, thus \(v = v_0 := \sum_i e_i \). For the same reason \(V \) has a unique one dimensional submodule \((n \geq 3) \), namely \(Fv_0 \).

57) [D-F] 18.1 #13 (10 points). a) If \(M, N \) are simple \(R \)-modules and \(f : M \to N \) a nontrivial \(R \)-module homomorphism, then \(\ker(f) \neq M \) and \(\text{im}(f) \neq 0 \), whence \(\ker(f) = 0 \) and \(\text{im}(f) = N \). In other words \(f \) is an isomorphism.

b) by part a) every element of \(\text{Hom}_R(M, M) \) has a two-sided inverse, which makes it into a division ring.

58) [D-F] 18.1 #18 (10 points). Let \(\lambda \in \mathbb{C} \) be an eigenvalue of the matrix \(A \) with eigenspace \(W \subset \mathbb{C}^n \). Since \(A \) commutes with \(\phi(g) \) for all \(g \), it follows that \(W \) is \(G \)-invariant subspace of positive dimension, and hence \(W = \mathbb{C}^n \). Thus \(A = \lambda I \). In particular, \(\phi \) restricts to a homomorphism \(\hat{\phi} : Z(G) \to \mathbb{C}^\times \). Since any finite subgroup of the multiplicative group of a field is cyclic, \(\text{im}(\hat{\phi}) \) is cyclic. If \(\phi \) is faithful then, it follows that \(Z(G) \) is cyclic, and \(\phi(z) \) is a scalar matrix for all \(z \in Z(G) \).