Homework 7 - due 03/26/08

Math 601

27. Dummit-Foote, 13.2, \#8.
28. Dummit-Foote, 13.4, \#5,6.
29. (5 points) Let R be any domain and $f \in R[X]$ a monic polynomial of positive degree. Show that the division algorithm works, in other words, show that for any $g \in R[X]$ we can write

$$
g=q f+r
$$

for $q, r \in R[X]$ and $r=0$ or $\operatorname{deg} r<\operatorname{deg} f$. (We used this principle in class, during our proof of the existence of algebraic closures.)
30. Let K denote a splitting field for $X^{8}-2$ over \mathbb{Q}. Find $[K: \mathbb{Q}]$.
31. Let K be a field. Show that 0 is the intersection of the maximal ideals in $K\left[X_{1}, \ldots, X_{n}\right]$.
32. Let L / K be an extension field, and $a \in L$ an algebraic element over K whose minimal polynomial has odd degree. Show that $K(a)=K\left(a^{2}\right)$. Can you generalize this?

