54. Let \(n > 2 \) and suppose \(d \) is a positive integer which is not the \(n \)-th power of any integer. Let \(\sqrt[n]{d} \) denote the positive real \(n \)-th root of \(d \). Let \(E \) be the Galois closure of \(\mathbb{Q}(\sqrt[n]{d})/\mathbb{Q} \). Show that \(\text{Gal}(E/\mathbb{Q}) \) is non-abelian. Can you generalize this?

55. Let \(\omega = e^{2\pi i / 7} \) and \(L = \mathbb{R} \cap \mathbb{Q}(\omega) \). Show that \(L/\mathbb{Q} \) is Galois with cyclic (hence solvable) Galois group, yet \(L/\mathbb{Q} \) is not a radical extension.

56. Let \(G \) be a compact Hausdorff topological group and let \(L \) be a field with the following properties:

 (i) \(G \subseteq \text{Aut}(L) \) as abstract groups;

 (ii) \(G_x \) (= the stabilizer of \(x \in L \)) is open for every \(x \in L \), i.e. \(L \) is a discrete \(G \)-module.

Prove that \(L/L^G \) is a Galois extension, and the inclusion homomorphism \(i : G \hookrightarrow \text{Aut}(L) \) induces a topological isomorphism \(G \cong \text{Gal}(L/L^G) \). In particular, \(G \) is a profinite group.

57. Show that every profinite group is a Galois group. Hint: First show that any Cartesian product of finite groups is a Galois group. Then use the fact that any profinite group is a closed subgroup of a Cartesian product of finite groups.