Solutions to Homework 5

18. The \(\mathbb{Z} \)-module \(\mathbb{Z}/m\mathbb{Z} \) has projective resolution \(0 \rightarrow \mathbb{Z} \xrightarrow{m} \mathbb{Z} \rightarrow \mathbb{Z}/m\mathbb{Z} \rightarrow 0 \). Tensoring with \(\mathbb{Z}/n\mathbb{Z} \) yields the exact sequence

\[
\left(\mathbb{Z}/n\mathbb{Z} \right) \otimes_{\mathbb{Z}} \mathbb{Z} \xrightarrow{1 \otimes m} \left(\mathbb{Z}/n\mathbb{Z} \right) \otimes_{\mathbb{Z}} \mathbb{Z} \rightarrow \left(\mathbb{Z}/n\mathbb{Z} \right) \otimes_{\mathbb{Z}} \left(\mathbb{Z}/m\mathbb{Z} \right) \rightarrow 0
\]

and \(\text{Tor}^1_{\mathbb{Z}}(\mathbb{Z}/n\mathbb{Z}, \mathbb{Z}/m\mathbb{Z}) \) is the kernel of the first map. Under the natural isomorphism \((\mathbb{Z}/n\mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{Z} \simeq \mathbb{Z}/n\mathbb{Z} \), the map \(1 \otimes m \) becomes multiplication by \(m \) in \(\mathbb{Z}/n\mathbb{Z} \). The kernel of this map is the set of elements of order dividing \(m \), which is \(\mathbb{Z}/(m,n)\mathbb{Z} \subseteq \mathbb{Z}/n\mathbb{Z} \).

19. One sees easily that \(\text{Ext}^i_{\mathbb{R}}(R/I, M) = 0 \) for \(i > 1 \). So we only need to compute \(\text{Ext}^1_{\mathbb{R}}(R/I, M) \).

Applying \(\text{Hom}_{\mathbb{R}}(\cdot, M) \) to the exact sequence, we get that \(\text{Ext}^1_{\mathbb{R}}(R/I, M) \) is the cokernel of the (surjective) map \(\text{Hom}_{\mathbb{R}}(R, M) \rightarrow \text{Hom}_{\mathbb{R}}(R, M) \) induced by multiplication by \(a \) on \(R \). Under the natural isomorphism \(\text{Hom}_{\mathbb{R}}(R, M) \simeq M \), this map becomes \(m \mapsto \rightarrow am \). Thus \(\text{Ext}^1_{\mathbb{R}}(R/I, M) \simeq M/aM \). Note that \(\text{Ext}^0_{\mathbb{R}}(R/I, M) = \text{Hom}_{\mathbb{R}}(R/I, M) \) is the set of \(m \in M \) that are killed by \(a \).

20. (Dummit-Foote 17.1, #22) Let \(P \rightarrow A \) be a projective resolution of \(A \) as an \(\mathbb{R} \)-module. The complex \(P \otimes_{\mathbb{R}} S \) is exact because \(S \) is a flat \(\mathbb{R} \)-module. Since tensoring commutes with direct sums, it preserves projectives. Thus \(P \otimes_{\mathbb{R}} S \) is a projective resolution of \(A \otimes_{\mathbb{R}} S \). Furthermore, note that we have isomorphisms \((P \otimes_{\mathbb{R}} S) \otimes_{S} B \simeq P \otimes_{\mathbb{R}} (S \otimes_{S} B) \simeq P \otimes_{\mathbb{R}} B \) of complexes. It follows from these observations that

\[
\text{Tor}^S_n(A \otimes_{\mathbb{R}} S, B) = H_n((P \otimes_{\mathbb{R}} S) \otimes_{S} B)
\]

\[
\simeq H_n(P \otimes_{\mathbb{R}} B)
\]

\[
= \text{Tor}^R_n(A, B).
\]

(Dummit-Foote 17.1, #23) As \(D^{-1}R \) is flat as an \(\mathbb{R} \)-module, we have that

\[
\text{Tor}^R_n(A, D^{-1}B) \simeq \text{Tor}^R_n(D^{-1}A, D^{-1}B)
\]

by the previous problem (with \(S = D^{-1}R \) and \(D^{-1}B \) in place of \(B \)). Let \(P \rightarrow B \) be a projective resolution of \(B \) as an \(\mathbb{R} \)-module. Because \(D^{-1}R \) is a flat \(\mathbb{R} \)-module, we have isomorphisms

\[
D^{-1}\text{Tor}^R_n(A, B) \simeq H_n(D^{-1}A \otimes_{\mathbb{R}} P)
\]

\[
= \text{Tor}^R_n(D^{-1}A, B).
\]

As interchanging the roles of \(A \) and \(B \) does not change \(D^{-1}\text{Tor}^R_n(A, B) \), we have that

\[
\text{Tor}^R_n(D^{-1}A, B) \simeq \text{Tor}^R_n(D^{-1}B, A)
\]

\[
\simeq \text{Tor}^R_n(A, D^{-1}B)
\]
and so \(D^{-1}\text{Tor}^R_n(A, B) \simeq \text{Tor}^R_n(A, D^{-1}B) \simeq \text{Tor}^{D^{-1}R}_n(D^{-1}A, D^{-1}B) \) as desired.

(Dummit-Foote 17.1, #24) Let \(M \) and \(N \) be \(R \)-modules. By the previous problem, we have that \(\text{Tor}^R_n(M, N) = 0 \iff \text{Tor}^R_n(M, N)_m = 0 \) for all maximal ideals \(m \) of \(R \iff \text{Tor}^R_n(M_m, N_m) = 0 \) for all \(m \). By the characterization of flatness in terms of Tor, it follows that \(M \) is flat \(\iff \) \(M_m \) is flat for all \(m \).

21. (a) The implications \((i) \Rightarrow (ii) \Rightarrow (iii)\) are proven in section 10.5 of Dummit-Foote, and the implication \((iii) \Rightarrow (iv)\) is Proposition 16 of section 17.1 of Dummit-Foote.

(b) Following the hint, let \(N \) be the submodule of \(M \) generated by \(x_1, \ldots, x_n \). Then \(N + mM = M \), so by Nakayama’s Lemma, we have \(M = N \). We have an exact sequence \(0 \rightarrow K \rightarrow R^n \rightarrow M \rightarrow 0 \) where \(e_i \mapsto x_i \) and \(K \) is defined to be the kernel. As \(\text{Tor}^R_1(M, k) = 0 \), this sequence stays exact when tensored with \(k \). Upon tensoring with \(k \), the second map becomes a surjective map of finite-dimensional vector spaces over \(k \), which is therefore bijective by linear algebra. Hence \(K \otimes_R k = 0 \). But \(K \otimes_R k \simeq K/mK \), hence \(K = mK \) and it follows from Nakayama’s Lemma that \(K = 0 \). Therefore \(R^n \simeq M \) and \(M \) is free.

(c) (i) The abelian group \(\mathbb{Z} \) is a \(\mathbb{Z} \oplus \mathbb{Z} \)-module via the action \((x_1, x_2) \cdot m = x_1m \). It is clearly finitely generated, and it is projective because it is a direct summand of the free module \(\mathbb{Z} \oplus \mathbb{Z} \). However, it cannot be free because its rank as an abelian group is too small.

(ii) The \(\mathbb{Z} \)-module \(\mathbb{Q} \) is flat by the argument on Dummit-Foote page 401. However, it is not projective by Exercise 8 of section 10.5 of Dummit-Foote.

(iii) Let \(R = \mathbb{Z} \), and let \(M = \mathbb{Z}/p\mathbb{Z} \) have its natural \(\mathbb{Z} \)-module structure, where \(p \) is a prime. Pick a prime \(\ell \neq p \) and let \(m = \ell\mathbb{Z} \). Then \(\text{Tor}^R_1(M, R/m) = \text{Tor}^{\mathbb{Z}}_1(\mathbb{Z}/p\mathbb{Z}, \mathbb{Z}/\ell\mathbb{Z}) = 0 \) by Exercise 18. However, \(\mathbb{Z}/p\mathbb{Z} \) is not flat, because tensoring with it does not preserve the exactness of the sequence \(0 \rightarrow \mathbb{Z} \xrightarrow{p} \mathbb{Z} \rightarrow \mathbb{Z}/p\mathbb{Z} \rightarrow 0 \).