Endoscopic Transfer of the Bernstein Center

Thomas J. Haines

Mathematics Department University of Maryland

May 21, 2011

Outline

- Introduction: objects and motivations
- 2 3 Examples
- Bernstein center
- Ztransfer Conjecture
- Some Results
- 6 Shimura variety applications

Objects of local harmonic analysis Endoscopic groups Matching functions

- The "fundamental lemma" (FL) is now a theorem: Ngô, Waldspurger, Hales,...
- along with its twisted, weighted, and twisted-weighted versions (Ngô, Waldspurger, Laumon-Chaudouard...).
- These play a crucial role in automorphic forms (Langlands functoriality via comparison of trace formulas)
- and in arithmetic via cohomology of Shimura varieties, and their Hasse-Weil zeta functions.

- The "fundamental lemma" (FL) is now a theorem: Ngô, Waldspurger, Hales,...
- along with its twisted, weighted, and twisted-weighted versions (Ngô, Waldspurger, Laumon-Chaudouard...).
- These play a crucial role in automorphic forms (Langlands functoriality via comparison of trace formulas)
- and in arithmetic via cohomology of Shimura varieties, and their Hasse-Weil zeta functions.

- The "fundamental lemma" (FL) is now a theorem: Ngô, Waldspurger, Hales,...
- along with its twisted, weighted, and twisted-weighted versions (Ngô, Waldspurger, Laumon-Chaudouard...).
- These play a crucial role in automorphic forms (Langlands functoriality via comparison of trace formulas)
- and in arithmetic via cohomology of Shimura varieties, and their Hasse-Weil zeta functions.

Overview
Objects of local harmonic analysis
Endoscopic groups
Matching functions

- The "fundamental lemma" (FL) is now a theorem: Ngô, Waldspurger, Hales,...
- along with its twisted, weighted, and twisted-weighted versions (Ngô, Waldspurger, Laumon-Chaudouard...).
- These play a crucial role in automorphic forms (Langlands functoriality via comparison of trace formulas)
- and in arithmetic via cohomology of Shimura varieties, and their Hasse-Weil zeta functions.

Objects of local harmonic analysis Endoscopic groups Matching functions

There exist variants, more recently proved:

- FL of Jacquet-Ye (Ngô, Jacquet)
- FL conjectured by Jacquet-Rallis (Z. Yun, J. Gordon)

Purpose of talk: discuss a new conjectural variant related to the Bernstein center.

It has applications to Shimura varieties with **bad reduction** (and arose there), extending to bad reduction cases the Langlands-Kottwitz approach to Shimura varieties with good reduction

There exist variants, more recently proved:

- FL of Jacquet-Ye (Ngô, Jacquet)
- FL conjectured by Jacquet-Rallis (Z. Yun, J. Gordon)

Purpose of talk: discuss a new conjectural variant related to the Bernstein center.

It has applications to Shimura varieties with **bad reduction** (and arose there), extending to bad reduction cases the Langlands-Kottwitz approach to Shimura varieties with good reduction.

There exist variants, more recently proved:

- FL of Jacquet-Ye (Ngô, Jacquet)
- FL conjectured by Jacquet-Rallis (Z. Yun, J. Gordon)

Purpose of talk: discuss a new conjectural variant related to the Bernstein center.

It has applications to Shimura varieties with **bad reduction** (and arose there), extending to bad reduction cases the Langlands-Kottwitz approach to Shimura varieties with good reduction.

There exist variants, more recently proved:

- FL of Jacquet-Ye (Ngô, Jacquet)
- FL conjectured by Jacquet-Rallis (Z. Yun, J. Gordon)

Purpose of talk: discuss a new conjectural variant related to the Bernstein center.

It has applications to Shimura varieties with **bad reduction** (and arose there), extending to bad reduction cases the Langlands-Kottwitz approach to Shimura varieties with good reduction.

Overview

Objects of local harmonic analysis Endoscopic groups Matching functions

There exist variants, more recently proved:

- FL of Jacquet-Ye (Ngô, Jacquet)
- FL conjectured by Jacquet-Rallis (Z. Yun, J. Gordon)

Purpose of talk: discuss a new conjectural variant related to the Bernstein center.

It has applications to Shimura varieties with **bad reduction** (and arose there), extending to bad reduction cases the Langlands-Kottwitz approach to Shimura varieties with good reduction.

G will be a **connected reductive group** over some field.

Examples: GL_n , SL_n , SO_{2n+1} , Sp_{2n} , G_2 , E_8 .

We need the **Langlands dual group** $\widehat{G} = \widehat{G}(\mathbb{C})$, defined to have dual root data.

Examples: GL_n , PGL_n , Sp_{2n} , SO_{2n+1} , G_2 , E_8 .

Hierarchy: $G \ split \subset unramified \subset quasi-split \subset \dots$

In this talk we often assume: G split over F, and $G_{der} = G_{sc}$.

Examples: GL_n , SL_n , GSp_{2n}

G will be a **connected reductive group** over some field.

Examples: GL_n , SL_n , SO_{2n+1} , Sp_{2n} , G_2 , E_8 .

We need the **Langlands dual group** $\widehat{G} = \widehat{G}(\mathbb{C})$, defined to have dual root data.

Examples: GL_n , PGL_n , Sp_{2n} , SO_{2n+1} , G_2 , E_8 .

Hierarchy: $G \ split \subset unramified \subset quasi-split \subset \dots$

In this talk we often assume: G split over F, and $G_{
m der}=G_{
m sc}$.

Examples: GL_n , SL_n , GSp_{2n}

G will be a **connected reductive group** over some field.

Examples: GL_n , SL_n , SO_{2n+1} , Sp_{2n} , G_2 , E_8 .

We need the **Langlands dual group** $\widehat{G} = \widehat{G}(\mathbb{C})$, defined to have dual root data.

Examples: GL_n , PGL_n , Sp_{2n} , SO_{2n+1} , G_2 , E_8 .

Hierarchy: $G \ split \subset unramified \subset quasi-split \subset \dots$

In this talk we often assume: G split over F, and $G_{der} = G_{sc}$.

es

G will be a **connected reductive group** over some field.

Examples: GL_n , SL_n , SO_{2n+1} , Sp_{2n} , G_2 , E_8 .

We need the **Langlands dual group** $\widehat{G} = \widehat{G}(\mathbb{C})$, defined to have dual root data.

Examples: GL_n , PGL_n , Sp_{2n} , SO_{2n+1} , G_2 , E_8 .

Hierarchy: $G \ split \subset unramified \subset quasi-split \subset \dots$

In this talk we often assume: G split over F, and $G_{der} = G_{sc}$

Examples: GL_n , SL_n , GSp_{2n} .

G will be a **connected reductive group** over some field.

Examples: GL_n , SL_n , SO_{2n+1} , Sp_{2n} , G_2 , E_8 .

We need the **Langlands dual group** $\widehat{G} = \widehat{G}(\mathbb{C})$, defined to have dual root data.

Examples: GL_n , PGL_n , Sp_{2n} , SO_{2n+1} , G_2 , E_8 .

Hierarchy: $G \ split \subset unramified \subset quasi-split \subset \dots$

In this talk we often assume: G split over F, and $G_{\mathrm{der}} = G_{\mathrm{sc}}$.

Examples: GL_n , SL_n , GSp_{2n} .

G will be a **connected reductive group** over some field.

Examples: GL_n , SL_n , SO_{2n+1} , Sp_{2n} , G_2 , E_8 .

We need the **Langlands dual group** $\widehat{G} = \widehat{G}(\mathbb{C})$, defined to have dual root data.

Examples: GL_n , PGL_n , Sp_{2n} , SO_{2n+1} , G_2 , E_8 .

Hierarchy: $G \ split \subset unramified \subset quasi-split \subset \dots$

In this talk we often assume: G split over F, and $G_{der} = G_{sc}$.

Examples: GL_n , SL_n , GSp_{2n} .

- p-adic field $F \supset \mathcal{O} \ni \overline{w}$. $\Gamma = \text{Gal}(\overline{F}/F)$.
- If G defined over F, often write G = G(F). Set $K := G(\mathcal{O})$, when G/\mathcal{O}
- Hecke algebra $\mathcal{H}(G) = C_c^{\infty}(G(F), \mathbb{C})$
- spherical Hecke algebra $\mathcal{H}(G,K) = C_{\mathcal{C}}(K \setminus G(F)/K)$.

[&]quot;Frobenius Twisted versions": F_r/F unramified, $(\theta) = \operatorname{Gal}(F_r/F)$, $\delta \in G_r := G(F_r)$ s.t. $N_r \delta := \delta \theta(\delta) \cdots \theta^{r-1}(\delta)$ regular semisimple. Let $f_r \in \mathcal{H}(G_r)$.

- p-adic field $F \supset \mathcal{O} \ni \overline{\varpi}$. $\Gamma = \text{Gal}(\overline{F}/F)$.
- If G defined over F, often write G = G(F). Set $K := G(\mathcal{O})$, when G/\mathcal{O} .
 - Hecke algebra $\mathcal{H}(G) = C_c^{\infty}(G(F), \mathbb{C})$
- spherical Hecke algebra $\mathcal{H}(G,K) = C_c(K \setminus G(F)/K)$.

[&]quot;Frobenius Twisted versions": F_r/F unramified, $(\theta) = \operatorname{Gal}(F_r/F)$, $\delta \in G_r := G(F_r)$ s.t. $N_r \delta := \delta \, \theta(\delta) \cdots \theta^{r-1}(\delta)$ regular semisimple. Let $f_r \in \mathcal{H}(G_r)$.

- p-adic field $F \supset \mathcal{O} \ni \overline{w}$. $\Gamma = \text{Gal}(\overline{F}/F)$.
- If G defined over F, often write G = G(F). Set $K := G(\mathcal{O})$, when G/\mathcal{O} .
- Hecke algebra $\mathcal{H}(G) = C_c^{\infty}(G(F), \mathbb{C}).$
- spherical Hecke algebra $\mathcal{H}(G,K) = C_c(K \setminus G(F)/K)$.

[&]quot;Frobenius Twisted versions": F_r/F unramified, $\langle \theta \rangle = \operatorname{Gal}(F_r/F)$, $\delta \in G_r := G(F_r)$ s.t. $N_r \delta := \delta \theta(\delta) \cdots \theta^{r-1}(\delta)$ regular semisimple. Let $f_r \in \mathcal{H}(G_r)$.

- p-adic field $F \supset \mathcal{O} \ni \overline{w}$. $\Gamma = \text{Gal}(\overline{F}/F)$.
- If G defined over F, often write G = G(F). Set $K := G(\mathcal{O})$, when G/\mathcal{O} .
- Hecke algebra $\mathcal{H}(G) = C_c^{\infty}(G(F), \mathbb{C}).$
- spherical Hecke algebra $\mathcal{H}(G, K) = C_{\mathcal{C}}(K \setminus G(F)/K)$.

[&]quot;Frobenius Twisted versions": F_r/F unramified, $\langle \theta \rangle = \operatorname{Gal}(F_r/F)$, $\delta \in G_r := G(F_r)$ s.t. $N_r \delta := \delta \theta(\delta) \cdots \theta^{r-1}(\delta)$ regular semisimple. Let $f_r \in \mathcal{H}(G_r)$.

- p-adic field $F \supset \mathcal{O} \ni \overline{w}$. $\Gamma = \operatorname{Gal}(\overline{F}/F)$.
- If G defined over F, often write G = G(F). Set $K := G(\mathcal{O})$, when G/\mathcal{O} .
- Hecke algebra $\mathcal{H}(G) = C_c^{\infty}(G(F), \mathbb{C}).$
- spherical Hecke algebra $\mathcal{H}(G, K) = C_c(K \setminus G(F)/K)$.

$$O_{\gamma}(f) := \int_{G_{\gamma}(F)\backslash G(F)} f.$$

$$\mathrm{SO}_{\gamma}(f) := \int_{(G_{\gamma} \backslash G)(F)} f = \sum_{\substack{\gamma \not \leq 1 \\ \gamma \neq \gamma}} \mathrm{O}_{\gamma^{j}}(f)$$

[&]quot;Frobenius Twisted versions": F_r/F unramified, $\langle \theta \rangle = \operatorname{Gal}(F_r/F)$, $\delta \in G_r := G(F_r)$ s.t $N_r \delta := \delta \theta(\delta) \cdots \theta^{r-1}(\delta)$ regular semisimple. Let $f_r \in \mathcal{H}(G_r)$.

- p-adic field $F \supset \mathcal{O} \ni \overline{w}$. $\Gamma = Gal(\overline{F}/F)$.
- If G defined over F, often write G = G(F). Set $K := G(\mathcal{O})$, when G/\mathcal{O} .
- Hecke algebra $\mathcal{H}(G) = C_c^{\infty}(G(F), \mathbb{C}).$
- spherical Hecke algebra $\mathcal{H}(G, K) = C_c(K \setminus G(F)/K)$.

Let $\gamma \in G(F)$ be regular semisimple (i.e. G_{γ} a maximal torus), $f \in \mathcal{H}(G)$.

•

$$\mathrm{O}_{\gamma}\left(f\right):=\int_{G_{\gamma}\left(F\right)\backslash G\left(F\right)}f.$$

$$SO_{\gamma}(f) := \int_{(G_{\gamma} \setminus G)(F)} f = \sum_{\substack{\gamma \neq s \\ \gamma \neq \gamma}} O_{\gamma'}(f)$$

[&]quot;Frobenius Twisted versions": F_r/F unramified, $(\theta) = \operatorname{Gal}(F_r/F)$, $\delta \in G_r := G(F_r)$ s.t. $N_r \delta := \delta \theta(\delta) \cdots \theta^{r-1}(\delta)$ regular semisimple. Let $f_r \in \mathcal{H}(G_r)$.

- p-adic field $F \supset \mathcal{O} \ni \overline{w}$. $\Gamma = \operatorname{Gal}(\overline{F}/F)$.
- If G defined over F, often write G = G(F). Set $K := G(\mathcal{O})$, when G/\mathcal{O} .
- Hecke algebra $\mathcal{H}(G) = C_c^{\infty}(G(F), \mathbb{C}).$
- spherical Hecke algebra $\mathcal{H}(G, K) = C_c(K \setminus G(F)/K)$.

Let $\gamma \in G(F)$ be regular semisimple (i.e. G_{γ} a maximal torus), $f \in \mathcal{H}(G)$.

$$\mathrm{O}_{\gamma}\left(f\right):=\int_{G_{\gamma}\left(F\right)\backslash G\left(F\right)}f.$$

•

$$\mathrm{SO}_{\gamma}\left(f\right) := \int_{\left(G_{\gamma} \backslash G\right)\left(F\right)} f = \sum_{\substack{\gamma' \overset{\mathrm{St}}{\sim \gamma}}} \mathrm{O}_{\gamma'}(f).$$

[&]quot;Frobenius Twisted versions": F_r/F unramified, $(\theta) = \operatorname{Gal}(F_r/F)$, $\delta \in G_r := G(F_r)$ s.t. $N_r \delta := \delta \theta(\delta) \cdots \theta^{r-1}(\delta)$ regular semisimple. Let $f_r \in \mathcal{H}(G_r)$.

- p-adic field $F \supset \mathcal{O} \ni \varpi$. $\Gamma = \operatorname{Gal}(\bar{F}/F)$.
- If G defined over F, often write G = G(F). Set $K := G(\mathcal{O})$, when G/\mathcal{O} .
- Hecke algebra $\mathcal{H}(G) = C_c^{\infty}(G(F), \mathbb{C}).$
- spherical Hecke algebra $\mathcal{H}(G, K) = C_c(K \setminus G(F)/K)$.

Let $\gamma \in G(F)$ be regular semisimple (i.e. G_{γ} a maximal torus), $f \in \mathcal{H}(G)$.

$$O_{\gamma}(f) := \int_{G_{\gamma}(F)\backslash G(F)} f.$$

•

$$\mathrm{SO}_{\gamma}\left(f\right) := \int_{\left(G_{\gamma} \backslash G\right)\left(F\right)} f = \sum_{\substack{\gamma' \overset{\mathrm{St}}{\sim \gamma}}} \mathrm{O}_{\gamma'}(f).$$

- $TO_{\delta\theta}(f_r) = \int_{G_{\delta\theta}\backslash G_r} f_r(g^{-1}\delta\theta(g)) d\bar{g}$
- \bigcirc SO $_{\delta\theta}(f_r) = \cdots$
- Spectral analogues: $f \mapsto \operatorname{tr} \pi(f)$, and $f_r \mapsto \operatorname{tr} \Pi \theta(f_r)$

- p-adic field $F \supset \mathcal{O} \ni \varpi$. $\Gamma = \operatorname{Gal}(\bar{F}/F)$.
- If G defined over F, often write G = G(F). Set $K := G(\mathcal{O})$, when G/\mathcal{O} .
- Hecke algebra $\mathcal{H}(G) = C_c^{\infty}(G(F), \mathbb{C}).$
- spherical Hecke algebra $\mathcal{H}(G, K) = C_c(K \setminus G(F)/K)$.

Let $\gamma \in G(F)$ be regular semisimple (i.e. G_{γ} a maximal torus), $f \in \mathcal{H}(G)$.

•

$$\mathcal{O}_{\gamma}\left(f\right):=\int_{G_{\gamma}\left(F\right)\backslash G\left(F\right)}f.$$

•

$$\mathrm{SO}_{\gamma}\left(f\right) := \int_{\left(G_{\gamma} \backslash G\right)\left(F\right)} f = \sum_{\substack{\gamma' \overset{\mathrm{St}}{\sim \gamma}}} \mathrm{O}_{\gamma'}(f).$$

- $TO_{\delta\theta}(f_r) = \int_{G_{\delta\theta}\backslash G_r} f_r(g^{-1}\delta\theta(g)) d\bar{g},$
- \bigcirc SO_{$\delta\theta$} (f_r) =
- Spectral analogues: $f \mapsto \operatorname{tr} \pi(f)$, and $f_r \mapsto \operatorname{tr} \Pi \theta(f_r)$

- p-adic field $F \supset \mathcal{O} \ni \varpi$. $\Gamma = \operatorname{Gal}(\bar{F}/F)$.
- If G defined over F, often write G = G(F). Set $K := G(\mathcal{O})$, when G/\mathcal{O} .
- Hecke algebra $\mathcal{H}(G) = C_c^{\infty}(G(F), \mathbb{C}).$
- spherical Hecke algebra $\mathcal{H}(G, K) = C_c(K \setminus G(F)/K)$.

Let $\gamma \in G(F)$ be regular semisimple (i.e. G_{γ} a maximal torus), $f \in \mathcal{H}(G)$.

$$\mathcal{O}_{\gamma}\left(f\right):=\int_{G_{\gamma}\left(F\right)\backslash G\left(F\right)}f.$$

•

$$\mathrm{SO}_{\gamma}\left(f\right) := \int_{\left(G_{\gamma} \backslash G\right)\left(F\right)} f = \sum_{\substack{\gamma' \overset{\mathrm{St}}{\sim \gamma}}} \mathrm{O}_{\gamma'}(f).$$

- $\text{TO}_{\delta\theta}(f_r) = \int_{G_{\delta\theta}\backslash G_r} f_r(g^{-1}\delta\theta(g)) d\bar{g},$
- $SO_{\delta\theta}(f_r) = \cdots$.
- Spectral analogues: $f \mapsto \operatorname{tr} \pi(f)$, and $f_r \mapsto \operatorname{tr} \Pi \theta(f_r)$

- p-adic field $F \supset \mathcal{O} \ni \varpi$. $\Gamma = \operatorname{Gal}(\bar{F}/F)$.
- If G defined over F, often write G = G(F). Set $K := G(\mathcal{O})$, when G/\mathcal{O} .
- Hecke algebra $\mathcal{H}(G) = C_c^{\infty}(G(F), \mathbb{C}).$
- spherical Hecke algebra $\mathcal{H}(G, K) = C_c(K \setminus G(F)/K)$.

Let $\gamma \in G(F)$ be regular semisimple (i.e. G_{γ} a maximal torus), $f \in \mathcal{H}(G)$.

0

$$\mathcal{O}_{\gamma}\left(f\right):=\int_{G_{\gamma}\left(F\right)\backslash G\left(F\right)}f.$$

•

$$\mathrm{SO}_{\gamma}\left(f\right) := \int_{\left(G_{\gamma} \backslash G\right)\left(F\right)} f = \sum_{\substack{\gamma / \overset{\mathrm{st}}{\sum} \\ \gamma \neq \gamma}} \mathrm{O}_{\gamma'}(f).$$

- $TO_{\delta\theta}(f_r) = \int_{G_{\delta\theta}\backslash G_r} f_r(g^{-1}\delta\theta(g)) d\bar{g},$
- $SO_{\delta\theta}(f_r) = \cdots$
- Spectral analogues: $f \mapsto \operatorname{tr} \pi(f)$, and $f_r \mapsto \operatorname{tr} \Pi \theta(f_r)$.

• Trace formula. Let $\mathbf{f} = \bigotimes_v f_v \in C_c^{\infty}(\mathbf{G}(\mathbb{A}))$. Roughly, the Trace Formula is an equality of the form $T_{\text{geom}}(\mathbf{f}) = T_{\text{spec}}(\mathbf{f})$

$$\sum_{\gamma_0 \in \mathbf{G}(\mathbb{Q})/\sim} c_{\gamma_0} \operatorname{O}^{\mathbf{G}(\mathbb{A})}_{\gamma_0}(\mathbf{f}) + \cdots = \sum_{\pi = \otimes_{\mathfrak{b}}' \pi_{\mathfrak{b}}} m(\pi) \operatorname{tr} \pi(\mathbf{f}) + \cdots.$$

Roughly, the stabilization of the trace formula is an expression

$$T_*^{\mathbf{G}}(\mathbf{f}) = \sum_{\mathbf{H}/\sim} \iota(\mathbf{G}, \mathbf{H}) S T_*^{\mathbf{H}}(\mathbf{f}^{\mathbf{H}}),$$

where $* \in \{\text{"geom''}, \text{"spec}, \text{disc''}\}\$

• Endoscopic groups enter into the pseudostabilization of the Lefschetz formula for Shimura varieties $Sh = Sh(G, X, K^pK_p)$

$$\operatorname{Lef}(\Phi_{\mathfrak{p}}^{r}; H_{c}^{\bullet}(Sh)) = \sum_{\gamma_{0}; \gamma, \delta} c(\gamma_{0}; \gamma, \delta) \operatorname{O}_{\gamma}^{\operatorname{G}(\mathbb{A}^{p, \infty})}(f^{p}) \operatorname{TO}_{\delta\theta}^{\operatorname{G}(\mathbb{Q}_{p^{r}})}(\phi_{r})$$

• Trace formula. Let $\mathbf{f} = \bigotimes_v f_v \in C_c^{\infty}(\mathbf{G}(\mathbb{A}))$. Roughly, the Trace Formula is an equality of the form $T_{\text{geom}}(\mathbf{f}) = T_{\text{spec}}(\mathbf{f})$

$$\sum_{\gamma_0 \in \mathbf{G}(\mathbb{Q})/\sim} c_{\gamma_0} \operatorname{O}_{\gamma_0}^{\mathbf{G}(\mathbb{A})}(\mathbf{f}) + \cdots = \sum_{\pi = \otimes_{\nu}' \pi_{\nu}} m(\pi) \operatorname{tr} \pi(\mathbf{f}) + \cdots.$$

Roughly, the stabilization of the trace formula is an expression

$$T_*^{\mathbf{G}}(\mathbf{f}) = \sum_{\mathbf{H}/\sim} \iota(\mathbf{G}, \mathbf{H}) \, ST_*^{\mathbf{H}}(\mathbf{f}^{\mathbf{H}}),$$

where $* \in \{\text{"geom''}, \text{"spec}, \text{disc''}\}\$

• Endoscopic groups enter into the pseudostabilization of the Lefschetz formula for Shimura varieties $Sh = Sh(G, X, K^pK_p)$

$$\operatorname{Lef}(\Phi_{\mathfrak{p}}^{r}; H_{c}^{\bullet}(Sh)) = \sum_{\gamma_{0}; \gamma, \delta} c(\gamma_{0}; \gamma, \delta) \operatorname{O}_{\gamma}^{\mathbf{G}(\mathbb{A}^{p, \infty})}(f^{p}) \operatorname{TO}_{\delta\theta}^{\mathbf{G}(\mathbb{Q}_{p^{r}})}(\phi_{r})$$

• Trace formula. Let $\mathbf{f} = \bigotimes_v f_v \in C_c^{\infty}(\mathbf{G}(\mathbb{A}))$. Roughly, the Trace Formula is an equality of the form $T_{\text{geom}}(\mathbf{f}) = T_{\text{spec}}(\mathbf{f})$

$$\sum_{\gamma_0 \in \mathbf{G}(\mathbb{Q})/\sim} c_{\gamma_0} \operatorname{O}_{\gamma_0}^{\mathbf{G}(\mathbb{A})}(\mathbf{f}) + \cdots = \sum_{\pi = \otimes_{\nu}' \pi_{\nu}} m(\pi) \operatorname{tr} \pi(\mathbf{f}) + \cdots.$$

Roughly, the stabilization of the trace formula is an expression

$$T_*^{\mathbf{G}}(\mathbf{f}) = \sum_{\mathbf{H}/\sim} \iota(\mathbf{G}, \mathbf{H}) \, ST_*^{\mathbf{H}}(\mathbf{f}^{\mathbf{H}}),$$

where $* \in \{\text{"geom"}, \text{"spec}, \text{disc"}\}.$

• Endoscopic groups enter into the pseudostabilization of the Lefschetz formula for Shimura varieties $Sh = Sh(G, X, K^pK_p)$

$$\operatorname{Lef}(\Phi_{\mathfrak{p}}^{r}; H_{c}^{\bullet}(Sh)) = \sum_{\gamma_{0}; \gamma, \delta} c(\gamma_{0}; \gamma, \delta) \operatorname{O}_{\gamma}^{\mathbf{G}(\mathbb{A}^{p, \infty})}(f^{p}) \operatorname{TO}_{\delta\theta}^{\mathbf{G}(\mathbb{Q}_{p^{r}})}(\phi_{r})$$

• Trace formula. Let $\mathbf{f} = \bigotimes_v f_v \in C_c^{\infty}(\mathbf{G}(\mathbb{A}))$. Roughly, the Trace Formula is an equality of the form $T_{\text{geom}}(\mathbf{f}) = T_{\text{spec}}(\mathbf{f})$

$$\sum_{\gamma_0 \in \mathbf{G}(\mathbb{Q})/\sim} c_{\gamma_0} \operatorname{O}_{\gamma_0}^{\mathbf{G}(\mathbb{A})}(\mathbf{f}) + \cdots = \sum_{\pi = \otimes_{\nu}' \pi_{\nu}} m(\pi) \operatorname{tr} \pi(\mathbf{f}) + \cdots.$$

Roughly, the stabilization of the trace formula is an expression

$$T_*^{\mathbf{G}}(\mathbf{f}) = \sum_{\mathbf{H}/\sim} \iota(\mathbf{G}, \mathbf{H}) \, ST_*^{\mathbf{H}}(\mathbf{f}^{\mathbf{H}}),$$

where $* \in \{\text{"geom"}, \text{"spec}, \text{disc"}\}.$

• Endoscopic groups enter into the pseudostabilization of the Lefschetz formula for Shimura varieties $Sh = Sh(\mathbf{G}, X, K^pK_p)$

$$\operatorname{Lef}(\Phi_{\mathfrak{p}}^{r}; H_{c}^{\bullet}(Sh)) = \sum_{\gamma_{0}; \gamma, \delta} c(\gamma_{0}; \gamma, \delta) \operatorname{O}_{\gamma}^{\mathbf{G}(\mathbb{A}^{p, \infty})}(f^{p}) \operatorname{TO}_{\delta\theta}^{G(\mathbb{Q}_{p^{r}})}(\phi_{r}).$$

Overview
Objects of local harmonic analysi
Endoscopic groups
Matching functions

Endoscopic groups: What are they? Can be local or global. Consider local case.

An (standard) endoscopic group H for G satisfies

There is a transfer homomorphism $b: \mathcal{H}(G, K) \to \mathcal{H}(H, K_H)$. If G and H split:

$$\mathcal{H}(G,K) - \stackrel{b}{\longrightarrow} \mathcal{H}(H,K_H)$$

$$\underset{\text{Sat}}{\downarrow_{l}} \downarrow \qquad \qquad \underset{\text{Sat}}{\downarrow_{l}} \downarrow \downarrow$$

$$\text{Rep}(\widehat{G}) = = \mathbb{C}[\widehat{T}_G/W_G] \longrightarrow \mathbb{C}[\widehat{T}_H/W_H] = = \text{Rep}(\widehat{H}).$$

We will generalize this picture

Endoscopic groups: What are they? Can be local or global. Consider local case.

An (standard) endoscopic group H for G satisfies

- H connected reductive, quasisplit over F
- $\exists \eta : \widehat{H} \hookrightarrow \widehat{G}$ such that $\eta : \widehat{H} \cong C_{\widehat{G}}(\eta(s))^{\circ}$, some $s \in Z(\widehat{H})^{\Gamma}$
- $((H, s, \eta))$ taken up to an equivalence relation.)
- H, G share a Cartan over F: there exists $T_H \cong T_G \subset G$.
- $W_H \subset W_G$, so $T_H/W_H \to T_G/W_G$

There is a transfer homomorphism $b: \mathcal{H}(G, K) \to \mathcal{H}(H, K_H)$. If G and H split:

$$\mathcal{H}(G,K) - \stackrel{b}{\longrightarrow} \mathcal{H}(H,K_H)$$

$$\operatorname{Sat} \downarrow^{i} \qquad \operatorname{Sat} \downarrow^{i}$$

$$\operatorname{Rep}(\widehat{G}) = = \mathbb{C}[\widehat{T}_G/W_G] \longrightarrow \mathbb{C}[\widehat{T}_H/W_H] = = \operatorname{Rep}(\widehat{H})$$

We will generalize this picture.

Endoscopic groups: What are they? Can be local or global. Consider local case.

An (standard) endoscopic group H for G satisfies

- H connected reductive, quasisplit over F
- $\exists \eta : \widehat{H} \hookrightarrow \widehat{G}$ such that $\eta : \widehat{H} \cong C_{\widehat{G}}(\eta(s))^{\circ}$, some $s \in Z(\widehat{H})^{\Gamma}$.
- $((H, s, \eta)$ taken up to an equivalence relation.)
- H, G share a Cartan over F: there exists $T_H \xrightarrow{\sim} T_G \subset G$.
- ullet $W_H \subset W_G$, so $T_H/W_H
 ightarrow T_G/W_G$

There is a transfer homomorphism $b:\mathcal{H}(G,K) o\mathcal{H}(H,K_H).$ If G and H split:

$$\mathcal{H}(G,K) - - \stackrel{b}{\longrightarrow} \mathcal{H}(H,K_H)$$

$$\operatorname{Sat} \left| \begin{smallmatrix} \iota & & \\ & & \\ & & \\ \end{array} \right| \xrightarrow{\iota} \operatorname{Rep}(\widehat{G}) = = \mathbb{C}[\widehat{T}_G/W_G] \longrightarrow \mathbb{C}[\widehat{T}_H/W_H] = = \operatorname{Rep}(\widehat{H})$$

We will generalize this picture.

Endoscopic groups: What are they?

Can be local or global. Consider local case.

An (standard) endoscopic group H for G satisfies

- H connected reductive, quasisplit over F
- $\exists \ \eta : \widehat{H} \hookrightarrow \widehat{G}$ such that $\eta : \widehat{H} \cong C_{\widehat{G}}(\eta(s))^{\circ}$, some $s \in Z(\widehat{H})^{\Gamma}$.
- $((H, s, \eta)$ taken up to an equivalence relation.)
- H, G share a Cartan over F: there exists $T_H \xrightarrow{\sim} T_G \subset G$.
- ullet $W_H\subset W_G,$ so $\widehat{T}_H/W_H o\widehat{T}_G/W_G$

There is a transfer homomorphism $b: \mathcal{H}(G, K) \to \mathcal{H}(H, K_H)$. If G and H split:

$$\mathcal{H}(G, K) - - \xrightarrow{b} \Rightarrow \mathcal{H}(H, K_H)$$

$$\operatorname{Sat} \bigg|_{\iota} \qquad \operatorname{Sat} \bigg|_{\iota}$$

$$\mathbb{C}[\widehat{T}_G/W_G] \longrightarrow \mathbb{C}[\widehat{T}_H/W_H] = \operatorname{Rep}(\widehat{H})$$

We will generalize this picture.

Can be local or global. Consider local case.

An (standard) endoscopic group H for G satisfies

- H connected reductive, quasisplit over F
- $\exists \ \eta : \widehat{H} \hookrightarrow \widehat{G}$ such that $\eta : \widehat{H} \cong C_{\widehat{G}}(\eta(s))^{\circ}$, some $s \in Z(\widehat{H})^{\Gamma}$.
- $((H, s, \eta))$ taken up to an equivalence relation.)
- H, G share a Cartan over F: there exists $T_H \xrightarrow{\sim} T_G \subset G$.
- ullet $W_H\subset W_G$, so $\widehat{T}_H/W_H
 ightarrow \widehat{T}_G/W_G$.

There is a transfer homomorphism $b: \mathcal{H}(G, K) \to \mathcal{H}(H, K_H)$. If G and H split:

$$\mathcal{H}(G, K) - - \xrightarrow{b} \to \mathcal{H}(H, K_H)$$

$$\operatorname{Sat} \left| \downarrow \downarrow \right|$$

$$\mathbb{C}[\widehat{T}_G/W_G] \longrightarrow \mathbb{C}[\widehat{T}_H/W_H] = = \operatorname{Rep}(\widehat{H})$$

Can be local or global. Consider local case.

An (standard) endoscopic group H for G satisfies

- H connected reductive, quasisplit over F
- $\exists \ \eta : \widehat{H} \hookrightarrow \widehat{G}$ such that $\eta : \widehat{H} \cong C_{\widehat{G}}(\eta(s))^{\circ}$, some $s \in Z(\widehat{H})^{\Gamma}$.
- $((H, s, \eta)$ taken up to an equivalence relation.)
- H, G share a Cartan over F: there exists $T_H \xrightarrow{\sim} T_G \subset G$.
- ullet $W_H\subset W_G,$ so $\widehat{T}_H/W_H
 ightarrow \widehat{T}_G/W_G.$

There is a transfer homomorphism $b: \mathcal{H}(G, K) \to \mathcal{H}(H, K_H)$. If G and H split:

$$\mathcal{H}(G,K) - \stackrel{b}{-} > \mathcal{H}(H,K_H)$$

$$\operatorname{Sat} \left| \begin{smallmatrix} i \\ & \end{smallmatrix} \right| \qquad \operatorname{Sat} \left| \begin{smallmatrix} i \\ & \end{smallmatrix} \right|$$

$$\operatorname{Rep}(\widehat{G}) = = \mathbb{C}[\widehat{T}_G/W_G] \longrightarrow \mathbb{C}[\widehat{T}_H/W_H] = = \operatorname{Rep}(\widehat{H}).$$

Can be local or global. Consider local case.

An (standard) endoscopic group H for G satisfies

- H connected reductive, quasisplit over F
- $\exists \ \eta : \widehat{H} \hookrightarrow \widehat{G}$ such that $\eta : \widehat{H} \cong C_{\widehat{G}}(\eta(s))^{\circ}$, some $s \in Z(\widehat{H})^{\Gamma}$.
- $((H, s, \eta)$ taken up to an equivalence relation.)
- H, G share a Cartan over F: there exists $T_H \xrightarrow{\sim} T_G \subset G$.
- ullet $W_H\subset W_G,$ so $\widehat{T}_H/W_H
 ightarrow \widehat{T}_G/W_G.$

There is a transfer homomorphism $b: \mathcal{H}(G, K) \to \mathcal{H}(H, K_H)$. If G and H split:

$$\mathcal{H}(G,K) - - \stackrel{b}{\longrightarrow} \mathcal{H}(H,K_H)$$

$$\operatorname{Sat} \Big|_{\stackrel{?}{\downarrow}} \qquad \operatorname{Sat} \Big|_{\stackrel{?}{\downarrow}}$$

$$\operatorname{Rep}(\widehat{G}) = = \mathbb{C}[\widehat{T}_G/W_G] \longrightarrow \mathbb{C}[\widehat{T}_H/W_H] = = \operatorname{Rep}(\widehat{H}).$$

Can be local or global. Consider local case.

An (standard) endoscopic group H for G satisfies

- H connected reductive, quasisplit over F
- ullet $\exists \ \eta: \widehat{H} \hookrightarrow \widehat{G} \ ext{such that} \ \eta: \widehat{H} \cong C_{\widehat{G}}(\eta(s))^{\circ}, \ ext{some} \ s \in Z(\widehat{H})^{\Gamma}.$
- $((H, s, \eta))$ taken up to an equivalence relation.)
- H, G share a Cartan over F: there exists $T_H \xrightarrow{\sim} T_G \subset G$.
- ullet $W_H\subset W_G$, so $\widehat{T}_H/W_H o \widehat{T}_G/W_G$.

There is a transfer homomorphism $b: \mathcal{H}(G, K) \to \mathcal{H}(H, K_H)$. If G and H split:

$$\mathcal{H}(G, K) - \stackrel{b}{-} > \mathcal{H}(H, K_H)$$

$$\operatorname{Sat} \Big|_{\stackrel{?}{\downarrow}} \qquad \operatorname{Sat} \Big|_{\stackrel{?}{\downarrow}}$$

$$\operatorname{Rep}(\widehat{G}) = = \mathbb{C}[\widehat{T}_G/W_G] \longrightarrow \mathbb{C}[\widehat{T}_H/W_H] = = \operatorname{Rep}(\widehat{H}).$$

Can be local or global. Consider local case.

An (standard) endoscopic group H for G satisfies

- H connected reductive, quasisplit over F
- ullet $\exists \ \eta: \widehat{H} \hookrightarrow \widehat{G} \ ext{such that} \ \eta: \widehat{H} \cong C_{\widehat{G}}(\eta(s))^{\circ}, \ ext{some} \ s \in Z(\widehat{H})^{\Gamma}.$
- $((H, s, \eta))$ taken up to an equivalence relation.)
- H, G share a Cartan over F: there exists $T_H \xrightarrow{\sim} T_G \subset G$.
- ullet $W_H\subset W_G$, so $\widehat{T}_H/W_H o \widehat{T}_G/W_G$.

There is a transfer homomorphism $b: \mathcal{H}(G, K) \to \mathcal{H}(H, K_H)$. If G and H split:

$$\mathcal{H}(G, K) - \stackrel{b}{\longrightarrow} \mathcal{H}(H, K_H)$$

$$\operatorname{Sat} \left| \stackrel{?}{\downarrow} \right| \operatorname{Sat} \left| \stackrel{?}{\downarrow} \right|$$

$$\operatorname{Rep}(\widehat{G}) = \mathbb{C}[\widehat{T}_G/W_G] \longrightarrow \mathbb{C}[\widehat{T}_H/W_H] = \operatorname{Rep}(\widehat{H}).$$

$$G = GL_n$$
: $H = Levi$ subgroup of GL_n

$$G = PGL_2 : H = PGL_2 \text{ or } GL_1.$$

$$G = SL_2$$
: $H = SL_2$, GL_1 , or $U^1_{E/F}$, E/F quadratic

$$G = G_2$$
: $H = G_2$, SO₄, PGL₃, or GL₁ × GL₁

$$G = GL_n$$
: $H = Levi$ subgroup of GL_n

$$G = PGL_2$$
: $H = PGL_2$ or GL_1 .

$$G = \mathrm{SL}_2$$
: $H = \mathrm{SL}_2$, GL_1 , or $U^1_{E/F}$, E/F quadratic

$$G = G_2$$
: $H = G_2$, SO₄, PGL₃, or GL₁ × GL₁

$$G = GL_n$$
: $H = Levi$ subgroup of GL_n

$$G = PGL_2$$
: $H = PGL_2$ or GL_1 .

$$G = \mathrm{SL}_2$$
: $H = \mathrm{SL}_2$, GL_1 , or $U^1_{E/F}$, E/F quadratic.

$$G = G_2$$
: $H = G_2$, SO₄, PGL₃, or GL₁ × GL₁

$$G = GL_n$$
: $H = Levi$ subgroup of GL_n

$$G = PGL_2$$
: $H = PGL_2$ or GL_1 .

$$G = SL_2$$
: $H = SL_2$, GL_1 , or $U_{E/F}^1$, E/F quadratic.

$$G = G_2$$
: $H = G_2$, SO₄, PGL₃, or GL₁ × GL₁.

For the pair G_r , θ , there exist *Frobenius-twisted* endoscopic groups H, and transfer homomorphisms

$$b_r: \mathcal{H}(G_r, K_r) \to \mathcal{H}(H, K_H).$$

If H = G, we get the spherical base change homomorphism

$$\mathcal{H}(G_r, K_r) \to \mathcal{H}(G, K).$$

Goal: generalize the definition and matching properties of b_r to arbitrary level.

For the pair G_r , θ , there exist *Frobenius-twisted* endoscopic groups H, and transfer homomorphisms

$$b_r: \mathcal{H}(G_r, K_r) \to \mathcal{H}(H, K_H).$$

If H = G, we get the spherical base change homomorphism

$$\mathcal{H}(G_r, K_r) \to \mathcal{H}(G, K)$$
.

Goal: generalize the definition and matching properties of b_r to arbitrary level.

For the pair G_r , θ , there exist *Frobenius-twisted* endoscopic groups H, and transfer homomorphisms

$$b_r: \mathcal{H}(G_r, K_r) \to \mathcal{H}(H, K_H).$$

If H = G, we get the spherical base change homomorphism

$$\mathcal{H}(G_r, K_r) \to \mathcal{H}(G, K).$$

Goal: generalize the definition and matching properties of b_r to arbitrary level.

$$f_r \in \mathcal{H}(G_r), f^H \in \mathcal{H}(H).$$

Definition

$$f_r \leftrightarrow f^H$$
 IT, for all $\gamma_H \in H^{O-st}(F)$,
$$\mathrm{SO}^H_{\gamma_H}(f^H) = \sum_{\delta \in G(F_r)/\theta-\mathit{conj}} \Delta(\gamma_H,\delta) \, \mathrm{TO}^{G_r}_{\delta \theta}(f_r).$$

Here $\Delta(\gamma_H, \delta) \in \mathbb{C}^{\times}$ are the transfer factors associated to H and G_r .

The "Frobenius twist" is built into them

$$f_r \in \mathcal{H}(G_r), f^H \in \mathcal{H}(H).$$

Definition

$$f_r \leftrightarrow f^H$$
 if, for all $\gamma_H \in H^{G-\mathrm{sr}}(F)$,

$$SO_{\gamma_H}^H(f^H) = \sum_{\delta \in G(F_r)/\theta - conj} \Delta(\gamma_H, \delta) \operatorname{TO}_{\delta\theta}^{G_r}(f_r).$$

Here $\Delta(\gamma_H, \delta) \in \mathbb{C}^{\times}$ are the transfer factors associated to H and G_r .

The "Frobenius twist" is built into them

$$f_r \in \mathcal{H}(G_r), f^H \in \mathcal{H}(H).$$

Definition

$$f_r \leftrightarrow f^H$$
 if, for all $\gamma_H \in H^{G-\mathrm{sr}}(F)$,

$$\mathrm{SO}^H_{\gamma_H}(f^H) = \sum_{\delta \in G(F_r)/\theta - \mathit{conj}} \Delta(\gamma_H, \delta) \, \mathrm{TO}^{G_r}_{\delta\theta}(f_r).$$

Here $\Delta(\gamma_H, \delta) \in \mathbb{C}^{\times}$ are the transfer factors associated to H and G_r .

The "Frobenius twist" is built into them

$$f_r \in \mathcal{H}(G_r), f^H \in \mathcal{H}(H).$$

Definition

$$f_r \leftrightarrow f^H$$
 if, for all $\gamma_H \in H^{G-\mathrm{sr}}(F)$,

$$SO_{\gamma_H}^H(f^H) = \sum_{\delta \in G(F_r)/\theta - \mathit{conj}} \Delta(\gamma_H, \delta) \, TO_{\delta\theta}^{G_r}(f_r).$$

Here $\Delta(\gamma_H, \delta) \in \mathbb{C}^{\times}$ are the transfer factors associated to H and G_r .

The "Frobenius twist" is built into them.

$$f_r \in \mathcal{H}(G_r), f^H \in \mathcal{H}(H).$$

Definition

 $f_r \leftrightarrow f^H$ if, for all $\gamma_H \in H^{G-\mathrm{sr}}(F)$,

$$SO_{\gamma_H}^H(f^H) = \sum_{\delta \in G(F_r)/\theta - \mathit{conj}} \Delta(\gamma_H, \delta) \, TO_{\delta\theta}^{G_r}(f_r).$$

Here $\Delta(\gamma_H, \delta) \in \mathbb{C}^{\times}$ are the transfer factors associated to H and G_r .

The "Frobenius twist" is built into them.

• Stable Base Change: H = G. Set $f := f^H$ and $\gamma := \gamma_H$.

$$\mathrm{SO}_{\gamma}^G(f) = \sum_{\delta \in G_r/\theta - \mathrm{conj}} \Delta(\gamma, \delta) \, \mathrm{TO}_{\delta\theta}^{G_r}(f_r)$$

where

$$\Delta(\gamma, \delta) = \begin{cases} 1, & N_r(\delta) \stackrel{st}{\sim} \gamma \\ 0, & \text{otherwise.} \end{cases}$$

• Stable Base Change: H = G. Set $f := f^H$ and $\gamma := \gamma_H$.

$$\mathrm{SO}_{\boldsymbol{\gamma}}^G(f) = \sum_{\boldsymbol{\delta} \in G_r/\theta - \mathrm{conj}} \Delta(\boldsymbol{\gamma}, \boldsymbol{\delta}) \, \mathrm{TO}_{\boldsymbol{\delta}\boldsymbol{\theta}}^{G_r}(f_r),$$

where

$$\Delta(\gamma, \delta) = \begin{cases} 1, & N_r(\delta) \stackrel{st}{\sim} \gamma \\ 0, & \text{otherwise.} \end{cases}.$$

• Standard endoscopy: r = 1,i.e. $G_r = G$. Set $f := f_r$, and $\gamma := \delta$.

• Stable Base Change: H = G. Set $f := f^H$ and $\gamma := \gamma_H$.

$$\mathrm{SO}_{\boldsymbol{\gamma}}^G(f) = \sum_{\boldsymbol{\delta} \in G_r/\theta - \mathrm{conj}} \Delta(\boldsymbol{\gamma}, \boldsymbol{\delta}) \, \mathrm{TO}_{\boldsymbol{\delta}\boldsymbol{\theta}}^{G_r}(f_r),$$

where

$$\Delta(\gamma, \delta) = \begin{cases} 1, & N_r(\delta) \stackrel{st}{\sim} \gamma \\ 0, & \text{otherwise.} \end{cases}.$$

• Standard endoscopy: r = 1,i.e. $G_r = G$. Set $f := f_r$, and $\gamma := \delta$.

$$SO_{y_H}^B(f^B) = \sum_{\gamma \in G(F)/conj} \Delta(\gamma_H, \gamma) O_{\gamma}^D(f).$$

Langlands-Shelstad transfer factors $\Delta(\gamma_H, \gamma)$ much harder to define.

• Stable Base Change: H = G. Set $f := f^H$ and $\gamma := \gamma_H$.

$$\mathrm{SO}_{\boldsymbol{\gamma}}^G(f) = \sum_{\boldsymbol{\delta} \in G_r/\theta - \mathrm{conj}} \Delta(\boldsymbol{\gamma}, \boldsymbol{\delta}) \, \mathrm{TO}_{\boldsymbol{\delta}\boldsymbol{\theta}}^{G_r}(f_r),$$

where

$$\Delta(\gamma, \delta) = \begin{cases} 1, & N_r(\delta) \stackrel{st}{\sim} \gamma \\ 0, & \text{otherwise.} \end{cases}.$$

• Standard endoscopy: r = 1,i.e. $G_r = G$. Set $f := f_r$, and $\gamma := \delta$.

$$\mathrm{SO}^H_{\gamma_H}(f^H) = \sum_{\gamma \in G(F)/\mathrm{conj}} \Delta(\gamma_H, \gamma) \, \mathrm{O}^G_{\gamma}(f).$$

Langlands-Shelstad transfer factors $\Delta(\gamma_H, \gamma)$ much harder to define.

• Stable Base Change: H = G. Set $f := f^H$ and $\gamma := \gamma_H$.

$$\mathrm{SO}_{\boldsymbol{\gamma}}^G(f) = \sum_{\boldsymbol{\delta} \in G_r/\theta - \mathrm{conj}} \Delta(\boldsymbol{\gamma}, \boldsymbol{\delta}) \, \mathrm{TO}_{\boldsymbol{\delta}\boldsymbol{\theta}}^{G_r}(f_r),$$

where

$$\Delta(\gamma, \delta) = \begin{cases} 1, & N_r(\delta) \stackrel{st}{\sim} \gamma \\ 0, & \text{otherwise.} \end{cases}.$$

• Standard endoscopy: r = 1,i.e. $G_r = G$. Set $f := f_r$, and $\gamma := \delta$.

$$\mathrm{SO}^H_{\gamma_H}(f^H) = \sum_{\gamma \,\in G(F)/\mathrm{conj}} \Delta(\gamma_H, \gamma) \, \mathrm{O}^G_{\gamma}(f).$$

Langlands-Shelstad transfer factors $\Delta(\gamma_H, \gamma)$ much harder to define.

 $K = G(\mathcal{O})$ (hyperspecial), with analogue $K_r \subset G_r$.

- Example A: BCFL.
 - The spherical base change homomorphism
 - $b_r: \mathcal{H}(G_r, K_r) \to \mathcal{H}(G, K)$ produces matching pairs: for all f_r , we have $f_r \leftrightarrow b_r(f_r)$.
- Example B: FL: $K = G(\mathcal{O}), K_H = H(\mathcal{O}).$ Then $1_K \leftrightarrow 1_{E_H}$
- Example C: Hales' spherical transfer.
 - $f \leftrightarrow h(f)$, where h is the (apherical) transfer homomorphism above

Remark: Formally B is a special case of C, but B is used in proof of C

 $K = G(\mathcal{O})$ (hyperspecial), with analogue $K_r \subset G_r$.

- Example A: BCFL
- The spherical base change homomorphism $b_r: \mathcal{H}(G_r, K_r) \to \mathcal{H}(G, K)$ produces matching pairs: for all f_r , we have $f_r \leftrightarrow b_r(f_r)$.
- Example B: FL: $K = G(\mathcal{O}), K_H = H(\mathcal{O}).$ Then $1_K \leftrightarrow 1_{K_H}$
- Example C: Hales' spherical transfer
- $f \leftrightarrow h(f)$, where h is the (spherical) transfer homomorphism above

Remark: Formally B is a special case of C, but B is used in proof of C.

 $K = G(\mathcal{O})$ (hyperspecial), with analogue $K_r \subset G_r$.

- Example A: BCFL. The spherical base change homomorphism $b_r: \mathcal{H}(G_r, K_r) \to \mathcal{H}(G, K)$ produces matching pairs: for all f_r , we have $f_r \leftrightarrow b_r(f_r)$.
- Example B: FL: $K = G(\mathcal{O}), K_H = H(\mathcal{O}).$ Then $1_K \leftrightarrow 1_{K_H}.$
- Example C: Hales' spherical transfer.
 f ↔ b(f), where b is the (spherical) transfer homomorphism above.

Remark: Formally B is a special case of C, but B is used in proof of C.

 $K = G(\mathcal{O})$ (hyperspecial), with analogue $K_r \subset G_r$.

- Example A: BCFL. The spherical base change homomorphism $b_r: \mathcal{H}(G_r, K_r) \to \mathcal{H}(G, K)$ produces matching pairs: for all f_r , we have $f_r \leftrightarrow b_r(f_r)$.
- Example B: FL: $K = G(\mathcal{O}), K_H = H(\mathcal{O}).$ Then $1_K \leftrightarrow 1_{K_H}.$
- Example C: Hales' spherical transfer.
- $f \leftrightarrow b(f)$, where b is the (spherical) transfer homomorphism above.

Remark: Formally B is a special case of C, but B is used in proof of C.

 $K = G(\mathcal{O})$ (hyperspecial), with analogue $K_r \subset G_r$.

- Example A: BCFL. The spherical base change homomorphism $b_r: \mathcal{H}(G_r,K_r) \to \mathcal{H}(G,K)$ produces matching pairs: for all f_r , we have $f_r \leftrightarrow b_r(f_r)$.
- Example B: FL: $K = G(\mathcal{O}), K_H = H(\mathcal{O}).$ Then $1_K \leftrightarrow 1_{K_H}.$
- Example C: Hales' spherical transfer.
 f ↔ b(f), where b is the (spherical) transfer homomorphism above.

Remark: Formally B is a special case of C, but B is used in proof of C.

 $K = G(\mathcal{O})$ (hyperspecial), with analogue $K_r \subset G_r$.

- Example A: BCFL. The spherical base change homomorphism $b_r: \mathcal{H}(G_r, K_r) \to \mathcal{H}(G, K)$ produces matching pairs: for all f_r , we have $f_r \leftrightarrow b_r(f_r)$.
- Example B: FL: $K = G(\mathcal{O}), K_H = H(\mathcal{O}).$ Then $1_K \leftrightarrow 1_{K_H}.$
- Example C: Hales' spherical transfer.
 f ↔ b(f), where b is the (spherical) transfer homomorphism above.

Remark: Formally B is a special case of C, but B is used in proof of C.

 $K = G(\mathcal{O})$ (hyperspecial), with analogue $K_r \subset G_r$.

- Example A: BCFL. The spherical base change homomorphism $b_r: \mathcal{H}(G_r, K_r) \to \mathcal{H}(G, K)$ produces matching pairs: for all f_r , we have $f_r \leftrightarrow b_r(f_r)$.
- Example B: FL: $K = G(\mathcal{O}), K_H = H(\mathcal{O}).$ Then $1_K \leftrightarrow 1_{K_H}.$
- Example C: Hales' spherical transfer.
 f ↔ b(f), where b is the (spherical) transfer homomorphism above.

Remark: Formally B is a special case of C, but B is used in proof of C.

A. came historically first.

- GL₂ Landlands, GL₂ Kottwitz
- Gi., Arthur-Clozel: $f_1 \leftrightarrow h_1(f_2)$ dual to and used in local litting $f_2 \leftrightarrow h_2(f_2)$
- G unramified: unit elements: Kottwitz
- We general elements: Clasel, Labessee, used by Kottwitz for Strimma varieties with good reduction.

B. is essential for everything: Stabilization of trace formula, Shimura varieties and Waldspurger's transfer theorem (more later).

A. came historically first.

- GL₂ Langlands, GL₃ Kottwitz
- GL_n Arthur-Clozel: $f_r \leftrightarrow b_r(f_r)$ dual to and used in local lifting $\pi \in \mathcal{R}(\mathrm{GL}_n(F)) \mapsto \Pi \in \mathcal{R}(\mathrm{GL}_n(F_r))$.
- G unramified: unit elements: Kottwitz
- general elements: Clozel, Labesse: used by Rollwitz for

B. is essential for everything: Stabilization of trace formula, Shimura varieties and Waldspurger's transfer theorem (more later).

A. came historically first.

- GL₂ Langlands, GL₃ Kottwitz
- GL_n Arthur-Clozel: $f_r \leftrightarrow b_r(f_r)$ dual to and used in local lifting $\pi \in \mathcal{R}(\mathrm{GL}_n(F)) \mapsto \Pi \in \mathcal{R}(\mathrm{GL}_n(F_r))$.
- G unramified: unit elements: Kottwitz
- general elements: Clozel, Labesse: used by Robeltz for

B. is essential for everything: Stabilization of trace formula, Shimura varieties and Waldspurger's transfer theorem (more later).

A. came historically first.

- GL₂ Langlands, GL₃ Kottwitz
- GL_n Arthur-Clozel: $f_r \leftrightarrow b_r(f_r)$ dual to and used in local lifting $\pi \in \mathcal{R}(GL_n(F)) \mapsto \Pi \in \mathcal{R}(GL_n(F_r))$.
- G unramified: unit elements: Kottwitz
- general elements: Clozel, Labesse: used by Kottwitz for Shimura varieties with good reduction...

B. is essential for everything: Stabilization of trace formula, Shimura varieties and Waldspurger's transfer theorem (more later).

- A. came historically first.
 - GL₂ Langlands, GL₃ Kottwitz
 - GL_n Arthur-Clozel: $f_r \leftrightarrow b_r(f_r)$ dual to and used in local lifting $\pi \in \mathcal{R}(GL_n(F)) \mapsto \Pi \in \mathcal{R}(GL_n(F_r))$.
 - G unramified: unit elements: Kottwitz
 - general elements: Clozel, Labesse: used by Kottwitz for Shimura varieties with good reduction

B. is essential for everything: Stabilization of trace formula, Shimura varieties and Waldspurger's transfer theorem (more later).

A. came historically first.

- GL₂ Langlands, GL₃ Kottwitz
- GL_n Arthur-Clozel: $f_r \leftrightarrow b_r(f_r)$ dual to and used in local lifting $\pi \in \mathcal{R}(GL_n(F)) \mapsto \Pi \in \mathcal{R}(GL_n(F_r))$.
- G unramified: unit elements: Kottwitz
- general elements: Clozel, Labesse: used by Kottwitz for Shimura varieties with good reduction...

B. is essential for everything: Stabilization of trace formula, Shimura varieties and Waldspurger's transfer theorem (more later).

A. came historically first.

- GL₂ Langlands, GL₃ Kottwitz
- GL_n Arthur-Clozel: $f_r \leftrightarrow b_r(f_r)$ dual to and used in local lifting $\pi \in \mathcal{R}(GL_n(F)) \mapsto \Pi \in \mathcal{R}(GL_n(F_r))$.
- G unramified: unit elements: Kottwitz
- general elements: Clozel, Labesse: used by Kottwitz for Shimura varieties with good reduction...

B. is essential for everything: Stabilization of trace formula, Shimura varieties, and Waldspurger's transfer theorem (more later).

The roles they played

A. came historically first.

- GL₂ Langlands, GL₃ Kottwitz
- GL_n Arthur-Clozel: $f_r \leftrightarrow b_r(f_r)$ dual to and used in local lifting $\pi \in \mathcal{R}(GL_n(F)) \mapsto \Pi \in \mathcal{R}(GL_n(F_r))$.
- G unramified: unit elements: Kottwitz
- general elements: Clozel, Labesse: used by Kottwitz for Shimura varieties with good reduction...

B. is essential for everything: Stabilization of trace formula, Shimura varieties, and Waldspurger's transfer theorem (more later).

G: provided a step in FL: Global-local argument used by Hales to show FL for a.e. p implies FL for all p.

The roles they played

A. came historically first.

- GL₂ Langlands, GL₃ Kottwitz
- GL_n Arthur-Clozel: $f_r \leftrightarrow b_r(f_r)$ dual to and used in local lifting $\pi \in \mathcal{R}(GL_n(F)) \mapsto \Pi \in \mathcal{R}(GL_n(F_r))$.
- G unramified: unit elements: Kottwitz
- general elements: Clozel, Labesse: used by Kottwitz for Shimura varieties with good reduction...

B. is essential for everything: Stabilization of trace formula, Shimura varieties, and Waldspurger's transfer theorem (more later).

C: provided a step in FL: Global-local argument used by Hales to show FL for a.e. p implies FL for all p.

Waldspurger's (twisted) transfer theorem

Theorem

Let H be any Frobenius-twisted endoscopic group for G_r , θ . Given $f_r \in \mathcal{H}(G_r)$, there exists at least one $f^H \in \mathcal{H}(H)$ with

$$f_r \leftrightarrow f^H$$
.

However, the correspondence $f_r \mapsto f^H$ is not given by a natural geometric rule on the dual side, i.e. it is not (a priori) *spectrally explicit*.

Waldspurger's (twisted) transfer theorem

Theorem

Let H be any Frobenius-twisted endoscopic group for G_r , θ . Given $f_r \in \mathcal{H}(G_r)$, there exists at least one $f^H \in \mathcal{H}(H)$ with

$$f_r \leftrightarrow f^H$$
.

However, the correspondence $f_r \mapsto f^H$ is not given by a natural geometric rule on the dual side, i.e. it is not (a priori) *spectrally explicit*.

Waldspurger's (twisted) transfer theorem

Theorem

Let H be any Frobenius-twisted endoscopic group for G_r , θ . Given $f_r \in \mathcal{H}(G_r)$, there exists at least one $f^H \in \mathcal{H}(H)$ with

$$f_r \leftrightarrow f^H$$
.

However, the correspondence $f_r \mapsto f^H$ is not given by a natural geometric rule on the dual side, i.e. it is not (a priori) *spectrally explicit*.

Some Results Shimura variety applications

Transition to Bernstein center: Example: GL₂

$$\bullet \ I = \begin{bmatrix} \mathcal{O}^{\times} & \mathcal{O} \\ \varpi \mathcal{O} & \mathcal{O}^{\times} \end{bmatrix} \supset I^{+} = \begin{bmatrix} 1 + \varpi \mathcal{O} & \mathcal{O} \\ \varpi \mathcal{O} & 1 + \varpi \mathcal{O} \end{bmatrix}$$

$$ullet T := egin{bmatrix} * & 0 \\ 0 & * \end{bmatrix}$$
, and $W := W(T,G) \cong S_2$.

Set $\mathcal{Z}(G,I) = \mathcal{Z}(\mathcal{H}(G,I))$, the center of the Iwahori-Hecke algebra. $b_r : \mathcal{Z}(G_r,I_r) \to \mathcal{Z}(G,I)$ is defined analogously to the spherical case, but using the **Bernstein isomorphism**:

$$\mathcal{H}(G_r, K_r) \xrightarrow{\text{Sat}} \mathbb{C}[X^{\pm}, Y^{\pm}]^{S_2} \overset{\text{Bern}}{\sim} \mathcal{Z}(G_r, I_r)$$

$$\downarrow b_r \downarrow \qquad \qquad b_r \downarrow$$

$$\mathcal{H}(G, K) \xrightarrow{\text{Sat}} \mathbb{C}[X^{\pm}, Y^{\pm}]^{S_2} \overset{\text{Bern}}{\sim} \mathcal{Z}(G, I).$$

Transition to Bernstein center: Example: GL₂

•
$$I = \begin{bmatrix} \mathcal{O}^{\times} & \mathcal{O} \\ \varpi \mathcal{O} & \mathcal{O}^{\times} \end{bmatrix} \supset I^{+} = \begin{bmatrix} 1 + \varpi \mathcal{O} & \mathcal{O} \\ \varpi \mathcal{O} & 1 + \varpi \mathcal{O} \end{bmatrix}$$
.
• $T := \begin{bmatrix} * & 0 \\ 0 & * \end{bmatrix}$, and $W := W(T, G) \cong S_{2}$.

Set $\mathcal{Z}(G,I) = \mathcal{Z}(\mathcal{H}(G,I))$, the center of the Iwahori-Hecke algebra. $b_r : \mathcal{Z}(G_r,I_r) \to \mathcal{Z}(G,I)$ is defined analogously to the spherical case, but using the **Bernstein isomorphism**:

$$\mathcal{H}(G_r, K_r) \xrightarrow{\text{Sat}} \mathbb{C}[X^{\pm}, Y^{\pm}]^{S_2} \xrightarrow{\text{Bern}} \mathcal{Z}(G_r, I_r)$$

$$\downarrow b_r \downarrow \qquad \qquad b_r \downarrow$$

$$\mathcal{H}(G, K) \xrightarrow{\text{Sat}} \mathbb{C}[X^{\pm}, Y^{\pm}]^{S_2} \xrightarrow{\text{Bern}} \mathcal{Z}(G, I).$$

Transition to Bernstein center: Example: GL₂

$$\bullet \ I = \begin{bmatrix} \mathcal{O}^{\times} & \mathcal{O} \\ \varpi \mathcal{O} & \mathcal{O}^{\times} \end{bmatrix} \supset I^{+} = \begin{bmatrix} 1 + \varpi \mathcal{O} & \mathcal{O} \\ \varpi \mathcal{O} & 1 + \varpi \mathcal{O} \end{bmatrix}.$$

•
$$T := \begin{bmatrix} * & 0 \\ 0 & * \end{bmatrix}$$
, and $W := W(T, G) \cong S_2$.

Set $\mathcal{Z}(G,I)=Z(\mathcal{H}(G,I))$, the center of the Iwahori-Hecke algebra. $b_r:\mathcal{Z}(G_r,I_r)\to\mathcal{Z}(G,I)$ is defined analogously to the spherical case, but using the **Bernstein isomorphism**:

$$\mathcal{H}(G_r, K_r) \xrightarrow{\text{Sat}} \mathbb{C}[X^{\pm}, Y^{\pm}]^{S_2} \overset{\text{Bern}}{\sim} \mathcal{Z}(G_r, I_r)$$

$$\downarrow b_r \downarrow \qquad \qquad \downarrow b_r \downarrow$$

$$\mathcal{H}(G, K) \xrightarrow{\text{Sat}} \mathbb{C}[X^{\pm}, Y^{\pm}]^{S_2} \overset{\text{Bern}}{\sim} \mathcal{Z}(G, I).$$

Transition to Bernstein center: Example: GL₂

$$\bullet \ I = \begin{bmatrix} \mathcal{O}^{\times} & \mathcal{O} \\ \varpi \mathcal{O} & \mathcal{O}^{\times} \end{bmatrix} \supset I^{+} = \begin{bmatrix} 1 + \varpi \mathcal{O} & \mathcal{O} \\ \varpi \mathcal{O} & 1 + \varpi \mathcal{O} \end{bmatrix}.$$

•
$$T := \begin{bmatrix} * & 0 \\ 0 & * \end{bmatrix}$$
, and $W := W(T, G) \cong S_2$.

Set $\mathcal{Z}(G, I) = \mathcal{Z}(\mathcal{H}(G, I))$, the center of the Iwahori-Hecke algebra.

 $b_r: \mathcal{Z}(G_r, I_r) \to \mathcal{Z}(G, I)$ is defined analogously to the spherical case, but using the **Bernstein isomorphism**:

$$\mathcal{H}(G_r, K_r) \xrightarrow{\text{Sat}} \mathbb{C}[X^{\pm}, Y^{\pm}]^{S_2} \overset{\text{Bern}}{\sim} \mathcal{Z}(G_r, I_r)$$

$$\downarrow b_r \qquad \qquad \downarrow b_r \qquad \qquad \downarrow b_r \qquad$$

Transition to Bernstein center: Example: GL₂

$$\bullet \ I = \begin{bmatrix} \mathcal{O}^{\times} & \mathcal{O} \\ \varpi \mathcal{O} & \mathcal{O}^{\times} \end{bmatrix} \supset I^{+} = \begin{bmatrix} 1 + \varpi \mathcal{O} & \mathcal{O} \\ \varpi \mathcal{O} & 1 + \varpi \mathcal{O} \end{bmatrix}.$$

•
$$T := \begin{bmatrix} * & 0 \\ 0 & * \end{bmatrix}$$
, and $W := W(T, G) \cong S_2$.

Set $\mathcal{Z}(G,I)=Z(\mathcal{H}(G,I))$, the center of the Iwahori-Hecke algebra. $b_r:\mathcal{Z}(G_r,I_r)\to\mathcal{Z}(G,I)$ is defined analogously to the spherical case, but using the **Bernstein isomorphism**:

$$\mathcal{H}(G_r, K_r) \xrightarrow{\text{Sat}} \mathbb{C}[X^{\pm}, Y^{\pm}]^{S_2} \xrightarrow{\text{Bern}} \mathcal{Z}(G_r, I_r)$$

$$\downarrow b_r \downarrow \qquad \qquad \downarrow b_r \downarrow \qquad \qquad \downarrow b_r \downarrow$$

$$\mathcal{H}(G, K) \xrightarrow{\text{Sat}} \mathbb{C}[X^{\pm}, Y^{\pm}]^{S_2} \xrightarrow{\text{Bern}} \mathcal{Z}(G, I).$$

The Bernstein isomorphism gives a basis of Bernstein functions $z_{\mu} \in \mathcal{Z}(G, I)$ (one for each dominant $\mu \in X_*(T)$).

We have
$$b_r(z_\mu) = z_{r\mu}$$

(This is much simpler than the formula for $b_r(1_{K_r\mu(arpi)K_r}).)$

The Bernstein isomorphism gives a basis of Bernstein functions $z_{\mu} \in \mathcal{Z}(G, I)$ (one for each dominant $\mu \in X_*(T)$).

We have
$$b_r(z_\mu) = z_{r\mu}$$

(This is much simpler than the formula for $b_r(1_{K_r\mu(\varpi)K_r})$.)

The Bernstein isomorphism gives a basis of Bernstein functions $z_{\mu} \in \mathcal{Z}(G, I)$ (one for each dominant $\mu \in X_*(T)$).

We have
$$b_r(z_\mu) = z_{r\mu}$$
.

(This is much simpler than the formula for $b_r(1_{K_r\mu(\varpi)K_r})$.)

The Bernstein isomorphism gives a basis of Bernstein functions $z_{\mu} \in \mathcal{Z}(G, I)$ (one for each dominant $\mu \in X_*(T)$).

We have
$$b_r(z_\mu) = z_{r\mu}$$
.

(This is much simpler than the formula for $b_r(1_{K_r\mu(\varpi)K_r})$.)

Use of the tree

Langlands proved the spherical BCFL for GL_2 by computing both sides of

$$\mathsf{TO}^{G_r}_{\delta\theta}(1_{K_r\mu(\varpi)K_r}) = \mathsf{O}^G_{N_r\delta}(b_r(1_{K_r\mu(\varpi)K_r}))$$

for each dominant cocharacter $\mu \in X_*(T)$.

This was a vertex-counting problem on the tree for $SL_2(F)$

Walter Ray-Dulany (2010 PhD thesis) solved an analogous edge-counting problem in the tree, computing both sides of

$$TO_{\delta\theta}^{G_r}(z_{\mu}) = O_{N_r\delta}^G(z_{r\mu}).$$

Langlands proved the spherical BCFL for GL_2 by computing both sides of

$$\mathrm{TO}_{\delta\theta}^{G_r}(1_{K_r\mu(\varpi)K_r}) = \mathrm{O}_{N_r\delta}^G(b_r(1_{K_r\mu(\varpi)K_r})),$$

for each dominant cocharacter $\mu \in X_*(T)$.

This was a vertex-counting problem on the tree for $SL_2(F)$.

Walter Ray-Dulany (2010 PhD thesis) solved an analogous edge-counting problem in the tree, computing both sides of

$$TO_{\delta\theta}^{G_r}(z_{\mu}) = O_{N_r\delta}^G(z_{r\mu}).$$

Langlands proved the spherical BCFL for GL_2 by computing both sides of

$$\mathrm{TO}_{\delta\theta}^{G_r}(1_{K_r\mu(\varpi)K_r}) = \mathrm{O}_{N_r\delta}^G(b_r(1_{K_r\mu(\varpi)K_r})),$$

for each dominant cocharacter $\mu \in X_*(T)$.

This was a vertex-counting problem on the tree for $SL_2(F)$.

Walter Ray-Dulany (2010 PhD thesis) solved an analogous edge-counting problem in the tree, computing both sides of

$$TO_{\delta\theta}^{G_r}(z_{\mu}) = O_{N_r\delta}^G(z_{r\mu}).$$

Langlands proved the spherical BCFL for GL_2 by computing both sides of

$$\mathrm{TO}_{\delta\theta}^{G_r}(1_{K_r\mu(\varpi)K_r}) = \mathrm{O}_{N_r\delta}^G(b_r(1_{K_r\mu(\varpi)K_r})),$$

for each dominant cocharacter $\mu \in X_*(T)$.

This was a vertex-counting problem on the tree for $SL_2(F)$.

Walter Ray-Dulany (2010 PhD thesis) solved an analogous edge-counting problem in the tree, computing both sides of

$$TO_{\delta\theta}^{G_r}(z_{\mu}) = O_{N_r\delta}^G(z_{r\mu}).$$

Langlands proved the spherical BCFL for GL_2 by computing both sides of

$$\mathrm{TO}_{\delta\theta}^{G_r}(1_{K_r\mu(\varpi)K_r}) = \mathrm{O}_{N_r\delta}^G(b_r(1_{K_r\mu(\varpi)K_r})),$$

for each dominant cocharacter $\mu \in X_*(T)$.

This was a vertex-counting problem on the tree for $SL_2(F)$.

Walter Ray-Dulany (2010 PhD thesis) solved an analogous edge-counting problem in the tree, computing both sides of

$$TO_{\delta\theta}^{G_r}(z_{\mu}) = O_{N_r\delta}^G(z_{r\mu}).$$

Generalize the transfer homomorphism $b_r: \mathcal{H}(G_r, K_r) \to \mathcal{H}(H, K_H)$ to Hecke algebras with deeper level, such that

- 1) it produces matching pairs, and
- 2) it is spectrally explicit (= defined geometrically on dual side).

We need the Bernstein center $\mathcal{Z}(G)$ of G = G(F).

We will also need the local Langlands correspondence (LLC+)

Generalize the transfer homomorphism $b_r: \mathcal{H}(G_r, K_r) \to \mathcal{H}(H, K_H)$ to Hecke algebras with deeper level, such that

- 1) it produces matching pairs, and
- 2) it is spectrally explicit (= defined geometrically on dual side).

We need the Bernstein center $\mathcal{Z}(G)$ of G = G(F).

We will also need the local Langlands correspondence (LLC+)

Generalize the transfer homomorphism $b_r: \mathcal{H}(G_r, K_r) \to \mathcal{H}(H, K_H)$ to Hecke algebras with deeper level, such that

- 1) it produces matching pairs, and
- 2) it is spectrally explicit (= defined geometrically on dual side).

We need the Bernstein center $\mathcal{Z}(G)$ of G = G(F).

We will also need the local Langlands correspondence (LLC+)

Generalize the transfer homomorphism $b_r: \mathcal{H}(G_r, K_r) \to \mathcal{H}(H, K_H)$ to Hecke algebras with deeper level, such that

- 1) it produces matching pairs, and
- 2) it is spectrally explicit (= defined geometrically on dual side).

We need the Bernstein center $\mathcal{Z}(G)$ of G = G(F).

We will also need the local Langlands correspondence (LLC+)

Generalize the transfer homomorphism $b_r: \mathcal{H}(G_r, K_r) \to \mathcal{H}(H, K_H)$ to Hecke algebras with deeper level, such that

- 1) it produces matching pairs, and
- 2) it is spectrally explicit (= defined geometrically on dual side).

We need the Bernstein center $\mathcal{Z}(G)$ of G = G(F).

We will also need the local Langlands correspondence (LLC+)

Generalize the transfer homomorphism $b_r: \mathcal{H}(G_r, K_r) \to \mathcal{H}(H, K_H)$ to Hecke algebras with deeper level, such that

- 1) it produces matching pairs, and
- 2) it is spectrally explicit (= defined geometrically on dual side).

We need the Bernstein center $\mathcal{Z}(G)$ of G = G(F).

We will also need the local Langlands correspondence (LLC+)

Generalize the transfer homomorphism $b_r: \mathcal{H}(G_r, K_r) \to \mathcal{H}(H, K_H)$ to Hecke algebras with deeper level, such that

- 1) it produces matching pairs, and
- 2) it is spectrally explicit (= defined geometrically on dual side).

We need the Bernstein center $\mathcal{Z}(G)$ of G = G(F).

We will also need the local Langlands correspondence (LLC+)

First step: construct many elements of the Bernstein center.

The \mathbb{C} -algebra $\mathcal{Z}(G)$ can be described as:

ring of self natural-transformations of the identity functor.

ullet ess. compact G-invariant distributions on $\mathcal{H}(G)$.

 $\frac{1}{2}(G_{-}N) = 7000G_{-}N$

C[3] = regular functions on 3 = variety of all series.

Recall $\pi \in i_P^G(\sigma) \leftrightarrow (M,\sigma)_G = sc(\pi)$, and the \mathbb{C} -torus X(M) of unramified characters on M = M(F) acts on $\{(M,\sigma)_G\}_{\sigma}$ by twisting σ This gives \mathfrak{X} structure of a (disconnected) variety over \mathbb{C} . Connected components are the Bernstein varieties corresponding to the inertial classes $\mathfrak{S} = [M,\sigma]_G$

First step: construct many elements of the Bernstein center. The \mathbb{C} -algebra $\mathcal{Z}(G)$ can be described as:

- ring of self natural-transformations of the identity functor.
- ess. compact G-invariant distributions on $\mathcal{H}(G)$.
- $\lim_{\leftarrow} \mathcal{Z}(G,J)$, where $J \subset G$ is compact-open s.g. and $\mathcal{Z}(G,J) = \mathcal{Z}(\mathcal{H}(G,J))$.
- $\mathbb{C}[\mathfrak{X}]$ = regular functions on \mathfrak{X} = variety of all s.c. supports $(M, \sigma)_G$.

Recall $\pi \in i_P^G(\sigma) \leftrightarrow (M, \sigma)_G = sc(\pi)$, and the \mathbb{C} -torus X(M) of unramified characters on M = M(F) acts on $\{(M, \sigma)_G\}_{\sigma}$ by twisting σ . This gives \mathfrak{X} structure of a (disconnected) variety over \mathbb{C} .

Connected components are the Bernstein varieties corresponding to the inertial classes $\mathfrak{s} = [M, \sigma]_G$.

First step: construct many elements of the Bernstein center. The \mathbb{C} -algebra $\mathcal{Z}(G)$ can be described as:

- ring of self natural-transformations of the identity functor.
- ess. compact G-invariant distributions on $\mathcal{H}(G)$.
- $\lim_{\leftarrow} \mathcal{Z}(G, J)$, where $J \subset G$ is compact-open s.g. and $\mathcal{Z}(G, J) = \mathcal{Z}(\mathcal{H}(G, J))$.
- $\mathbb{C}[\mathfrak{X}]$ = regular functions on \mathfrak{X} = variety of all s.c. supports $(M, \sigma)_G$.

Recall $\pi \in i_P^G(\sigma) \leftrightarrow (M, \sigma)_G = sc(\pi)$, and the \mathbb{C} -torus X(M) of unramified characters on M = M(F) acts on $\{(M, \sigma)_G\}_{\sigma}$ by twisting σ . This gives \mathfrak{X} structure of a (disconnected) variety over \mathbb{C} .

Connected components are the Bernstein varieties corresponding to the inertial classes $\mathfrak{s} = [M, \sigma]_G$.

First step: construct many elements of the Bernstein center. The \mathbb{C} -algebra $\mathcal{Z}(G)$ can be described as:

- ring of self natural-transformations of the identity functor.
- ess. compact G-invariant distributions on $\mathcal{H}(G)$.
- $\lim_{\leftarrow} \mathcal{Z}(G,J)$, where $J \subset G$ is compact-open s.g. and $\mathcal{Z}(G,J) = Z(\mathcal{H}(G,J))$.
- $\mathbb{C}[\mathfrak{X}]$ = regular functions on \mathfrak{X} = variety of all s.c. supports $(M, \sigma)_G$.

Recall $\pi \in i_P^G(\sigma) \leftrightarrow (M, \sigma)_G = sc(\pi)$, and the \mathbb{C} -torus X(M) of unramified characters on M = M(F) acts on $\{(M, \sigma)_G\}_{\sigma}$ by twisting σ . This gives \mathfrak{X} structure of a (disconnected) variety over \mathbb{C} .

Connected components are the Bernstein varieties corresponding to the inertial classes $\mathfrak{s} = [M, \sigma]_G$.

First step: construct many elements of the Bernstein center. The \mathbb{C} -algebra $\mathcal{Z}(G)$ can be described as:

- ring of self natural-transformations of the identity functor.
- ess. compact G-invariant distributions on $\mathcal{H}(G)$.
- $\lim_{\leftarrow} \mathcal{Z}(G,J)$, where $J \subset G$ is compact-open s.g. and $\mathcal{Z}(G,J) = Z(\mathcal{H}(G,J))$.
- $\mathbb{C}[\mathfrak{X}]$ = regular functions on \mathfrak{X} = variety of all s.c. supports $(M, \sigma)_G$.

Recall $\pi \in i_P^G(\sigma) \leftrightarrow (M,\sigma)_G = sc(\pi)$, and the $\mathbb C$ -torus X(M) of unramified characters on M = M(F) acts on $\{(M,\sigma)_G\}_{\sigma}$ by twisting σ . This gives $\mathfrak X$ structure of a (disconnected) variety over $\mathbb C$.

Connected components are the Bernstein varieties corresponding to the inertial classes $s = [M, \sigma]_G$.

First step: construct many elements of the Bernstein center. The \mathbb{C} -algebra $\mathcal{Z}(G)$ can be described as:

- ring of self natural-transformations of the identity functor.
- ess. compact G-invariant distributions on $\mathcal{H}(G)$.
- $\lim_{\leftarrow} \mathcal{Z}(G,J)$, where $J \subset G$ is compact-open s.g. and $\mathcal{Z}(G,J) = Z(\mathcal{H}(G,J))$.
- $\mathbb{C}[\mathfrak{X}]$ = regular functions on \mathfrak{X} = variety of all s.c. supports $(M, \sigma)_G$.

Recall $\pi \in i_P^G(\sigma) \leftrightarrow (M, \sigma)_G = sc(\pi)$, and the \mathbb{C} -torus X(M) of unramified characters on M = M(F) acts on $\{(M, \sigma)_G\}_{\sigma}$ by twisting σ .

This gives ${\mathfrak X}$ structure of a (disconnected) variety over ${\mathbb C}$

Connected components are the Bernstein varieties corresponding to the inertial classes $\mathfrak{s} = [M, \sigma]_G$.

First step: construct many elements of the Bernstein center. The \mathbb{C} -algebra $\mathcal{Z}(G)$ can be described as:

- ring of self natural-transformations of the identity functor.
- ess. compact G-invariant distributions on $\mathcal{H}(G)$.
- $\lim_{\leftarrow} \mathcal{Z}(G,J)$, where $J \subset G$ is compact-open s.g. and $\mathcal{Z}(G,J) = Z(\mathcal{H}(G,J))$.
- $\mathbb{C}[\mathfrak{X}]$ = regular functions on \mathfrak{X} = variety of all s.c. supports $(M, \sigma)_G$.

Recall $\pi \in i_P^G(\sigma) \leftrightarrow (M,\sigma)_G = sc(\pi)$, and the $\mathbb C$ -torus X(M) of unramified characters on M = M(F) acts on $\{(M,\sigma)_G\}_\sigma$ by twisting σ . This gives $\mathfrak X$ structure of a (disconnected) variety over $\mathbb C$.

Connected components are the Bernstein varieties corresponding to the inertial classes $\mathfrak{s} = [M, \sigma]_G$.

First step: construct many elements of the Bernstein center. The \mathbb{C} -algebra $\mathcal{Z}(G)$ can be described as:

- ring of self natural-transformations of the identity functor.
- ess. compact G-invariant distributions on $\mathcal{H}(G)$.
- $\lim_{\leftarrow} \mathcal{Z}(G,J)$, where $J \subset G$ is compact-open s.g. and $\mathcal{Z}(G,J) = Z(\mathcal{H}(G,J))$.
- $\mathbb{C}[\mathfrak{X}]$ = regular functions on \mathfrak{X} = variety of all s.c. supports $(M, \sigma)_G$.

Recall $\pi \in i_P^G(\sigma) \leftrightarrow (M,\sigma)_G = sc(\pi)$, and the $\mathbb C$ -torus X(M) of unramified characters on M = M(F) acts on $\{(M,\sigma)_G\}_\sigma$ by twisting σ . This gives $\mathfrak X$ structure of a (disconnected) variety over $\mathbb C$.

Connected components are the Bernstein varieties corresponding to the inertial classes $\mathfrak{s} = [M, \sigma]_G$.

First step: construct many elements of the Bernstein center. The \mathbb{C} -algebra $\mathcal{Z}(G)$ can be described as:

- ring of self natural-transformations of the identity functor.
- ess. compact G-invariant distributions on $\mathcal{H}(G)$.
- $\lim_{\leftarrow} \mathcal{Z}(G,J)$, where $J \subset G$ is compact-open s.g. and $\mathcal{Z}(G,J) = Z(\mathcal{H}(G,J))$.
- $\mathbb{C}[\mathfrak{X}]$ = regular functions on \mathfrak{X} = variety of all s.c. supports $(M, \sigma)_G$.

Recall $\pi \in i_P^G(\sigma) \leftrightarrow (M,\sigma)_G = sc(\pi)$, and the $\mathbb C$ -torus X(M) of unramified characters on M = M(F) acts on $\{(M,\sigma)_G\}_\sigma$ by twisting σ . This gives $\mathfrak X$ structure of a (disconnected) variety over $\mathbb C$.

Connected components are the Bernstein varieties corresponding to the inertial classes $\mathfrak{s} = [M, \sigma]_G$.

Example: Iwahori block

- Assume I = Iwahori and T = Cartan (compatible with I...).
- Borel: $sc(\pi)$ is an unramified char. of T(F) iff $\pi^I \neq 0$, and
- category of such G-reps is equivalent to $\mathcal{H}(G, I)$ -Mod

Thus,
$$Z(G,T)=\mathbb{C}[\text{var. of }(T(K),\xi)_G,\ \xi\in X(T)]$$

$$=\mathbb{C}[\text{Hom}(T(K)/T(\mathcal{C}),\mathbb{C}^n)/W]$$

$$=\mathbb{C}[\tilde{T}(\mathbb{C})/W]$$

$$=\mathbb{R}ep(\tilde{G}).$$

 $Z(G,T)\cong \mathbb{C}[T/W]$ is the Semetain isomorphism mentioned earlier

- Assume I = Iwahori and T = Cartan (compatible with I...).
- Borel: $sc(\pi)$ is an unramified char.of T(F) iff $\pi^{T} \neq 0$, and
- category of such G-reps is equivalent to $\mathcal{H}(G, I)$ -Moc

- Assume I = Iwahori and T = Cartan (compatible with I...).
- Borel: $sc(\pi)$ is an unramified char.of T(F) iff $\pi^I \neq 0$, and
- category of such G-reps is equivalent to $\mathcal{H}(G, I)$ -Mod

- Assume I = Iwahori and T = Cartan (compatible with I...).
- Borel: $sc(\pi)$ is an unramified char.of T(F) iff $\pi^I \neq 0$, and
- category of such G-reps is equivalent to $\mathcal{H}(G, I)$ -Mod

- Assume I = Iwahori and T = Cartan (compatible with I...).
- Borel: $sc(\pi)$ is an unramified char.of T(F) iff $\pi^I \neq 0$, and
- category of such G-reps is equivalent to $\mathcal{H}(G, I)$ -Mod.

Thus,
$$\mathcal{Z}(G,I)=\mathbb{C}[\text{var. of }(T(F),\xi)_G,\ \xi\in X(T)]$$

$$=\mathbb{C}[\text{Hom}(T(F)/T(\mathcal{O}),\mathbb{C}^\times)/W]$$

$$=\mathbb{C}[\widehat{T}(\mathbb{C})/W]$$

$$=\mathbb{R}\mathrm{ep}(\widehat{G}).$$

- Assume I = Iwahori and T = Cartan (compatible with I...).
- Borel: $sc(\pi)$ is an unramified char.of T(F) iff $\pi^I \neq 0$, and
- category of such G-reps is equivalent to $\mathcal{H}(G, I)$ -Mod.

Thus,
$$\mathcal{Z}(G,I) = \mathbb{C}[\text{var. of } (T(F),\xi)_G, \ \xi \in X(T)]$$

= $\mathbb{C}[\text{Hom}(T(F)/T(\mathcal{O}),\mathbb{C}^{\times})/W]$
= $\mathbb{C}[\widehat{T}(\mathbb{C})/W]$
= $\text{Rep}(\widehat{G}).$

- Assume I = Iwahori and T = Cartan (compatible with I...).
- Borel: $sc(\pi)$ is an unramified char.of T(F) iff $\pi^I \neq 0$, and
- category of such G-reps is equivalent to $\mathcal{H}(G, I)$ -Mod.

Thus,
$$\mathcal{Z}(G,I) = \mathbb{C}[\text{var. of } (T(F),\xi)_G, \ \xi \in X(T)]$$

$$= \mathbb{C}[\text{Hom}(T(F)/T(\mathcal{O}),\mathbb{C}^{\times})/W]$$

$$= \mathbb{C}[\widehat{T}(\mathbb{C})/W]$$

$$= \mathbb{R}\exp(\widehat{G}).$$

 Z(G, I) ≅ C[T/W] is the Bernstein isomorphism mentionece earlier.

- Assume I = Iwahori and T = Cartan (compatible with I...).
- Borel: $sc(\pi)$ is an unramified char.of T(F) iff $\pi^I \neq 0$, and
- category of such G-reps is equivalent to $\mathcal{H}(G, I)$ -Mod.

Thus,
$$\mathcal{Z}(G,I) = \mathbb{C}[\text{var. of } (T(F),\xi)_G, \ \xi \in X(T)]$$

 $= \mathbb{C}[\text{Hom}(T(F)/T(\mathcal{O}),\mathbb{C}^{\times})/W]$
 $= \mathbb{C}[\widehat{T}(\mathbb{C})/W]$
 $= \text{Rep}(\widehat{G}).$

 Z(G, I) ≅ ℂ[Î/W] is the Bernstein isomorphism mentioned earlier.

- Assume I = Iwahori and T = Cartan (compatible with I...).
- Borel: $sc(\pi)$ is an unramified char.of T(F) iff $\pi^I \neq 0$, and
- category of such G-reps is equivalent to $\mathcal{H}(G, I)$ -Mod.

Thus,
$$\mathcal{Z}(G, I) = \mathbb{C}[\text{var. of } (T(F), \xi)_G, \ \xi \in X(T)]$$

$$= \mathbb{C}[\text{Hom}(T(F)/T(\mathcal{O}), \mathbb{C}^{\times})/W]$$

$$= \mathbb{C}[\widehat{T}(\mathbb{C})/W]$$

$$= \text{Rep}(\widehat{G}).$$

• $\mathcal{Z}(G,I)\cong\mathbb{C}[\widehat{T}/W]$ is the Bernstein isomorphism mentioned earlier.

To define a general transfer map, we want to extend Satake/Bernstein to a natural map

$$\operatorname{Rep}(\widehat{G}) \to \mathcal{Z}(G).$$

Two reasons why:

- 1) The test functions in $\mathcal{Z}(G)$ needed for Shimura varieties all come from $\operatorname{Rep}(\widehat{G})$.
- 2) We can define the transfer map explicitly on the part of $\mathcal{Z}(G)$ coming from $\operatorname{Rep}(\widehat{G})$.

To define a general transfer map, we want to extend Satake/Bernstein to a natural map

$$\operatorname{Rep}(\widehat{G}) \to \mathcal{Z}(G).$$

Two reasons why:

- 1) The test functions in $\mathcal{Z}(G)$ needed for Shimura varieties all come from $\operatorname{Rep}(\widehat{G})$.
- 2) We can define the transfer map explicitly on the part of $\mathcal{Z}(G)$ coming from $\operatorname{Rep}(\widehat{G})$.

To define a general transfer map, we want to extend Satake/Bernstein to a natural map

$$\operatorname{Rep}(\widehat{G}) \to \mathcal{Z}(G).$$

Two reasons why:

- 1) The test functions in $\mathcal{Z}(G)$ needed for Shimura varieties all come from $\operatorname{Rep}(\widehat{G})$.
- 2) We can define the transfer map explicitly on the part of $\mathcal{Z}(G)$ coming from $\operatorname{Rep}(\widehat{G})$.

Can we complete the diagram?

$$\mathcal{Z}(G,J)$$

$$\downarrow^{-*_{J}1_{J}}$$

$$\vdots$$

$$\mathcal{Z}(G,I)$$

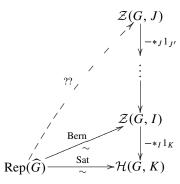
$$\downarrow^{-*_{I}1_{K}}$$

$$\mathsf{Rep}(\widehat{G}) \xrightarrow{\overset{\mathsf{Sat}}{\sim}} \mathcal{H}(G,K)$$

That is, is there a canonical map, making the diagram commute?

$$\operatorname{Rep}(\widehat{G}) \to \mathcal{Z}(G)$$
$$V \mapsto Z_V.$$

Can we complete the diagram?



That is, is there a canonical map, making the diagram commute?

$$\operatorname{Rep}(\widehat{G}) \to \mathcal{Z}(G)$$

$$V \mapsto Z_V.$$

Can we complete the diagram?



That is, is there a canonical map, making the diagram commute?

$$\operatorname{Rep}(\widehat{G}) \to \mathcal{Z}(G)$$
$$V \mapsto Z_V.$$

Transition to Bernstein center: BCFL for $G=\operatorname{GL}_2$ Goal 4 views of the Bernstein center Main construction

We can consider this for general unramified groups G (not just split groups), but then must replace \widehat{G} with ${}^LG:=\widehat{G}\rtimes W_F$, where W_F is the Weil group of F, and take $V\in \operatorname{Rep}({}^LG)$.

We will not consider ramified groups here

Transition to Bernstein center: BCFL for $G = \operatorname{GL}_2$ Goal 4 views of the Bernstein center Main construction

We can consider this for general unramified groups G (not just split groups), but then must replace \widehat{G} with $^LG:=\widehat{G}\rtimes W_F$, where W_F is the Weil group of F, and take $V\in \operatorname{Rep}(^LG)$.

We will not consider ramified groups here.

 W_F Weil group of F, with inertia subgroup I_F , geometric Frob = Φ . We need to assume LLC+, meaning for irred. $\pi \in \mathcal{R}(G)$:

- 1) existence of L -parameter $\varphi_\pi:W_F\to {}^LG=\widehat{G}\rtimes W_F$ with usual properties and
- 2) Compatibility with $i_P^G(\cdot)$ (more below).

Proposition

G is arbitrary unramified and $V \in \operatorname{Rep}({}^LG)$. Assume LLC+ for G and its Levi subgroups. Then the function

$$\mathcal{R}_{\mathrm{irred}}(G) \ni \pi \mapsto Z_V(\pi) := \mathrm{tr}^{ss}(\varphi_{\pi}(\Phi), V).$$

descends to give a regular function on \mathfrak{X} , thus an element $Z_V \in \mathcal{Z}(G)$

Here $\operatorname{tr}^{ss}(\varphi_{\pi}(\Phi), V) := \operatorname{tr}(\varphi_{\pi}(\Phi), V^{\varphi_{\pi}(I_F)})$ is analogue of notion from ℓ -adic Galois representations $(\ell \neq p)$.

 W_F Weil group of F, with inertia subgroup I_F , geometric Frob = Φ . We need to assume LLC+, meaning for irred. $\pi \in \mathcal{R}(G)$:

- 1) existence of L -parameter $\varphi_\pi:W_F\to {}^LG=\widehat{G}\rtimes W_F$ with usual properties, and
- 2) Compatibility with $i_P^G(\cdot)$ (more below).

Proposition

G is arbitrary unramified and $V \in \text{Rep}({}^LG)$. Assume LLC+ for G and its Levi subgroups. Then the function

$$\mathcal{R}_{\mathrm{irred}}(G) \ni \pi \; \mapsto \; Z_{V}(\pi) := \mathrm{tr}^{ss}(\varphi_{\pi}(\Phi), V).$$

descends to give a regular function on \mathfrak{X} , thus an element $Z_V \in \mathcal{Z}(G)$

Here $\operatorname{tr}^{ss}(\varphi_{\pi}(\Phi), V) := \operatorname{tr}(\varphi_{\pi}(\Phi), V^{\varphi_{\pi}(I_F)})$ is analogue of notion from ℓ -adic Galois representations $(\ell \neq p)$.

 W_F Weil group of F, with inertia subgroup I_F , geometric Frob = Φ . We need to assume LLC+, meaning for irred. $\pi \in \mathcal{R}(G)$:

- 1) existence of L -parameter $\varphi_\pi:W_F\to {}^LG=\widehat{G}\rtimes W_F$ with usual properties, and
- 2) Compatibility with $i_P^G(\cdot)$ (more below).

Proposition

G is arbitrary unramified and $V \in \text{Rep}({}^LG)$. Assume LLC+ for G and its Levi subgroups. Then the function

$$\mathcal{R}_{\mathrm{irred}}(G) \ni \pi \; \mapsto \; Z_{V}(\pi) := \mathrm{tr}^{SS}(\varphi_{\pi}(\Phi), V).$$

descends to give a regular function on \mathfrak{X} , thus an element $Z_V \in \mathcal{Z}(G)$

Here $\operatorname{tr}^{ss}(\varphi_{\pi}(\Phi), V) := \operatorname{tr}(\varphi_{\pi}(\Phi), V^{\varphi_{\pi}(I_F)})$ is analogue of notion from ℓ -adic Galois representations $(\ell \neq p)$.

 W_F Weil group of F, with inertia subgroup I_F , geometric Frob = Φ . We need to assume LLC+, meaning for irred. $\pi \in \mathcal{R}(G)$:

- 1) existence of L -parameter $\varphi_\pi:W_F\to {}^LG=\widehat{G}\rtimes W_F$ with usual properties, and
- 2) Compatibility with $i_P^G(\cdot)$ (more below).

Proposition

G is arbitrary unramified and $V \in \operatorname{Rep}({}^LG)$. Assume LLC+ for G and its Levi subgroups. Then the function

$$\mathcal{R}_{\mathrm{irred}}(G) \ni \pi \mapsto Z_{V}(\pi) := \mathrm{tr}^{SS}(\varphi_{\pi}(\Phi), V).$$

descends to give a regular function on \mathfrak{X} , thus an element $Z_V \in \mathcal{Z}(G)$.

Here $\operatorname{tr}^{ss}(\varphi_{\pi}(\Phi), V) := \operatorname{tr}(\varphi_{\pi}(\Phi), V^{\varphi_{\pi}(I_F)})$ is analogue of notion from ℓ -adic Galois representations $(\ell \neq p)$.

 W_F Weil group of F, with inertia subgroup I_F , geometric Frob = Φ . We need to assume LLC+, meaning for irred. $\pi \in \mathcal{R}(G)$:

- 1) existence of L -parameter $\varphi_\pi:W_F\to {}^LG=\widehat{G}\rtimes W_F$ with usual properties, and
- 2) Compatibility with $i_P^G(\cdot)$ (more below).

Proposition

G is arbitrary unramified and $V \in \text{Rep}({}^LG)$. Assume LLC+ for G and its Levi subgroups. Then the function

$$\mathcal{R}_{\mathrm{irred}}(G) \ni \pi \mapsto Z_V(\pi) := \mathrm{tr}^{ss}(\varphi_{\pi}(\Phi), V).$$

descends to give a regular function on \mathfrak{X} , thus an element $Z_V \in \mathcal{Z}(G)$.

Here $\operatorname{tr}^{ss}(\varphi_{\pi}(\Phi), V) := \operatorname{tr}(\varphi_{\pi}(\Phi), V^{\varphi_{\pi}(I_F)})$ is analogue of notion from ℓ -adic Galois representations $(\ell \neq p)$.

 W_F Weil group of F, with inertia subgroup I_F , geometric Frob = Φ . We need to assume LLC+, meaning for irred. $\pi \in \mathcal{R}(G)$:

- 1) existence of L -parameter $\varphi_\pi:W_F\to\ ^LG=\widehat{G}\rtimes W_F$ with usual properties, and
- 2) Compatibility with $i_P^G(\cdot)$ (more below).

Proposition

G is arbitrary unramified and $V \in \operatorname{Rep}({}^LG)$. Assume LLC+ for G and its Levi subgroups. Then the function

$$\mathcal{R}_{\mathrm{irred}}(G) \ni \pi \mapsto Z_V(\pi) := \mathrm{tr}^{ss}(\varphi_{\pi}(\Phi), V).$$

descends to give a regular function on \mathfrak{X} , thus an element $Z_V \in \mathcal{Z}(G)$.

Here $\operatorname{tr}^{ss}(\varphi_{\pi}(\Phi), V) := \operatorname{tr}(\varphi_{\pi}(\Phi), V^{\varphi_{\pi}(I_F)})$ is analogue of notion from ℓ -adic Galois representations $(\ell \neq p)$.

Aside: semisimple trace Notion is due to Rapoport.

Fix $\ell \neq p = \operatorname{char}(\mathcal{O}/\varpi\mathcal{O})$. Let V be a finite-dimensional $\bar{\mathbb{Q}}_{\ell}$ -space with a continuous representation

$$\rho:\Gamma_F\to \operatorname{Aut}(V).$$

Grothendieck quasi-unipotence: \exists finite-index subgroup of I_F acting purely unipotently on V.

Thus \exists finite Γ_F -invariant filt. $F_{\bullet}(V)$ on V such that I_F acts through finite quotient on $gr := \bigoplus_i \operatorname{gr}^i(F_{\bullet}(V))$.

$$\operatorname{tr}^{ss}(\Phi, V) = \operatorname{tr}(\Phi, gr^I)$$

Notion is due to Rapoport.

Fix $\ell \neq p = \operatorname{char}(\mathcal{O}/\varpi\mathcal{O})$. Let V be a finite-dimensional $\bar{\mathbb{Q}}_\ell$ -space with a continuous representation

$$\rho:\Gamma_F\to\operatorname{Aut}(V).$$

Grothendieck quasi-unipotence: \exists finite-index subgroup of I_F acting purely unipotently on V.

Thus \exists finite Γ_F -invariant filt. $F_{\bullet}(V)$ on V such that I_F acts through finite quotient on $gr := \bigoplus_i \operatorname{gr}^i(F_{\bullet}(V))$.

$$\operatorname{tr}^{ss}(\Phi, V) = \operatorname{tr}(\Phi, gr^I)$$

Notion is due to Rapoport.

Fix $\ell \neq p = \operatorname{char}(\mathcal{O}/\varpi\mathcal{O})$. Let V be a finite-dimensional $\bar{\mathbb{Q}}_\ell$ -space with a continuous representation

$$\rho:\Gamma_F\to\operatorname{Aut}(V).$$

Grothendieck quasi-unipotence: \exists finite-index subgroup of I_F acting purely unipotently on V.

Thus \exists finite Γ_F -invariant filt. $F_{\bullet}(V)$ on V such that I_F acts through finite quotient on $gr := \bigoplus_i \operatorname{gr}^i(F_{\bullet}(V))$.

$$\operatorname{tr}^{ss}(\Phi, V) = \operatorname{tr}(\Phi, gr^I)$$

Notion is due to Rapoport.

Fix $\ell \neq p = \operatorname{char}(\mathcal{O}/\varpi\mathcal{O})$. Let V be a finite-dimensional $\bar{\mathbb{Q}}_\ell$ -space with a continuous representation

$$\rho: \Gamma_F \to \operatorname{Aut}(V)$$
.

Grothendieck quasi-unipotence: \exists finite-index subgroup of I_F acting purely unipotently on V.

Thus \exists finite Γ_F -invariant filt. $F_{\bullet}(V)$ on V such that I_F acts through finite quotient on $gr := \bigoplus_i \operatorname{gr}^i(F_{\bullet}(V))$.

$$\operatorname{tr}^{ss}(\Phi, V) = \operatorname{tr}(\Phi, gr^I)$$

Notion is due to Rapoport.

Fix $\ell \neq p = \operatorname{char}(\mathcal{O}/\varpi\mathcal{O})$. Let V be a finite-dimensional $\bar{\mathbb{Q}}_{\ell}$ -space with a continuous representation

$$\rho: \Gamma_F \to \operatorname{Aut}(V)$$
.

Grothendieck quasi-unipotence: \exists finite-index subgroup of I_F acting purely unipotently on V.

Thus \exists finite Γ_F -invariant filt. $F_{\bullet}(V)$ on V such that I_F acts through finite quotient on $gr := \bigoplus_i \operatorname{gr}^i(F_{\bullet}(V))$.

$$\operatorname{tr}^{ss}(\Phi, V) = \operatorname{tr}(\Phi, gr^I).$$

Aside: semisimple L-functions

To

$$W_{\mathbb{Q}_p} \xrightarrow{\varphi_{\pi}} {}^{L}G \xrightarrow{r_{V}} \operatorname{Aut}(V)$$

we associate

Definition

$$\log(L^{ss}(s,\pi,r_V)) = \sum_{r \geq 1} \operatorname{tr}^{ss}(\varphi_{\pi}(\Phi^r), V) \frac{p^{-rs}}{r}.$$

Importance: conjecturally we can express $Z_{\mathfrak{p}}^{ss}(s, Sh)$ in terms of several $L^{ss}(s-?, \pi_p, r)$, where r is determined by Sh.

Aside: semisimple *L*-functions

To

$$W_{\mathbb{Q}_p} \xrightarrow{\varphi_{\pi}} L_G \xrightarrow{r_V} \operatorname{Aut}(V)$$

we associate

Definition

$$\log(L^{ss}(s,\pi,r_V)) = \sum_{r\geq 1} \operatorname{tr}^{ss}(\varphi_{\pi}(\Phi^r), V) \frac{p^{-rs}}{r}.$$

Importance: conjecturally we can express $Z_{\mathfrak{p}}^{ss}(s, Sh)$ in terms of several $L^{ss}(s-?, \pi_p, r)$, where r is determined by Sh.

Construction unconditional in cases:

Compatibility with $i_P^G(\cdot)$: if $\pi \in i_P^G(\sigma)$, then $\varphi_\pi : W_F \to {}^L G$ and $\varphi_\sigma : W_F \to {}^L M \hookrightarrow {}^L G$ are \widehat{G} -conjugate.

OK for GL_n (Bernstein-Zelevinsky + Jacquet)

Can define Z_V without LLC+ at least in cases:

- (a) $V = \mathbb{C}^n$ is std. rep. of $GL_n(\mathbb{C})$ (Scholze:LLC) (but for general $V \in Rep(GL_n(\mathbb{C}))$ we need LLC for GL_n)
- (b) G unramified, V arbitrary, and $J = I, I^+$, or parahoric

Construction unconditional in cases:

Compatibility with $i_P^G(\cdot)$: if $\pi \in i_P^G(\sigma)$, then $\varphi_\pi : W_F \to {}^L G$ and $\varphi_\sigma : W_F \to {}^L M \hookrightarrow {}^L G$ are \widehat{G} -conjugate.

OK for GL_n (Bernstein-Zelevinsky + Jacquet)

Can define Z_V without LLC+ at least in cases:

- (a) $V = \mathbb{C}^n$ is std. rep. of $GL_n(\mathbb{C})$ (Scholze:LLC) (but for general $V \in Rep(GL_n(\mathbb{C}))$ we need LLC for GL_n)
- (b) G unramified, V arbitrary, and $J=I,\,I^+$, or parahoric.

Construction unconditional in cases:

Compatibility with $i_P^G(\cdot)$: if $\pi \in i_P^G(\sigma)$, then $\varphi_\pi : W_F \to {}^L G$ and $\varphi_\sigma : W_F \to {}^L M \hookrightarrow {}^L G$ are \widehat{G} -conjugate.

OK for GL_n (Bernstein-Zelevinsky + Jacquet)

Can define Z_V without LLC+ at least in cases:

(a)
$$V = \mathbb{C}^n$$
 is std. rep. of $GL_n(\mathbb{C})$ (Scholze:LLC)
(but for general $V \in Rep(GL_n(\mathbb{C}))$ we need LLC for GL_n).

(b) G unramified, V arbitrary, and $J = I, I^+$, or parahoric

Construction unconditional in cases:

Compatibility with $i_P^G(\cdot)$: if $\pi \in i_P^G(\sigma)$, then $\varphi_\pi : W_F \to {}^L G$ and $\varphi_\sigma : W_F \to {}^L M \hookrightarrow {}^L G$ are \widehat{G} -conjugate.

OK for GL_n (Bernstein-Zelevinsky + Jacquet)

Can define Z_V without LLC+ at least in cases:

- (a) $V = \mathbb{C}^n$ is std. rep. of $GL_n(\mathbb{C})$ (Scholze:LLC) (but for general $V \in Rep(GL_n(\mathbb{C}))$ we need LLC for GL_n).
- (b) G unramified, V arbitrary, and $J = I, I^+$, or parahoric.

Construction unconditional in cases:

Compatibility with $i_P^G(\cdot)$: if $\pi \in i_P^G(\sigma)$, then $\varphi_\pi : W_F \to {}^L G$ and $\varphi_\sigma : W_F \to {}^L M \hookrightarrow {}^L G$ are \widehat{G} -conjugate.

OK for GL_n (Bernstein-Zelevinsky + Jacquet)

Can define Z_V without LLC+ at least in cases:

- (a) $V = \mathbb{C}^n$ is std. rep. of $GL_n(\mathbb{C})$ (Scholze:LLC) (but for general $V \in Rep(GL_n(\mathbb{C}))$ we need LLC for GL_n).
- (b) G unramified, V arbitrary, and $J = I, I^+$, or parahoric.

The Ztransfer Conjecture (We explain only the case r = 1: standard endoscopy.)

Suppose given $(H, s, {}^L\eta), {}^L\eta: {}^LH \to {}^LG$. We may restrict $V \in \operatorname{Rep}({}^LG)$ to $V | {}^L\eta \in \operatorname{Rep}({}^LH)$. Get $Z_V^H := Z_{V | {}^L\eta} \in \mathcal{Z}^{st}(H)$.

Conjecture

For every $V \in \operatorname{Rep}({}^LG)$, we have $Z_V \leftrightarrow Z_V^H$ in the sense of distributions:

$$f \leftrightarrow f^H \Longrightarrow Z_V * f \leftrightarrow Z_V^H * f^H.$$

There exists similar conjecture in general Frobenius twisted case. Inputting FL $1_K \leftrightarrow 1_{KH}$ yields Example C: Hales spherical transfer. Inputting $1_{KH} \leftrightarrow 1_{KH}$ (Kottwitz units) yields Example A: Clozel-Labesse BCFL

Inputting $1_{K_r} \leftrightarrow 1_{K_H}$ (Waldspurger) yields simultaneous generalization of the above and of Morel's

Frobenius twisted transfer theorem for spherical Hecke algebras of certain classical groups

The Ztransfer Conjecture (We explain only the case r = 1: standard endoscopy.)

Suppose given $(H, s, {}^L\eta), {}^L\eta: {}^LH \to {}^LG$. We may restrict $V \in \operatorname{Rep}({}^LG)$ to $V | {}^L\eta \in \operatorname{Rep}({}^LH)$. Get $Z_V^H := Z_{V | {}^L\eta} \in \mathcal{Z}^{st}(H)$.

Conjecture

For every $V \in \text{Rep}({}^LG)$, we have $Z_V \leftrightarrow Z_V^H$ in the sense of distributions.

$$f \leftrightarrow f^H \Longrightarrow Z_V * f \leftrightarrow Z_V^H * f^H.$$

There exists similar conjecture in general Frobenius twisted case. Inputting FL $1_K \leftrightarrow 1_{KH}$ yields Example C: Hales spherical transfer. Inputting $1_{K-} \leftrightarrow 1_K$ (Kottwitz units) yields Example A: Clozel-Labesse BCFL

Inputting $1_{K_r} \leftrightarrow 1_{K_H}$ (Waldspurger) yields simultaneous generalization of the above and of Morel's

Frobenius twisted transfer theorem for spherical Hecke algebras of certain classical groups

The Ztransfer Conjecture (We explain only the case r = 1: standard endoscopy.)

Suppose given $(H, s, {}^L\eta), {}^L\eta: {}^LH \to {}^LG$. We may restrict $V \in \operatorname{Rep}({}^LG)$ to $V | {}^L\eta \in \operatorname{Rep}({}^LH)$. Get $Z_V^H := Z_{V | {}^L\eta} \in \mathcal{Z}^{st}(H)$.

Conjecture

For every $V \in \operatorname{Rep}({}^LG)$, we have $Z_V \leftrightarrow Z_V^H$ in the sense of distributions:

$$f \leftrightarrow f^H \Longrightarrow Z_V * f \leftrightarrow Z_V^H * f^H.$$

There exists similar conjecture in general Frobenius twisted case. Inputting $\operatorname{FL} 1_K \leftrightarrow 1_{K_H}$ yields Example C: Hales spherical transfer. Inputting $1_{K_F} \leftrightarrow 1_K$ (Kottwitz units) yields Example A: Clozel-Labesse BCFL

Inputting $1_{K_r} \leftrightarrow 1_{K_H}$ (Waldspurger) yields simultaneous generalization of the above and of Morel's

Frobenius twisted transfer theorem for spherical Hecke algebras of certain classical groups

The Ztransfer Conjecture (We explain only the case r = 1: standard endoscopy.)

Suppose given $(H,s,{}^L\eta), {}^L\eta:{}^LH\to {}^LG.$ We may restrict $V\in\operatorname{Rep}({}^LG)$ to $V|{}^L\eta\in\operatorname{Rep}({}^LH).$ Get $Z_V^H:=Z_{V|L\eta}\in\mathcal{Z}^{st}(H).$

Conjecture

For every $V \in \text{Rep}({}^LG)$, we have $Z_V \leftrightarrow Z_V^H$ in the sense of distributions:

$$f \leftrightarrow f^H \Longrightarrow Z_V * f \leftrightarrow Z_V^H * f^H.$$

There exists similar conjecture in general Frobenius twisted case. Inputting FL $1_K \leftrightarrow 1_{KH}$ yields Example C: Hales spherical transfer. Inputting $1_{K-} \leftrightarrow 1_K$ (Kottwitz units) yields Example A: Clozel-Labesse BCFL

Inputting $1_{K_r} \leftrightarrow 1_{K_H}$ (Waldspurger) yields simultaneous generalization of the above and of Morel's

Frobenius twisted transfer theorem for spherical Hecke algebras of certain classical groups

The Ztransfer Conjecture (We explain only the case r=1: standard endoscopy.)

Suppose given $(H,s,{}^L\eta), {}^L\eta:{}^LH\to {}^LG.$ We may restrict $V\in\operatorname{Rep}({}^LG)$ to $V|{}^L\eta\in\operatorname{Rep}({}^LH).$ Get $Z_V^H:=Z_{V|L\eta}\in\mathcal{Z}^{st}(H).$

Conjecture

For every $V \in \text{Rep}(^L G)$, we have $Z_V \leftrightarrow Z_V^H$ in the sense of distributions:

$$f \leftrightarrow f^H \Longrightarrow Z_V * f \leftrightarrow Z_V^H * f^H.$$

There exists similar conjecture in general Frobenius twisted case.

Inputting FL $1_K \leftrightarrow 1_{K_H}$ yields Example C: Hales spherical transfer. Inputting $1_{K_\pi} \leftrightarrow 1_K$ (Kottwitz units) yields Example A: Clozel-Labesse BCFL

Inputting $\mathbf{1}_{K_r} \leftrightarrow \mathbf{1}_{K_H}$ (Waldspurger) yields simultaneous generalization of the above and of Morel's

Frobenius twisted transfer theorem for spherical Hecke algebras of certain classical groups

The Ztransfer Conjecture (We explain only the case r=1: standard endoscopy.)

Suppose given $(H,s,{}^L\eta), {}^L\eta:{}^LH\to {}^LG.$ We may restrict $V\in\operatorname{Rep}({}^LG)$ to $V|{}^L\eta\in\operatorname{Rep}({}^LH).$ Get $Z_V^H:=Z_{V|L\eta}\in\mathcal{Z}^{st}(H).$

Conjecture

For every $V \in \text{Rep}({}^LG)$, we have $Z_V \leftrightarrow Z_V^H$ in the sense of distributions:

$$f \leftrightarrow f^H \Longrightarrow Z_V * f \leftrightarrow Z_V^H * f^H.$$

There exists similar conjecture in general Frobenius twisted case.

Inputting FL $1_K \leftrightarrow 1_{K_H}$ yields Example C: Hales spherical transfer.

Inputting $1_{K_r} \leftrightarrow 1_K$ (Kottwitz units) yields Example A: Clozel-Labesse BCFL.

Inputting $1_{K_r} \leftrightarrow 1_{K_H}$ (Waldspurger) yields simultaneous generalization of the above and of Morel's

The Ztransfer Conjecture (We explain only the case r = 1: standard endoscopy.)

Suppose given $(H,s,{}^L\eta), {}^L\eta:{}^LH\to {}^LG.$ We may restrict $V\in\operatorname{Rep}({}^LG)$ to $V|{}^L\eta\in\operatorname{Rep}({}^LH).$ Get $Z_V^H:=Z_{V|L\eta}\in\mathcal{Z}^{st}(H).$

Conjecture

For every $V \in \text{Rep}(^L G)$, we have $Z_V \leftrightarrow Z_V^H$ in the sense of distributions:

$$f \leftrightarrow f^H \Longrightarrow Z_V * f \leftrightarrow Z_V^H * f^H.$$

There exists similar conjecture in general Frobenius twisted case.

Inputting FL $1_K \leftrightarrow 1_{KH}$ yields Example C: Hales spherical transfer.

Inputting $1_{K_r} \leftrightarrow 1_K$ (Kottwitz units) yields Example A: Clozel-Labesse BCFL.

Inputting $1_{K_r} \leftrightarrow 1_{K_H}$ (Waldspurger) yields simultaneous generalization of the above and of Morel's

The Ztransfer Conjecture (We explain only the case r=1: standard endoscopy.)

Suppose given $(H, s, {}^L\eta), {}^L\eta: {}^LH \to {}^LG$. We may restrict $V \in \operatorname{Rep}({}^LG)$ to $V | {}^L\eta \in \operatorname{Rep}({}^LH)$. Get $Z_V^H := Z_{V | {}^L\eta} \in \mathcal{Z}^{st}(H)$.

Conjecture

For every $V \in \text{Rep}(^L G)$, we have $Z_V \leftrightarrow Z_V^H$ in the sense of distributions:

$$f \leftrightarrow f^H \Longrightarrow Z_V * f \leftrightarrow Z_V^H * f^H$$
.

There exists similar conjecture in general Frobenius twisted case.

Inputting FL $1_K \leftrightarrow 1_{K_H}$ yields Example C: Hales spherical transfer.

Inputting $1_{K_r} \leftrightarrow 1_K$ (Kottwitz units) yields Example A: Clozel-Labesse BCFL.

Inputting $\mathbf{1}_{K_r} \leftrightarrow \mathbf{1}_{K_H}$ (Waldspurger) yields simultaneous generalization of the above and of Morel's

Frobenius twisted transfer theorem for spherical Hecke algebras of certain classical groups.

Aside: explicit matching pairs

With the FL and Waldspurger's transfer now available, it makes sense to try to find explicit matching pairs $f_r \leftrightarrow f^H$ where f belongs to a prescribed family.

Example: Kazhdan-Varshavsky: f and f^H are Deligne-Lusztig functions coming from the representation theory of finite groups of Lie type.

The Ztransfer conjecture would add many examples to this general program.

Aside: explicit matching pairs

With the FL and Waldspurger's transfer now available, it makes sense to try to find explicit matching pairs $f_r \leftrightarrow f^H$ where f belongs to a prescribed family.

Example: Kazhdan-Varshavsky: f and f^H are Deligne-Lusztig functions coming from the representation theory of finite groups of Lie type.

The Ztransfer conjecture would add many examples to this genera program.

Aside: explicit matching pairs

With the FL and Waldspurger's transfer now available, it makes sense to try to find explicit matching pairs $f_r \leftrightarrow f^H$ where f belongs to a prescribed family.

Example: Kazhdan-Varshavsky: f and f^H are Deligne-Lusztig functions coming from the representation theory of finite groups of Lie type.

The Ztransfer conjecture would add many examples to this general program.

A heuristic proof of the Ztransfer Conjecture can be given, assuming enough expected properties about *L*-packets.

Question: What can be proved unconditionally?

A heuristic proof of the Ztransfer Conjecture can be given, assuming enough expected properties about *L*-packets.

Question: What can be proved unconditionally?

Results: Base change fundamental lemmas – essentially Iwahori level

Consider H = G, i.e., $f_r \leftrightarrow f$ has the sense of stable base change.

Theorem (H. 2009, 2010 - Predecessors of Ztransfer conjecture

For G unramified over F, and $J=I,I^+,$ or parahoric, there exists a base-change homomorphism

$$b_r: \mathcal{Z}(G_r, J_r) \to \mathcal{Z}(G, J)$$

defined explicitly in terms of the Bernstein isomorphism (on the dual side) with the property

$$f_r \leftrightarrow b_r(f_r)$$
.

This was used to study certain Shimura varieties with parahoric or $\Gamma_1(p)$ -level structure at p (see below).

Results: Base change fundamental lemmas – essentially Iwahori level

Consider H = G, i.e., $f_r \leftrightarrow f$ has the sense of stable base change.

Theorem (H. 2009, 2010 – Predecessors of Ztransfer conjecture)

For G unramified over F, and $J=I, I^+,$ or parahoric, there exists a base-change homomorphism

$$b_r: \mathcal{Z}(G_r, J_r) \to \mathcal{Z}(G, J)$$

defined explicitly in terms of the Bernstein isomorphism (on the dual side) with the property

$$f_r \leftrightarrow b_r(f_r)$$
.

This was used to study certain Shimura varieties with parahoric or $\Gamma_1(p)$ -level structure at p (see below).

Results: Base change fundamental lemmas – essentially Iwahori level

Consider H = G, i.e., $f_r \leftrightarrow f$ has the sense of stable base change.

Theorem (H. 2009, 2010 – Predecessors of Ztransfer conjecture)

For G unramified over F, and $J=I,I^+,$ or parahoric, there exists a base-change homomorphism

$$b_r: \mathcal{Z}(G_r, J_r) \to \mathcal{Z}(G, J)$$

defined explicitly in terms of the Bernstein isomorphism (on the dual side) with the property

$$f_r \leftrightarrow b_r(f_r)$$
.

This was used to study certain Shimura varieties with parahoric or $\Gamma_1(p)$ -level structure at p (see below).

Results: GL_n – arbitrary level

Proposition (H., Scholze)

The (Frobenius-twisted) Ztransfer Conjecture holds for $G = GL_n$.

(Congruence-level FL: Ferrari 2007) If $J = K(N) \subset G(F)$ any principal congruence subgroup for a split group G, then $1_{J_r} \leftrightarrow C \cdot 1_{J_H}$ (C an explicit constant).

Results: GL_n – arbitrary level

Proposition (H., Scholze)

The (Frobenius-twisted) Ztransfer Conjecture holds for $G = GL_n$.

(Congruence-level FL: Ferrari 2007) If $J = K(N) \subset G(F)$ any principal congruence subgroup for a split group G, then $1_{J_r} \leftrightarrow C \cdot 1_{J_H}$ (C an explicit constant).

Results: GL_n – arbitrary level

Proposition (H., Scholze)

The (Frobenius-twisted) Ztransfer Conjecture holds for $G = GL_n$.

(Congruence-level FL: Ferrari 2007) If $J = K(N) \subset G(F)$ any principal congruence subgroup for a split group G, then $1_{J_r} \leftrightarrow C \cdot 1_{J_H}$ (C an explicit constant).

Results: GL_n – arbitrary level

Proposition (H., Scholze)

The (Frobenius-twisted) Ztransfer Conjecture holds for $G = GL_n$.

(Congruence-level FL: Ferrari 2007) If $J = K(N) \subset G(F)$ any principal congruence subgroup for a split group G, then $1_{J_r} \leftrightarrow C \cdot 1_{J_H}$ (C an explicit constant).

Results: GL_n – arbitrary level

Proposition (H., Scholze)

The (Frobenius-twisted) Ztransfer Conjecture holds for $G = GL_n$.

(Congruence-level FL: Ferrari 2007) If $J = K(N) \subset G(F)$ any principal congruence subgroup for a split group G, then $1_{J_r} \leftrightarrow C \cdot 1_{J_H}$ (C an explicit constant).

For more general groups, one must work harder and impose restrictions on the level.

Theorem (H. in preparation)

If G split with connected center, then the Ztransfer conjecture holds with J = I or I^+ .

Will be applied to GSp_{2n} -Shimura varieties with $\Gamma_1(p)$ -level at p.

For more general groups, one must work harder and impose restrictions on the level.

Theorem (H. in preparation)

If G split with connected center, then the Ztransfer conjecture holds with J = I or I^+ .

Will be applied to GSp_{2n} -Shimura varieties with $\Gamma_1(p)$ -level at p.

- $Sh = Sh(\mathbf{G}, X, K^pK_p)$, PEL over $\mathcal{O}_{E_{\mathfrak{p}}} (= \mathbb{Z}_p)$ (for simplicity), and $G = \mathbf{G}_{\mathbb{Q}_p}$ split.
- no endoscopy, e.g. "fake unitary case" with $G(\mathbb{R}) \cong GU(d, n d)$.
- Let $\mu := \mu_h \in X_*(T) = X^*(\widehat{T})$ the **Shimura cocharacter**, with dual cocharacter μ^* .
- Let $V = V_{\mu^*}$ denote the representation of ${}^L G = \widehat{G} \rtimes W_{\mathbb{Q}_p}$ with extreme weight μ^* .
- Set $f_{r,1} = p^{\frac{1}{2}\dim(Sh)} \times \text{image of base-change operation applied to } Z_V$

- $Sh = Sh(\mathbf{G}, X, K^pK_p)$, PEL over $\mathcal{O}_{E_{\mathfrak{p}}}$ (= \mathbb{Z}_p) (for simplicity), and $G = \mathbf{G}_{\mathbb{Q}_p}$ split.
- ullet no endoscopy, e.g. "fake unitary case" with $\mathbf{G}(\mathbb{R})\cong \mathrm{GU}(d,n-d)$.
- Let $\mu := \mu_h \in X_*(T) = X^*(\widehat{T})$ the **Shimura cocharacter**, with dual cocharacter μ^* .
- Let $V = V_{\mu^*}$ denote the representation of ${}^L G = \widehat{G} \rtimes W_{\mathbb{Q}_p}$ with extreme weight μ^* .
- Set $f_{r,1} = p^{\frac{1}{2}\dim(Sh)} \times \text{image of base-change operation applied to } Z_V$

- $Sh = Sh(\mathbf{G}, X, K^pK_p)$, PEL over $\mathcal{O}_{E_{\mathfrak{p}}}$ (= \mathbb{Z}_p) (for simplicity), and $G = \mathbf{G}_{\mathbb{Q}_p}$ split.
- no endoscopy, e.g. "fake unitary case" with $G(\mathbb{R}) \cong GU(d, n-d)$.
- Let $\mu := \mu_h \in X_*(T) = X^*(\widehat{T})$ the **Shimura cocharacter**, with dual cocharacter μ^* .
- Let $V = V_{\mu^*}$ denote the representation of ${}^L G = \widehat{G} \rtimes W_{\mathbb{Q}_p}$ with extreme weight μ^* .
- Set $f_{r,1} = p^{\frac{1}{2}\dim(Sh)} imes ext{image of base-change operation applied to } Z_V$

- $Sh = Sh(\mathbf{G}, X, K^pK_p)$, PEL over $\mathcal{O}_{E_{\mathfrak{p}}}$ (= \mathbb{Z}_p) (for simplicity), and $G = \mathbf{G}_{\mathbb{Q}_p}$ split.
- no endoscopy, e.g. "fake unitary case" with $G(\mathbb{R}) \cong GU(d, n d)$.
- Let $\mu := \mu_h \in X_*(T) = X^*(\widehat{T})$ the **Shimura cocharacter**, with dual cocharacter μ^* .
- Let $V = V_{\mu^*}$ denote the representation of ${}^L G = \widehat{G} \rtimes W_{\mathbb{Q}_p}$ with extreme weight μ^* .
- Set $f_{r,1} = p^{\frac{1}{2}\dim(Sh)} imes ext{image of base-change operation applied to } Z_V$

- $Sh = Sh(\mathbf{G}, X, K^pK_p)$, PEL over $\mathcal{O}_{E_{\mathfrak{p}}}$ (= \mathbb{Z}_p) (for simplicity), and $G = \mathbf{G}_{\mathbb{Q}_p}$ split.
- no endoscopy, e.g. "fake unitary case" with $G(\mathbb{R}) \cong GU(d, n d)$.
- Let $\mu := \mu_h \in X_*(T) = X^*(\widehat{T})$ the **Shimura cocharacter**, with dual cocharacter μ^* .
- Let $V = V_{\mu^*}$ denote the representation of ${}^L G = \widehat{G} \rtimes W_{\mathbb{Q}_p}$ with extreme weight μ^* .
- Set $f_{r,1} = p^{\frac{1}{2}\dim(Sh)} \times \text{image of base-change operation applied to } Z_V$

- $Sh = Sh(\mathbf{G}, X, K^pK_p)$, PEL over $\mathcal{O}_{E_{\mathfrak{p}}}$ (= \mathbb{Z}_p) (for simplicity), and $G = \mathbf{G}_{\mathbb{Q}_p}$ split.
- no endoscopy, e.g. "fake unitary case" with $G(\mathbb{R}) \cong GU(d, n d)$.
- Let $\mu := \mu_h \in X_*(T) = X^*(\widehat{T})$ the **Shimura cocharacter**, with dual cocharacter μ^* .
- Let $V = V_{\mu^*}$ denote the representation of ${}^L G = \widehat{G} \rtimes W_{\mathbb{Q}_p}$ with extreme weight μ^* .
- Set $f_{r,1} = p^{\frac{1}{2}\dim(Sh)} \times \text{image of base-change operation applied to } Z_V$

- $Sh = Sh(\mathbf{G}, X, K^pK_p)$, PEL over $\mathcal{O}_{E_{\mathfrak{p}}}$ (= \mathbb{Z}_p) (for simplicity), and $G = \mathbf{G}_{\mathbb{Q}_p}$ split.
- no endoscopy, e.g. "fake unitary case" with $G(\mathbb{R}) \cong GU(d, n-d)$.
- Let $\mu := \mu_h \in X_*(T) = X^*(\widehat{T})$ the **Shimura cocharacter**, with dual cocharacter μ^* .
- Let $V = V_{\mu^*}$ denote the representation of ${}^L G = \widehat{G} \rtimes W_{\mathbb{Q}_p}$ with extreme weight μ^* .
- Set $f_{r,1} = p^{\frac{1}{2}\dim(Sh)} \times \text{image of base-change operation applied to } Z_V.$

Test function conjecture - clean form

Conjecture (H.-Kottwitz – "clean form")

In the situation above, for every $r \ge 1$, the test function $f_{r,1}$ above satisfies: the alternating sum of the semi-simple traces

$$\sum_{i=0}^{2\dim(Sh)} (-1)^{i} \operatorname{tr}^{ss}(\Phi_{\mathfrak{p}}^{r}, \operatorname{H}^{i}(Sh \times_{E} \bar{E}_{\mathfrak{p}}, \bar{\mathbb{Q}}_{\ell}))$$

equals the trace

$$\operatorname{tr}(1_{K^p} \otimes f_{r,1} \otimes f_{\infty}, L^2(\mathbf{G}(\mathbb{Q})A_{\mathbf{G}}(\mathbb{R})^{\circ} \backslash \mathbf{G}(\mathbb{A}))).$$

In fact, this is really a consequence of the "real" Test Function Conjecture together with the Ztransfer conjecture.

Test function conjecture - clean form

Conjecture (H.-Kottwitz – "clean form")

In the situation above, for every $r \ge 1$, the test function $f_{r,1}$ above satisfies: the alternating sum of the semi-simple traces

$$\sum_{i=0}^{2\dim(Sh)} (-1)^{i} \operatorname{tr}^{ss}(\Phi_{\mathfrak{p}}^{r}, \operatorname{H}^{i}(Sh \times_{E} \bar{E}_{\mathfrak{p}}, \bar{\mathbb{Q}}_{\ell}))$$

equals the trace

$$\operatorname{tr}(1_{K^p} \otimes f_{r,1} \otimes f_{\infty}, L^2(\mathbf{G}(\mathbb{Q})A_{\mathbf{G}}(\mathbb{R})^{\circ} \backslash \mathbf{G}(\mathbb{A}))).$$

In fact, this is really a consequence of the "real" Test Function Conjecture together with the Ztransfer conjecture.

Consequence: Automorphy of local factors of Hasse-Weil Zeta functions

Remark

When the above equation holds (e.g. in certain "nice" cases of "unitary" Shimura varieties as above when both Ztransfer conjecture and "real" test function conjecture are known), we have

$$Z_{\mathfrak{p}}^{ss}(s, Sh) = \prod_{\pi_f} L^{ss}(s - \frac{\dim Sh}{2}, \pi_p, r_{\mu^*})^{n(\pi_f)}$$
 (1)

where $\pi_f = \pi^{p,\infty} \otimes \pi_p$ ranges over certain representations of $\mathbf{G}(\mathbb{A}_f)$ and $n(\pi_f) \in \mathbb{Z}$.

Theorem (H.-Ngô, 2002, 2005, 2009)

The (real) test function conjecture holds if $G_{\mathbb{Q}_p}$ is split of type A or C and K_p is parahoric.

Theorem (H.-Rapoport, 2010)

A stronger version holds in the Drinfeld case (GU(1, n-1)), if $K_p = I^+$.

Theorem (Scholze, 2010

It holds in the Harris-Taylor case (GU(1, n-1) and Sh proper), if K_p is any principal congruence subgroup.

Currently working on GSp(2n)-cases, with $\Gamma_1(p)$ -level...

Theorem (H.-Ngô, 2002, 2005, 2009)

The (real) test function conjecture holds if $G_{\mathbb{Q}_p}$ is split of type A or C and K_p is parahoric.

Theorem (H.-Rapoport, 2010)

A stronger version holds in the Drinfeld case (GU(1, n-1)), if $K_p = I^+$.

Theorem (Scholze, 2010

It holds in the Harris-Taylor case ($\mathrm{GU}(1,n-1)$ and Sh proper), if K_p is any principal congruence subgroup.

Currently working on GSp(2n)-cases, with $\Gamma_1(p)$ -level..

Theorem (H.-Ngô, 2002, 2005, 2009)

The (real) test function conjecture holds if $G_{\mathbb{Q}_p}$ is split of type A or C and K_p is parahoric.

Theorem (H.-Rapoport, 2010)

A stronger version holds in the Drinfeld case (GU(1, n-1)), if $K_p = I^+$.

Theorem (Scholze, 2010)

It holds in the Harris-Taylor case ($\mathrm{GU}(1,n-1)$ and Sh proper), if K_p is any principal congruence subgroup.

Currently working on GSp(2n)-cases, with $\Gamma_1(p)$ -level..

Theorem (H.-Ngô, 2002, 2005, 2009)

The (real) test function conjecture holds if $G_{\mathbb{Q}_p}$ is split of type A or C and K_p is parahoric.

Theorem (H.-Rapoport, 2010)

A stronger version holds in the Drinfeld case (GU(1, n-1)), if $K_p = I^+$.

Theorem (Scholze, 2010)

It holds in the Harris-Taylor case (GU(1, n-1) and Sh proper), if K_p is any principal congruence subgroup.

Currently working on GSp(2n)-cases, with $\Gamma_1(p)$ -level...

Theorem (H.-Ngô, 2002, 2005, 2009)

The (real) test function conjecture holds if $G_{\mathbb{Q}_p}$ is split of type A or C and K_p is parahoric.

Theorem (H.-Rapoport, 2010)

A stronger version holds in the Drinfeld case (GU(1, n-1)), if $K_p = I^+$.

Theorem (Scholze, 2010)

It holds in the Harris-Taylor case ($\mathrm{GU}(1,n-1)$ and Sh proper), if K_p is any principal congruence subgroup.

Currently working on GSp(2n)-cases, with $\Gamma_1(p)$ -level...

The usual statements of the FL and transfer homomorphisms fit into a larger framework, defined on part of the Bernstein center in an explicit way.

In certain cases, the construction is unconditional, and sometimes can be proved.

For GSp_{2n} , there is hope it can be established and used to study the associated non-compact Shimura varieties with bad reduction.

The usual statements of the FL and transfer homomorphisms fit into a larger framework, defined on part of the Bernstein center in an explicit way.

In certain cases, the construction is unconditional, and sometimes can be proved.

For GSp_{2n} , there is hope it can be established and used to study the associated non-compact Shimura varieties with bad reduction.

THE END.

The usual statements of the FL and transfer homomorphisms fit into a larger framework, defined on part of the Bernstein center in an explicit way.

In certain cases, the construction is unconditional, and sometimes can be proved.

For GSp_{2n} , there is hope it can be established and used to study the associated non-compact Shimura varieties with bad reduction.

THE END.

The usual statements of the FL and transfer homomorphisms fit into a larger framework, defined on part of the Bernstein center in an explicit way.

In certain cases, the construction is unconditional, and sometimes can be proved.

For GSp_{2n} , there is hope it can be established and used to study the associated non-compact Shimura varieties with bad reduction.

THE END.