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1. Lecture 1

1.1. What is this course about? The foundations of differential geometry (=
study of manifolds) rely on analysis in several variables as “local machinery”: many
global theorems about manifolds are reduced down to statements about what hap-
pens in a local neighborhood, and then anaylsis is brought in to solve the local
problem.

Analogously, algebraic geometry uses commutative algebraic as its “local ma-
chinery”. Our goal is to study commutative algebra and some topics in algebraic
geometry in a parallel manner. For a (somewhat) complete list of topics we plan
to cover, see the course syllabus on the course web-page.

1.2. References. See the course syllabus for a list of books you might want to
consult. There is no required text, as these lecture notes should serve as a text.
They will be written up “in real time” as the course progresses. Of course, I will
be grateful if you point out any typos you find.

1.3. Conventions. Unless otherwise indicated in specific instances, all rings in
this course are commutative with identity element, denoted by 1 or sometimes by
e. We will assume familiarity with the notions of homomorphism, ideal, kernels,
quotients, modules, etc. (at least).

We will use Zorn’s lemma (which is equivalent to the axiom of choice): Let S,≤
be any non-empty partially ordered set. A chain T in S is a subset T ⊆ S such
that x, y ∈ T implies x ≤ y or y ≤ x holds. If S,≤ is such that every chain T has
an upper bound in S (an element s ∈ S with t ≤ s for all t ∈ T ), then S contains
at least one maximal element.

1.4. Correspondence between ideals and homomorphisms. We call any sur-
jective homomorphism A → B a quotient. We say the quotients f1 : A → B1 and
f2 : A→ B2 are equivalent if there exists a ring isomorphism ϕ : B1 →̃ B2 satisfying
ϕ ◦ f1 = f2.

The terminology is justified because any surjective homomorphism f : A→ B is
clearly equivalent to the canonical quotient A→ A/ker(f).

Proposition 1.4.1. (1) There is an order-preserving correspondence

{ideals I ⊆ A} ←→ {equivalence classes of quotients A→ B}.
The correspondence sends an ideal I to the equivalence class of the canonical
quotient A→ A/I, and the quotient f : A→ B to the ideal ker(f) ⊆ A.
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(2) Fix an ideal I ⊂ A. There is an order-preserving correspondence

{ideals J ⊆ A containing I} ←→ {ideals of A/I},

given by: send an ideal J ⊃ I to its image J in A/I, and send an ideal
J ′ ⊆ A/I to its pre-image under the canonical map A→ A/I.

1.5. Prime and maximal ideals. A domain is a ring A with the property: 1 ̸= 0
and if x, y ∈ A and xy = 0, then x = 0 or y = 0. Examples are the integers Z, and
any ring of polynomial functions over a field.

An ideal p ⊂ A is prime if it is proper (p ̸= A) and xy ∈ p implies x ∈ p or y ∈ p.
Thus, p is prime if and only if A/p is a domain.

An ideal m ⊂ A is maximal if m ̸= A and there is no ideal I satisfying m ⊊ I ⊊ A.
Equivalently, m is maximal if and only A/m is a field. To see this, check that any
ring R having only (0) and R as ideals is a field. Now m is maximal if and only if
A/m has no ideals other than (0) and A/m (Prop. 1.4.1), so the result follows on
taking R = A/m in the previous statement.

In particular, every maximal ideal is prime.

Proposition 1.5.1. Maximal ideals exist in any ring A with 1 ̸= 0.

Proof. This is a standard application of Zorn’s lemma. Let S be the set of all
proper ideals in A, ordered by inclusion. Let T = {Iα}α∈A be a chain of proper
ideals. Then the union ∪α∈AIα is an ideal which is an upper bound of T in S.
Hence by Zorn’s lemma S has maximal elements, and this is what we claimed. □

Let us define Spec(A) to be the set of all prime ideals of A, and Specm(A) to be
the subset consisting of all maximal ideals. These are some of the main objects of
study in this course. The nomenclature “spectrum” comes from functional analysis,
and will be explained later on. Also, pretty soon we will give the set Spec(A) the
structure of a topological space and discuss the foundations of algebraic geometry...

1.6. Operations of contraction and extension. Fix a homomorphism ϕ : A→
B. For an ideal I ⊆ A define its extension Ie ⊆ B to the ideal generated by the
image ϕ(I); equivalently, Ie = ∩JJ where J ⊆ B ranges over all ideals containing
the set ϕ(I).

Dually, for an ideal J ⊆ B define the contraction Jc := ϕ−1(J), an ideal in A.
Note that J prime ⇒ Jc prime, so contraction gives a map of sets Spec(B) →

Spec(A).
On the other hand, contraction does not preserve maximality: consider the con-

traction of J = (0) under the inclusion Z ↪→ Q. Therefore, a homomorphism
ϕ : A→ B does not always induce a map of sets Specm(B)→ Specm(A).

As we will see later on, there is a natural situation where ϕ does induce a map
Specm(B) → Specm(A): this happens if A,B happen to be finitely generated al-
gebras over a field. This is quite important and is a consequence of Hilbert’s
Nullstellensatz, one of the first important theorems we will cover.

1.7. Nilradical. Define the nilradical of A by

rad(A) := {f ∈ A | fn = 0, for some n ≥ 1}.

Check that rad(A) really is an ideal. Elements f satisfying the condition fn = 0
for some n ≥ 1 are called nilpotent.
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Counterexample: For a non-commutative ring, it is no longer always true that

the sum of two nilpotent elements is nilpotent. The elements

[
0 1
0 0

]
and

[
0 0
1 0

]
,

in the ring M2(R) over a ring R with 1 ̸= 0, are nilpotent, but their sum

[
0 1
1 0

]
is

not.

Lemma 1.7.1.

rad(A) =
⋂

p∈Spec(A)

p.

Proof. The inclusion ⊆ is clear from the definition of prime ideal. For the reverse
inclusion, suppose f ∈ A is not nilpotent, i.e., suppose fn ̸= 0 for every n ≥ 1.

Let Σ = {I | fn /∈ I, ∀n ≥ 1}. This set is non-empty (it contains the ideal
I = (0)) and this set has a maximal element (Zorn). Call it p. We claim that p is
prime (and this is enough to prove ⊇). If not, choose x, y /∈ p such that xy ∈ p.
Since p+ (x) ⊋ p and p+ (y) ⊋ p, we have fn ∈ p+ (x) and fm ∈ p+ (y) for some
positive integers n,m. But then fn+m ∈ p, a contradiction. □

1.8. Radical of an ideal. Define r(I) = {f ∈ A | fn ∈ I, for some n ≥ 1}. Often,

we denote r(I) =
√
I. Check that

√
I is an ideal. Note that rad(A) =

√
(0). Also,

it is easy to check the following fact:

(1.8.1)
√
I =

⋂
p⊇I

p.

Here p ranges over prime ideals containing I.

1.9. Jacobson radical. Define the ideal radm(A) =
⋂

m∈Specm(A) m.

Proposition 1.9.1.

radm(A) = {x ∈ A | 1− xy is a unit for all y ∈ A}.

Proof. ⊆: Say x ∈ radm(A). If y is such that 1− xy is not a unit, then 1− xy ∈ m,
for some maximal ideal m. But then 1 ∈ m, which is nonsense.
⊇: If x /∈ m for some m, then (x)+m = A. But then 1 = z+xy, for some z ∈ m

and y ∈ A. So 1− xy is not a unit. □

Exercise 1.9.2. Prove the following statements.

(i) r(r(I)) = r(I);
(ii) rad(A/rad(A)) = 0;
(iii) radm(A/radm(A)) = 0.

We call an ideal I radical if r(I) = I. So, (i) shows that the radical ideals are
precisely those of the form r(I), for some ideal I.

There exist ideals which are not radical. Consider (X2) ⊂ C[X], and note that
r(X2) = (X).

Both rad(A) and radm(A) have some meaning in algebraic geometry, which we
will return to shortly. Also, we will see that radical ideals play an important role
too.
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1.10. Modules. Let M be an abelian group. Then the ring of group endomor-
phisms of M , denoted End(M), is a ring (in general non-commutative). Giving M
the structure of an A-module is precisely the same thing as giving a ring homomor-
phism

A→ End(M).

We have correspondences as in Prop. 1.4.1

{submodules N ⊆M} ←→ {quotients M →M ′}
and

{submodules N ′ ⊆M containing N} ←→ {submodules of M/N}.
Also, we have the fundamental isomorphisms of A-modules

(i) If N,N ′ ⊆M , then
N +N ′

N
∼=

N ′

N ∩N ′
;

(ii) If N ′ ⊆ N ⊆M , then
M/N ′

N/N ′
∼=M/N .

1.11. NAK Lemmas. These lemmas are collectively called the Nakayama (or
Nakayama-Azumaya-Krull) lemmas. They concern finitely-generated A-modules.

We say M is finitely generated (abbrev. f.g.) if M is a quotient of the free A-
moduleAn for some positive integer n. Equivalently, there exist elementsm1, . . . ,mn ∈
M such that every element m ∈M can be expressed in the form m = a1m1 + · · ·+
anmn, for elements ai ∈ A. (Note the expression is always unique if and only if
An ∼=M , in which case we say M is finitely-generated and free.)

If I ⊆ A is an ideal, define IM ⊆M as the set of all finite linear combinations

IM = {a1m1 + · · ·+ armr | ai ∈ I,mi ∈M, ∀i}.
Check that IM is an A-submodule of M , which is the smallest submodule contain-
ing all the elements of form am, where a ∈ I, m ∈M .

Proposition 1.11.1 (NAK). If M is f.g. and I ⊆ radm(A), then IM = M ⇒
M = 0.

Proof. Suppose M ̸= 0 and choose a minimal set of generators m1, . . . ,mn, for a
positive integer n. UsingM = IM , writem1 = a1m1+· · ·+anmn, for elements ai ∈
I ⊂ radm(A). Observe that the element (1−a1)m1is contained in Am2+ · · ·+Amn,
and since 1− a1 is a unit in A, so is the element m1. This means that m2, . . . ,mn

generateM , violating the minimality and giving us a contradiction of the hypothesis
M ̸= 0. □

Corollary 1.11.2. Suppose I ⊂ radm(A). If N ⊂ M is a submodule, and M is
f.g., then M = N + IM ⇒M = N .

Proof. Apply Prop. 1.11.1 to M/N . □

Now we specialize to the case where A is a local ring. Recall that (A,m) is local
if m is the unique maximal ideal of A. In this case A − m = A×, i.e. the units
in A are precisely the elements outside of m. Conversely, if A has a ideal I such
that A− I ⊂ A×, then A, I is local. Indeed, let m′ be a maximal ideal that is not
contained in I, and choose x ∈ m′ − I. This is impossible since x /∈ I ⇒ x ∈ A×.
Thus I is maximal, and is the unique such.
Examples of local rings

• Any field
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• The p-adic numbers Zp (we’ll come back to these)
• Power series rings k[[X]], where k is a field (ditto).

Of course, for local rings radm(A) = m, so the NAK lemma becomes even simpler.
Here is a consequence:

Corollary 1.11.3. Suppose M is f.g. over a local ring (A,m), and write k :=
A/m for the residue field. If x1, . . . , xn generate M/mM as a k-vector space, then
x1, . . . , xn generate M as an A-module.

Proof. Appy Cor. 1.11.2 to N = Ax1 + · · ·+Axn and I = m. □

2. Lecture 2

2.1. Improved NAK lemma. For a f.g. A-module M we can use the follow-
ing “determinant trick” (essentially the Cayley-Hamilton theorem generalized from
fields to commutative rings):

Lemma 2.1.1 (Cayley-Hamilton). Let ϕ be an A-module endomorphism ofM such
that ϕ(M) ⊆ IM , for an ideal I ⊆ A. Then ϕ satisfies an equation of the form

ϕr + ar−1ϕ
r−1 + · · ·+ a0 = 0,

where ai ∈ I for all i.

Proof. Let x1, . . . , xr generate M . We may write ϕ(xi) =
∑
j aijxj , for elements

aij ∈ I. Thus for all i ∑
j

(ϕδij − aij)xj = 0,

where δij is the Kronecker delta. Multiplying the matrix (ϕδij−aij) on the left by its
adjoint, we get det(ϕδij − aij) annihilates each xi, hence is the zero endomorphism
of M . Expanding out the determinant gives the desired equation. □

Remark. We used the “Cramer’s Rule” adj(X) ·X = det(X) In for any n×n matrix
X over a commutative ring A. This can be deduced from the case where A is a
field. Indeed, the formula is equivalent to n2 polynomial relations in the entries
of X. It is enough to prove these relations hold in the polynomial ring Z[Xij ]
in n2 indeterminates Xij , and those relations follow in turn from the relations in
the rational function field Q(Xij). This kind of trick is quite common to prove
statements for commutative rings which are already known to hold over fields. For
instance, use it to do the following exercise.

Exercise 2.1.2. Let A be a commutative ring. Show that for X,Y ∈ Mn(A),
det(XY ) = det(X)det(Y ). Deduce from this and Cramer’s rule that X has an
inverse in Mn(A) if and only if det(X) ∈ A×.

Exercise 2.1.3. Prove that Cramer’s Rule is in fact the two equalities adj(X)·X =
X · adj(X) = det(X) In. Deduce that over a commutative ring A, if X ∈ Mn(A),
then the rows of X are linearly dependent over A if and if the columns of A are
linearly dependent over A if and only if det(X) is a zero-divisor in A. Show by
example that the ranks of the column and row spaces of X need not be equal.

Solution: [Hidden]

Corollary 2.1.4 (Improved NAK). If M is f.g. and IM = M , then there exists
a ∈ A with a ≡ 1mod I, and aM = 0.
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Proof. Take ϕ = id in Lemma 2.1.1, and note that a := 1+ar−1+· · ·+a0 works. □

Note that this corollary gives another proof of Prop. 1.11.1: I ⊂ radm(A) means
that a ∈ A×, and so aM = 0 implies M = 0.

2.2. Some applications of NAK. Here we give two quick applications of the
NAK lemmas.

1st application.

Proposition 2.2.1. Suppose f :M →M is a surjective A-module endomorphism
of a f.g. A-module M . Then f is injective, hence is an automorphism.

Proof. Using f we define onM the structure of an A[X]-module by setting X ·m =
f(m). By Improved NAK applied to A[X] and I = (X) there exists Y ∈ A[X],
such that (1 + Y X)M = 0. Now let u ∈ ker(f). We have 0 = (1 + Y X)(u) =
u+ Y f(u) = u. Hence ker(f) = 0, as desired. □

The following related result is actually proved using a different argument. (If
you are not already familiar with Noetherian rings, we will return to these again
later.)

Exercise 2.2.2. Suppose A is a Noetherian ring. Then any surjective ring homo-
morphism f : A→ A is injective, hence an automorphism.

The following exercise can be proved using the proposition.

Exercise 2.2.3. Let A be a commutative ring, and suppose that as A-modules,
An ∼= Am. Prove that n = m.

2nd application.
Recall that an A-module P is projective if it has the following property: let

f : M → N be a surjective morphism, and let ϕ : P → N be any morphism; then
there exists a morphism ψ : P → M such that f ◦ ψ = ϕ. In other words, the
natural map HomA(P,M)→ HomA(P,N) induced by f is surjective.

It is easy to prove that P free ⇒ P projective. Also, it is easy to show the
following result.

Proposition 2.2.4. P is projective if and only if it is a direct summand of a free
module.

If you haven’t seen these statements before, you should try to prove them your-
self, but you can also look them up in N. Jacobson’s book, Basic Algebra II (or in
pretty much any book on basic algebra).

We have the following sharper result when (A,m) is local, our second application
of the NAK lemma.

Proposition 2.2.5. Let M be a f.g. projective module over a local ring (A,m).
Then M is free.

Proof. This result actually holds without the assumption “f.g.” – see [Mat2], Thm.
2.5. We shall not need it in that generality.

Choose a minimal generating set m1, . . . ,mn for M , and define the surjective
map ϕ : F = An → M by (a1, . . . , an) 7→ a1m1 + · · · + anmn. Let K := ker(ϕ).
The minimal basis property shows that∑

i

aimi = 0⇒ ai ∈ m,∀i.
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Thus K ⊆ mF . Because M is projective, there exists ψ : M → F such that
F = K ⊕ψ(M), and it follows that K = mK. Since K is a quotient of F , it is also
f.g. over A, hence by NAK, K = 0. This shows F ∼=M , so M is free. □

2.3. Special kinds of rings. A Euclidean domain is a ring where a division al-
gorithm holds (I am not going to make this precise). Examples are Z, and k[X],
where k is any field.

A PID is a domain wherein every ideal is principal, i.e., generated by a single
element.

A UFD is a ring wherein every non-zero, non-unit element can be written as a
unit times a product of irreducible elements, in an essentially unique way. Again,
I am not going to make this precise.

The following implications hold: Euclidean ⇒ PID ⇒ UFD. Further, if A is a
UFD, then A[X] is also (Gauss’ lemma); but A[X] need not be Euclidean (resp.
PID) even if A is. Can you give some examples showing what goes wrong?

2.4. Classifying the prime/max ideals in ring. Consider the ring C[X]. This is
a Euclidean domain, hence as above it is a PID hence a UFD. Hence, C[X1, . . . , Xn]
is also a UFD for any n ≥ 1. This gives rise to some natural questions:

• What are the prime/maximal ideals in C[X1, . . . , Xn]?
• What are the irreducible elements in the UFD C[X1, . . . , Xn]?

Consider again the case C[X]. The non-zero prime ideals are generated by the
irreducible polynomials. By the fundamental theorem of algebra, these are precisely
those of the form X−α, where α ∈ C. Therefore, as a set, we have an identification

SpecmC[X] = C.

To fully understand what we can say about C[X1, . . . , Xn], we need algebraic
geometry.

2.5. Maximal ideals in C[X1, . . . , Xn] – first step. Let α = (α1, . . . , αn) ∈ Cn.
Evaluation at this point, i.e. the map f 7→ f(α1, . . . , αn) ∈ C, gives us a surjective
homomorphism

evα : C[X1, . . . , Xn]→ C.
The kernel is a maximal ideal, call it mα.
Claim: mα = (X1 − α1, . . . , Xn − αn).
Proof. The inclusion ⊇ is clear. If f ∈ mα, then write it as a polynomial in
Xn−αn, with coefficients in C[X1, . . . , Xn−1]. The constant (i.e. degXn

= 0) term
is a polynomial in X1, . . . , Xn−1 vanishing at (α1, . . . , αn−1). By induction, that
constant term is in (X1 − α1, . . . , Xn−1 − αn−1), so we’re done. □

Deeper fact we’ll soon show (from Hilbert’s Nullstellensatz): All maximal
ideals of C[X1, . . . , Xn] are of the form mα. Hence, like for C[X], we will have an
identification

SpecmC[X1, . . . , Xn] = Cn.

2.6. Zariski topology. Let A be a ring. We are going to put a topology on the
set SpecA (we’ll put the subspace topology on the subset SpecmA). From the above
remarks, this will actually define a new and interesting topology on the familiar set
Cn, which is very different from the “standard” metric topology.
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3. Lecture 3

3.1. Definition of Zariski topology. Recall that to define a topology on a set X
is to specify a collection U of subsets of X (called “open”) satisfying the following
axioms:
• ∅, X ∈ U
• Let I be any index set. If for all i ∈ I, Ui ∈ U, then ∪i∈IUi ∈ U
• If U, V ∈ U, then U ∩ V ∈ U.

To determine the topology, it is enough to specify the “closed” sets, which by
definition are the complements of the open sets. (I leave it to you to formulate the
axioms the closed sets must verify – see below.) That is how we will define the
topology on Spec(A).

Namely, for any subset E ⊂ A, define

V (E) := {p ∈ Spec(A) | p ⊃ E}.

Now we show that the subsets V (E) ⊂ Spec(A) are the closed sets in a topology,
which we call the Zariski topology on Spec(A). Parts (ii)-(iv) of the following
lemma accomplish this. The other parts are also useful.

Lemma 3.1.1. The following properties hold.

(i) V (E) = V (⟨E⟩), where ⟨E⟩ is the ideal generated by E.
(ii) V (∅) = V (0) = Spec(A), and V (1) = ∅.
(iii) V (I) ∪ V (J) = V (I ∩ J) = V (IJ), where IJ is the ideal generated by the

set of products xy with x ∈ I and y ∈ J .
(iv) Let I be any index set. Then ∩i∈IV (ai) = V (

∑
i ai) = V (∪iai).

(v) I ⊂ J =⇒ V (J) ⊂ V (I).
(vi) V (I) = V (r(I)).
(vii) V (I) ⊂ V (J)⇐⇒ r(J) ⊂ r(I).
Note that (ii)-(iv) show we get a topology, whereas (i) and (v)-(vii) show that

I 7→ V (I) gives an order-reversing bijective correspondence

{radical ideals in A} ←→ {closed subsets in Spec(A)}.

Proof. Parts (i),(ii), and (v) are clear. Parts (vi) and (vii) follow using (1.8.1).
Part (iv) is also easy from the definitions.
Let us prove (iii). The inclusions V (I)∪V (J) ⊆ V (I ∩J) ⊆ V (IJ) are easy: use

(v) applied to the inclusions I ∩ J ⊆ I (resp. I ∩ J ⊆ J) and IJ ⊆ I ∩ J . Now to
prove V (IJ) ⊆ V (I) ∪ V (J), assume p ∈ V (IJ), i.e., p ⊃ IJ . If p ⊉ I and p ⊉ J ,
then there exist x ∈ I − p and y ∈ J − p; but note that xy ∈ IJ ⊂ p. This is
nonsense since p is prime. □

3.2. Some further remarks about the Zariski topology. The following re-
marks help us get a grip on the strange properties of the Zariski topology.

• If p is a prime ideal, it is also a point in the topological space Spec(A). When we
think of it as a point, we often write it as px (the symbol x is often used to denote
a point in a space, thus the subscript reminds us to think of the ideal as a point in
the space). With this notation, the following equation describes the closure of the
point px:

(3.2.1) {px} = V (px).
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Let us prove this. The closure is the intersection of all closed sets containing px,
that is, the closure is ⋂

I⊆p

V (I) = V (
∑
I⊆p

I) = V (p).

This is striking: a point in our space Spec(A) is not usually a closed set! In fact,
it follows that

(3.2.2) px is a closed point if and only if px is a maximal ideal.

• The space Spec(A) is not Hausdorff, but is T0: for any two distinct points x, y,
there exists an open U containing x but not y, or vice-versa. (Prove this!)

• If A is a domain, then Spec(A) = {0} (and the ideal (0) is called the “generic
point” : it is a single point, but it is actually dense in the whole space!).

• Spec(A) is compact: any cover by open subsets has a finite sub-covering.

Proof. Suppose Spec(A) =
⋃
i∈I Ui, where Ui is the open complement of a closed

set, call it V (ai). Taking complements, we find⋂
i

V (ai) = ∅ = V (1)

=⇒ V (
∑
i

ai) = V (1)

=⇒ r(
∑
i

ai) = (1)

=⇒ 1 ∈
∑
i

ai.

Thus, on renumbering, we may assume 1 ∈
∑r
i=1 ai, which in turn entails

∩ri=1V (ai) = ∅,

i.e. U1, . . . , Ur cover Spec(A). □

Exercise 3.2.1. At this point, it is instructive to work through exercises 15-21,
Chapter 1, of the book by Atiyah-Macdonald.

3.3. Integral extensions. Recall that our immediate goal is to classify all the
maximal ideals in a polynomial ring such as C[X1, · · ·Xn]. We will do this us-
ing Hilbert’s Nullstellensatz. Our approach to that theorem is to first prove
Noether’s Normalization Theorem. That requires us to first explain the basic
facts about integral extensions of rings.

Suppose A ⊂ B is a subring. We say b ∈ B is integral over A if b satisfies a
monic polynomial of the form bn + an−1b

n−1 + · · · + a0 = 0, with ai ∈ A for all
i = 0, . . . , n− 1.

Proposition 3.3.1. The following properties are equivalent.

(a) b ∈ B is integral over A;
(b) b ∈ C ⊂ B, for some subring C containing A, which is finitely generated

as an A-module.
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Proof. (a) =⇒ (b): Take C = A[b], the subring generated byA and b. By induction
on r (the case r = 0 following from (a)), check that bn+r ∈ A+ Ab+ · · ·+ Abn−1,
for all r ≥ 0. This proves that C = A[b] = A + Ab + · · · + Abn−1, hence is f.g. as
an A-module.

(b) =⇒ (a): Apply Lemma 2.1.1 withM = C, I = A, and ϕ = multiplication by b.
□

For a subring A ⊂ B, define Ã := {b ∈ B | b is integral over A}. This set Ã is
called the integral closure of A in B.

Corollary 3.3.2. Ã is a subring of B.

Proof. Let x, y ∈ Ã. We need to show xy, x± y ∈ Ã. Let A[x, y] be the subring of
B generated by A and the elements x, y. Using Proposition 3.3.1 we see that A[x]
is f.g. as an A-module, and A[x, y] is f.g. as an A[x]-module. Then the subring
A[x, y] is f.g. as an A-module. Since A[x, y] contains xy and x ± y, Proposition
3.3.1 implies that these elements are integral over A, and we’re done. □

Remark: Note that a similar argument shows: if the elements x1, . . . , xn ∈ B are
integral over A, then the ring A[x1, . . . , xn] is f.g. as an A-module.

Exercise 3.3.3. Consider the complex numbers α = e2πi/3 and β = e2πi/4. These
are both integral over Z. Find the minimal polynomial for α+β, i.e., the minimal-
degree monic polynomial F (X) with Z-coefficients such that F (α+ β) = 0.

Corollary 3.3.4. Consider ring inclusions A ⊂ B ⊂ C. If C is integral over B
and B is integral over A, then C is integral over A.

Proof. Let c ∈ C, and suppose it satisfies a polynomial relation of form cn +
bn−1c

n−1 + · · · + b0 = 0. Then A[b0, . . . , bn−1, c] is a f.g. A-module (check this –
you will need to invoke the remark above). Thus c is integral over A by Proposition
3.3.1. □

In particular, we see that
˜̃
A = Ã.

We shall prove much more about integral extensions later. But to finish our
preparations for Noether Normalization, we content ourselves with just one
more thing.

Lemma 3.3.5. Suppose A ⊂ B are domains, with B integral over A. Then A is a
field if and only if B is a field.

Proof. (⇒): Assume b ̸= 0 and suppose bn + an−1b
n−1 + · · ·+ a0 = 0 is a minimal

degree monic polynomial satisfied by b. Then a0 ̸= 0, so a−10 ∈ A. But then

b−1 = −a−10 (bn−1 + an−1b
n−2 + · · ·+ a1) ∈ B,

which shows that B is a field.
(⇐): Assume a ̸= 0. Then a−1 ∈ B implies that there exists a relation, with all
αi ∈ A, of form

a−n + αn−1a
−n+1 + · · ·+ α0 = 0.

Multiplying this by an−1, we deduce that a−1 ∈ A, and so A is a field. □
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3.4. Aside: Beginning facts about integrally closed domains. We now pause
a moment to briefly discuss integrally closed domains. Assume A is a domain, with

field of fractions K. In this case Ã ⊂ K is called simply the integral closure of

A (in its fraction field). We say A is integrally closed (or normal) if Ã = A. The
following lemma provides lots of examples of integrally closed domains.

Lemma 3.4.1. Any UFD is integrally closed.

Proof. Any element in K× may be written in the form
a

b
for elements a, b ∈ A− 0.

By cancelling common irreducible factors, we may assume that a and b have no
factors in common.

Now the integrality condition yields, for some elements αi ∈ A, the equation

(
a

b
)n + αn−1(

a

b
)n−1 + · · ·+ α0 = 0,

which implies after clearing denominators

an + αn−1a
n−1b+ · · ·+ α0b

n = 0.

But then any irreducible factor dividing b also divides an and hence also a, a

contradiction. So b is a unit and
a

b
∈ A. □

Question 1: Do there exist integrally closed domains which are not UFD’s? The
answer is YES; we shall show later that if A is a Noetherian domain, then A is a
UFD if and only if it is integrally closed, and the divisor class group of Spec(A)
is trivial (see Theorem 21.1.2). We’ll come back to this, but for the moment let
me highlight one consequence: for Dedekind domains (which are automatically
integrally closed), we have UFD ⇐⇒ every fractional ideal is principal ⇐⇒ PID.
This is important in number theory.
Question 2: When is a domain integrally closed? We will give one complete answer
to this question in this course (but there are other, more useful answers). Here is
an interesting result we will prove later. Assume k is a field, and char(k) ̸= 2. Let
f(X1, . . . , Xn) ∈ k[X1, . . . , Xn], and suppose f is not a square. Then

k[X1, . . . , Xn, Z]/(Z
2 − f) is integrally closed⇐⇒ f is square-free.

Recall that f is square-free means that it is not divisible by the square of any
irreducible element.

Remark 3.4.2. Later we will prove a much stronger general fact: Serre’s normality
criterion, and will show that a stronger answer to Question 2 can be given using
Serre’s criterion.

3.5. Algebraic independence. Let k be any field, and let R be a k-algebra. By
definition, this means that R is a ring containing k. More generally we can define
the notion of an A-algebra for any commutative ring A. This is just a ring B
together with a ring homomorphism f : A → B. Then we may define on B the
structure of an A-module by setting a · b := f(a)b, where the multiplication on
the right is that in B. The A-module structure on B is compatible with the ring
structure on B in an obvious sense (formulate it!).

Return now to k ⊂ R. We say elements u1, . . . , un ∈ R are algebraically indepen-
dent over k if there is no non-zero polynomial F (U1, . . . , Un) in the polynomial ring
k[U1, . . . , Un] such that F (u1, . . . , un) = 0. In that case, the map Ui 7→ ui induces
an isomorphism of rings k[U1, . . . Un] ∼= k[u1, . . . , un].
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3.6. Noether Normalization. From now on, we will often use the following ter-
minology: Suppose B is an A-algebra. We say B is module finite, or simply finite
over A if B is finite-generated as an A-module. We say B is a f.g. A-algebra if
B can be written as a quotient ring of A[Y1, . . . , Yr], for some finite number of
variables Y1, . . . , Yr. In that case, we often write B = A[y1, . . . , yr], where here the
yi are the images of the Yi under the quotient map.

Theorem 3.6.1 (Noether Normalization). Let k be a field, and suppose R is a f.g.
k-algebra, R = k[u1, . . . , un]. Then there exist algebraically independent elements
x1, . . . , xt (with t ≤ n), such that R is module finite over k[x1, . . . , xt].

Moreover, t < n unless u1, . . . , un are algebraically independent.

I learned the following proof from Mel Hochster many years ago.

Proof. We use induction on n. If n = 0, there is nothing to prove. Suppose n ≥ 1
and assume the result is true for algebras generated by n−1 elements. If u1, . . . , un
are algebraically independent, there is nothing to prove. So WLOG 1 there exists
F ̸= 0 with F (u1, . . . , un) = 0. WLOG, Un occurs in F .

Choose a positive integer N with N > deg(F ).

We have R = k[v1, . . . , vn], where by definition vi := ui − uN
i

n for 1 ≤ i ≤ n− 1,
and vn := un. Define new indeterminates V1, . . . , Vn, and define G ∈ k[V1, . . . , Vn]
by

G(V1, . . . , Vn) = F (V1 + V Nn , . . . , Vn−1 + V N
n−1

n , Vn).

Note that G(v1, . . . , vn) = 0.
Claim: G = (non-zero scalar) · (monic in Vn with coefficients in k[V1, . . . , Vn−1]).

Once we establish the claim, we will know thatR is module finite over k[v1, . . . , vn−1],
which by induction is module finite over k[x1, . . . , xt], where t ≤ n − 1. Thus we
will be done.
Proof of Claim: Letting ν stand for the n-tuple of non-negative integers (ν1, . . . , νn),
we write

F =
∑
ν

λνU
ν1
1 · · ·Uνnn .

Here we let ν range over the n-tuples with λν ̸= 0. Thus

G =
∑
ν

λν(V1 + V Nn )ν1 · · · (Vn−1 + V N
n−1

n )νn−1V νnn

=
∑
ν

λν [V
δ(ν)
n + lower terms in Vn with coeff’s in k[V1, . . . , Vn−1]],

where δ(ν) := νn + ν1N + ν2N
2 + · · ·+ νn−1N

n−1.
Choose now a ν′ such that δ(ν′) is maximal. Then the highest degVn

term that
appears anywhere is

λν′V δ(ν
′)

n .

This term can’t be cancelled; in fact there is only one ν′ which maximizes the
function δ. Why? Because of the uniqueness of base N expansions! This completes
the proof of the claim. □

1Without Loss Of Generality.
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3.7. Aside: Geometric meaning of Noether Normalization. For those of
you who already know some algebraic geometry, the following is the geometric
reformulation of Theorem 3.6.1.

At this point we can give preliminary definitions of affine variety and affine
scheme. Let A be any ring. Then we will call the topological space Spec(A) an
affine algebraic scheme. Now let R be a f.g. k-algebra. Then we will call the
topological space Specm(R) an affine algebraic variety over k. In both cases, the
complete definition of scheme/variety will be the topological space endowed with
some extra structure, namely a sheaf of rings on it (stay tuned for more...).

Theorem 3.7.1. Let X = Specm(R) be an affine variety over a field k. Let Atk
denote t-dimensional affine space, i.e. Atk := Spec(k[X1, . . . , Xt]). Then there is a
finite surjective morphism of algebraic varieties

X → Atk

where t = dimk(X).

The theorem states that every affine algebraic variety is “almost” an affine space
kt.

We will define algebraic varieties and all the necessary concepts we need to
understand these statements later.

3.8. Hilbert Nullstellensatz. Now we apply this to get

Corollary 3.8.1 (Nullstellensatz - weak form). (1) Let R be a f.g. k-algebra.
Assume R is a field. Then R is a finite field extension of k.

(2) If k = k (i.e. k is algebraically closed), then moreover R = k.

Proof. For part (1), Theorem 3.6.1 says that R is module finite over a domain of
the form k[x1, . . . , xt]. The latter must be a field, by Lemma 3.3.5. But then t = 0
(why?), and thus R is module finite over the field k, as desired.

For part (2), note that k = k implies that there are no non-trivial finite extensions
of k, so that R = k is forced. □

3.9. Maximal ideals of C[X1, . . . , Xn] - final step. The field C is algebraically
closed, so we may apply the above corollary to prove that every maximal ideal is
of the form mα, for some α = (α1, . . . , αn) ∈ Cn. Let m be a maximal ideal, and
let R := C[X1, . . . , Xn]/m. Then by the above Corollary 3.8.1, we know that the
inclusion C ↪→ R is actually an isomorphism. Define αi to the be complex number
which is the image of Xi under the homomorphism

C[X1, . . . , Xn]→ R ∼= C.

The above map can be identified with the evaluation map evα, and thus m = mα.

3.10. Further consequences of the Nullstellensatz.

Corollary 3.10.1. Let ϕ : R → S be a homomorphism of f.g. k-algebras. Let
m ∈ Specm(S). Then mc = ϕ−1(m) ∈ Specm(R).

In particular, the map ϕ∗ : Spec(S)→ Spec(R) given by p 7→ pc, takes Specm(S)
into Specm(R).
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Proof. The map ϕ induces an inclusion R/mc ↪→ S/m of k-algebras. Since S/m is a
field, the Nullstellensatz implies it is a finite extension of k, and thus it is necessarily
module finite over R/mc. But then this latter domain is itself a field, by Lemma
3.3.5, and thus mc is maximal. □

Exercise 3.10.2. Show that the map ϕ∗ is continuous (see Atiyah-Macdonald,
Chapter 1, #21 (i)).

Question: If k = k, we can now identify

Specm(k[X1, . . . , Xn]) = kn.

The Zariski topology on the left hand side thus gives us a new topology on kn.
What does this topology look like? That is the subject we will look at next.

4. Lecture 4

4.1. Algebraic Zeros Theorem. Let k be a field, k an algebraic closure of k. Let
Φ ⊂ k[X1, . . . , Xn] be a subset. We call α = (α1, . . . , αn) ∈ k

n
an algebraic zero of

Φ if f(α) = 0 for all f ∈ Φ.

Theorem 4.1.1 (Algebraic zeros theorem). Write k[X1, . . . , Xn] = k[X] for short.

(i) If Φ has no algebraic zeros, then ⟨Φ⟩ = (1) = k[X].
(ii) If f ∈ k[X] vanishes at every algebraic zero of Φ, then f ∈ r(⟨Φ⟩).

Proof. (i). Write I := ⟨Φ⟩. If 1 /∈ I, then I ⊂ m, for a maximal ideal m. Since
k[X]/m is a finite extension of k (Corollary 3.8.1), there is an embedding of fields

k[X]

m
↪→ k.

Let αi := image of Xi. But then all elements of m hence also I vanish at α, a
contradiction. Thus, I = (1).
(ii). Inside k[X,Y ] consider Φ∪{1−Y f(X)}. This set has no algebraic zeros (why?).
So by part (i) there exist functions Q(X,Y ), gi(X,Y ) ∈ k[X,Y ] and hi(X) ∈ Φ for
i = 1, . . . , r such that

r∑
i=1

gi(X,Y )hi(X) +Q(X,Y )(1− Y f(X)) = 1.

Specializing Y = f(X)−1, we get∑
i

gi(X, f(X)−1)hi(X) = 1.

Now we multiply by some high power fN (X) to clear the denominators to find that

fN ∈
∑
i

hik[X] ⊂ ⟨Φ⟩,

as desired. □

Remark. Note that (i) says: if f ∈ k[X1, . . . , Xn] is not a unit, then it has at least

one zero α ∈ kn. You already knew this for n = 1: any polynomial in k[X] which
is not a unit, has a zero in the field k.



MATH 603: INTRODUCTION TO COMMUTATIVE ALGEBRA 15

4.2. Consequences of Nullstellensatz and Algebraic Zeros Theorem. 1st
application.

Proposition 4.2.1. Let R be a finitely generated k-algebra, and I ⊂ R an ideal.
Then

r(I) =
⋂

max m ⊇ I
m.

In particular,

(1) For any prime ideal p, we have p = ∩
m⊇p

m.

(2) rad(R) = radm(R).

Proof. Write R = k[u1, . . . , un]; there is a surjection

ϕ : k[X1, . . . , Xn]→ R

given by sending Xi 7→ ui for all i. By the correspondence of ideals between I
and R with those between J := Ic and k[X, . . . ,Xn] (under which prime/max
ideals correspond to prime/max ideals), it is enough to prove the proposition for
R = k[X1, . . . , Xn]. But this case will follow from Theorem 4.1.1, (ii). We start by
verifying the following: if

f ∈
⋂

max m ⊃ J
m,

then f vanishes at every algebraic zero of J . Let’s check this statement. If α is an
algebraic zero of J , then J is in the kernel of

evα : k[X1, . . . , Xn]→ k

and this kernel is itself a maximal ideal m, since the image of evα is a domain which
is an integral extension of k (being contained in k) hence by Lemma 3.3.5 is a field.
Since f ∈ m, we see that f vanishes at α, as desired. Thus by (ii) of Theorem 4.1.1,
we see f ∈ r(J). □

The conclusion of Proposition 4.2.1 is not true in general for all commutative
rings.

Exercise 4.2.2. (1) Find a domain A and a proper ideal I ⊂ A such that

r(I) ⊊
⋂
m⊃I

m.

(2) Consider a local k-algebra (A,m). If A is finitely generated as a k-algebra,
what can you say about the prime ideals of A?

(3) Suppose (A,m) is a local k-algebra. Show that the following are equivalent:
(i) A is a f.g. k-algebra;
(ii) A is an Artin ring and A/m is a finite extension of k;
(iii) A is Artin and each mn/mn+1 is finite-dimensional as a k-vector space;
(iv) A is finite dimensional as a k-vector space.
Hint: You might want to make use of the material from Chapter 8 of Atiyah-
Macdonald.

2nd application.

Proposition 4.2.3. Let R be a f.g. k-algebra. Then Specm(R) ⊂ Spec(R) is dense.
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Proof. There is a basis of open subsets of Spec(R) given by the subsets

D(f) := {q | f /∈ q}.

[Aside: to check {D(f)}f∈R indeed form a basis for a topology, we need to check
that if q ∈ Spec(R) − V (I), then there exists a D(f) with q ∈ D(f) ⊂ Spec(R) −
V (I). But just take f to be any element in I − q.]

We will show: if p ∈ D(f), then there exists a maximal ideal m with

• m ⊃ p;
• m ∈ D(f).

But this is obvious from Prop. 4.2.1, (1). Clearly this also shows Specm(R) is dense
in Spec(R). □

Exercise 4.2.4. Find a ring A such that Specm(A) is not dense in Spec(A).

4.3. Closed subsets in k
n

and radical ideals. In this subsection we assume
k = k, and let R = k[X1, . . . , Xn].

We have established an identification of sets Specm(R) = kn (the same proof we
gave for k = C works, as we only used the property that C is algebraically closed).
The left hand side is given the Zariski topology: more precisely, the subspace
topology it inherits from the Zariski topology on Spec(R). What does this mean
concretely? First we note that under the identification Specm(R) = kn, we have:

Z ⊂ kn is closed⇐⇒ Z = Specm(R) ∩ V (I), for some (radical) ideal I ⊂ R
⇐⇒ Z = {α ∈ kn | f(α) = 0, ∀f ∈ I} =: Z(I).

This leads us to define
• For a subset Y ⊂ kn, let I(Y ) := {f ∈ R | f(y) = 0, ∀y ∈ Y };
• For an ideal I ⊂ R, let Z(I) := {α ∈ kn | f(α) = 0, ∀f ∈ I}.

Note that I(Y ) is always a radical ideal, and Z(I) is always a closed subset.

Theorem 4.3.1 (Classical Nullstellensatz – 1st form). Let I ⊂ R be any ideal, and
let Y ⊂ kn be any subset, with Zariski-closure Y . Then we have:

(a) I(Z(I)) = r(I).
(b) Z(I(Y )) = Y .

In particular, I 7→ Z(I) gives an order-reversing bijection

{radical ideals in R} ←→ {Zariski closed subsets in kn},

with inverse Z 7→ I(Z).

Proof. (a): The Algebraic zeros theorem (ii) gives the non-trival inclusion ⊆.
(b): Clearly Z(I(Y )) ⊇ Y , hence Z(I(Y )) ⊇ Y .

By the Lemma below, it is enough to show that equality holds after we apply
I(·). But then the equality we want can be derived using part (a) (using that I(Y )
is radical):

IZ(I(Y )) = I(Y ) = I(Y ).

Here, the last equality holds because polynomial functions are continuous as func-
tions kn → k (check this!–see Exercise below). □

Lemma 4.3.2. Suppose for Zariski closed subsets Y1 ⊇ Y2 we have I(Y1) = I(Y2).
Then Y1 = Y2.
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Proof. Suppose not. Then there is a point α ∈ Y1 − Y2. There is a principal open
subset D(f) = {x ∈ kn | f(x) ̸= 0}, such that α ∈ D(f), but D(f) ∩ Y2 = ∅. Then
we see that f vanishes on Y2, i.e. f ∈ I(Y2). Since the latter ideal is also I(Y1) by
hypothesis, we see that f also vanishes on Y1, hence on α, a contradiction. □

Exercise 4.3.3. Give k and kn the Zariski topologies. Show that all polynomials
are continuous as functions kn → k.

4.4. Examples. We can draw some pictures of Z(I) for various ideals I ⊂ C[X,Y, Z].
• X2 − Y 2 − Z = 0: saddle point at origin.
• X4 + (Y 2 −X2)Z2 = 0: figure-8 cones along Z-axis emanating from origin.
• X2 + Z3 = 0: tent draped over Y -axis through origin.
• I = (XY, Y Z), i.e., both XY = 0 and Y Z = 0: union of the Y -axis and the
XZ-plane.

To see this last example, note that Z(I) = Z(XY ) ∩ Z(Y Z), and Z(XY ) is
the union of the Y Z-plane and the XZ-plane. Similarly, Z(Y Z) is the union of
the XZ-plane and the XY -plane. Hence the intersection Z(I) is the union of the
Y -axis and the XZ-plane.

5. Lecture 5

5.1. Classical Nullstellensatz for reduced f.g k-algebras. We call a ring A
reduced provided rad(A) = 0; in other words, A has no non-zero nilpotent elements.
For example, if J ⊂ k[X] = k[X1, . . . , Xn] is a radical ideal, then the quotient
R = k[X]/J is reduced.

Now we can give a more complete version of the classical Nulltstellensatz, this
time for arbitrary reduced f.g. k-algebras in place of k[X] = k[X1, . . . , Xn]. Let R
and J be as in the previous paragraph. Again assume k = k. Let V := Z(J) ⊂ kn,
a Zariski closed subset. As before, the statement should concern radical ideals of
R and Zariski-closed subsets in V .

We can extend our previous definitions of the maps Z(·) and I(·) as follows.
Via contraction, the ideals I ⊂ R correspond bijectively to ideals Ic ⊂ k[X] which
contain J , and radical ideals correspond to radical ideals. Therefore, we may set
Z(I) := Z(Ic) ⊂ kn. Note that Ic ⊇ J implies (by Theorem 4.3.1) that Z(I) ⊆
Z(J) =: V . Thus I ⊂ R gives us a Zariski-closed subset of kn which is contained
in the Zariski-closed subset V ⊂ kn.

In the reverse direction, any Zariski-closed subset Y ⊂ V is also Zariski-closed
as a subset of kn, and I(Y ) is a radical ideal of k[X] which contains I(V ) = J , by
Theorem 4.3.1. We can therefore regard I(Y ) as a radical ideal of R.

The two operations I 7→ Z(I) and Y 7→ I(Y ) are mutually inverse (just use
(a),(b) of Theorem 4.3.1 to see this). We have proved:

Theorem 5.1.1 (Classical Nullstellensatz – final form). Let J ⊂ k[X] be a radical
ideal and R := k[X]/J . The rule I 7→ Z(I) gives an order-reversing bijection

{radical ideals in R} ←→ {Zariski closed subsets in V },
with inverse Z 7→ I(Z).

5.2. Remarks on irreducible sets and dimension. What is the dimension of
an arbitrary topological spaceX? Here we give one reasonable definition that works
in algebraic geometry (but not in classical geometry), using the notion of irreducible
subset.
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We call a a topological space X irreducible provided the following equivalent
conditions are satisfied:

• Any two non-empty open subsets in X intersect;
• Every non-empty open subset in X is dense in X;
• X is not the union of two proper closed subsets.

Note that this concept is not very interesting for Hausdorff spaces: a non-empty
Hausdorff space is irreducible if and only if it consists of a single point.

If Y ⊂ X is a subset, we give it the subspace topology, and then we say Y is
irreducible, if it is irreducible once it is given that topology.

We now define the Krull dimension of X to be

Krulldim(X) = sup{n ∈ N | ∃ closed irreducible subsets Y0 ⊊ Y1 ⊊ · · · ⊊ Yn}.
N.B. In this definition, we require that the subsets Yi are non-empty (the empty
set is irreducible and we don’t want to allow it in a chain).

Note that Krulldim(Haussdorff space) = 0. However, this notion of dimension
works well for algebraic geometry, as we shall shortly see.

Note that any irreducible subset Y ⊂ X is contained in a maximal irreducible
subset, which is closed. Why? We need to notice two things:

(i) Zorn’s lemma applied to Σ = {irred. Y ′ ⊇ Y } shows that this collection
possesses maximal elements (for a chain {Y ′α}, observe that ∪αY ′α is irre-
ducible);

(ii) The closure of an irreducible set is irreducible (assume Y is irreducible; if
Y = F1 ∪ F2 with Fi closed proper subsets of Y , then Y is the union of
the closed and proper subsets Y ∩ Fi, violating our assumption that Y is
irreducible).

Thus we may speak of the maximal irreducible subsets (which are closed) in X;
we call them the irreducible components of X.

What are the irreducible components of X = Spec(A), for a ring A?

Proposition 5.2.1. Let A ̸= 0 be a ring.

(i) The non-empty closed irreducible subsets are those of the form V (p), where
p is a prime ideal.

(ii) The irreducible components are the V (p) for p a minimal prime ideal.

In particular, the fact that irreducible components exist for Spec(A) implies that
minimal prime ideals exist in any ring A ̸= 0 (compare with Atiyah-Macdonald,
Ch. 1, Ex. 8).

Proof. (i): Let I be a radical ideal. We need to show that V (I) is irreducible
iff I is prime. If I is not prime, then choose x, y /∈ I such that xy ∈ I. Let
a := I + (x) ⊋ I, and b := I + (y) ⊋ I. Then we see that ab ⊂ I, and so r(ab) ⊂ I
and V (I) ⊂ V (ab) = V (a) ∪ V (b). So V (I) = (V (I) ∩ V (a)) ∪ (V (I) ∩ V (b)), a
union of proper closed subsets. This shows that V (I) is not irreducible.

Conversely, assume V (I) = V (a) ∪ V (b) is a union of proper closed subsets, for
radical ideals a, b. Then a ∩ b is still radical, and so the equality V (I) = V (a ∩ b)
shows that I = a ∩ b. But this shows that I is not prime. Indeed, since I ⊊ a, b,
we have elements x ∈ a− I and y ∈ b− I. But then xy ∈ a ∩ b = I, which means
I is not prime.
(ii): This follows using (i) and the fact that V (p) ⊇ V (q)⇔ p ⊆ q. □
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Remarks: (1) From previous work, we know that {px} = V (p). This means that
the point px is dense in the closed irreducible set V (p). If p is minimal, we call px
the generic point of the irreducible component V (p).

(2) In part (i) above, we actually proved the following fact (see Atiyah-Macdonald,
Ch.1, Exer.19): Spec(A) is irreducible iff the nilradical of A is prime. Indeed, take
I = r((0)), and note that V (I) = Spec(A).

The above considerations lead us to give the following definition of dimension
(sometimes called Krull dimension) for a ring A ̸= 0:

dim(A) = sup{n ∈ N | ∃ prime ideals p0 ⊊ p1 ⊊ · · · ⊊ pn}.

It is not at all obvious that dim(A) < ∞, and indeed sometimes dim(A) =
∞, even if A is assumed to be Noetherian (Nagata’s example)! However, if A is
Noetherian and local, then it turns out that its dimension is always finite. It is also
finite for certain nice rings, such as polynomial rings. Furthermore, the notion is
“intuitively correct” because, as we shall see, dimC[X1, . . . , Xn] = n. One of the
major parts of this course will be dimension theory of Noetherian local rings.

5.3. Localization – definitions. We now return to pure algebra for a while. We
need to develop some technical tools to help us prove more about integral ring ex-
tensions, which will also help us work toward giving the definitions in the statement
of Theorem 3.7.1.

Let A ̸= 0 be a ring, and let S ⊂ A be a subset. We call S a multiplicative
subset provided 1 ∈ S and x, y ∈ S ⇒ xy ∈ S.

Given A,S, we will define a new ring S−1A and a homomorphism

A→ S−1A

which satisfies a certain “universal property”.
Let S−1A be the set of equivalence classes of all formal quotients a

s , for a ∈ A,
s ∈ S. We say a

s ∼
a′

s′ if and only if ∃t ∈ S such that t(s′a− sa′) = 0. Check that
this is an equivalence relation. Sometimes we denote the equivalence classes using
the symbol [as ].

Proposition 5.3.1. Let S ⊂ A be a multiplicative subset.

(1) S−1A is a ring with homomorphism can : A→ S−1A given by a 7→ [a1 ].
(2) (Universal property): If ϕ : A → B is any ring homomorphism such that

ϕ(S) ⊂ B×, then there is a unique homomorphism ϕ̃ : S−1A → B such

that ϕ̃ ◦ can = ϕ.

The homomorphism ϕ̃ is defined by ϕ̃[as ] = ϕ(a)ϕ(s)−1.

Proof. This is standard and easy to prove, the main point being to show that
the various ring operations and ring homomorphism are well-defined. See Atiyah-
Macdonald, Ch. 3 for details. In brief, the identity element is [ 11 ], and we add and
multiply elements by the rules

[
a

s
][
a′

s′
] = [

aa′

ss′
]

[
a

s
] + [

a′

s′
] = [

s′a+ sa′

ss′
].

□
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Examples: (1) If A is a domain and S = A− 0, then S−1A = Frac(A).
(2) If p is prime, then S := A− p is a multiplicative subset; denote S−1A simply

by Ap.
(3) If f ∈ A, let S := {fn, n ≥ 0}. Then S−1A = Af = A[ 1f ].

5.4. Localization of modules. The same construction works for modules: let
S ⊂ A be as above, and let M be an A-module. Then we can define in a parallel
way S−1M ∈ S−1A-Mod. The S−1A-module structure is defined using the rule

[
a

s
][
m

t
] = [

am

st
].

Addition is defined as in S−1A. I leave it to you to check that the operations are
well-defined, and S−1M really is an S−1A-module.

The mapM 7→ S−1M is a functor in an obvious way (we’ll discuss functors soon,
so don’t worry if you don’t know what this means). Just note that an A-module
homomorphism f : M → M ′ induces a well-defined S−1A-module homomorphism
S−1M → S−1M ′ given by

S−1f([
m

s
]) = [

f(m)

s
].

Lemma 5.4.1. The functor M 7→ S−1M is exact, i.e. it takes exact sequences in
A-Mod into exact sequences in S−1A-Mod.

Proof. Suppose

M ′
f // M

g // M ′′

is exact. Note that
m

s
∈ ker(S−1g) ⇐⇒ ∃t ∈ S such that tg(m) = 0

⇐⇒ ∃t,m′ such that f(m′) = tm, i.e. f(m
′

st ) =
m
s

⇐⇒ m

s
∈ im(S−1f).

□

Lemma 5.4.2. There is an isomorphism S−1A⊗AM ∼= S−1M as S−1A-modules,
given by a

s ⊗m 7→
am
s .

Proof. The map is clearly surjective. We prove injectivity: every element on the
LHS 2 is of form 1

s ⊗m (check this!), and 1
s ⊗m 7→ 0 implies that ∃ t ∈ S such that

tm = 0, and in that case
1

s
⊗m =

1

st
⊗ tm = 0.

□

Recall that an A-module N is flat provided that the following holds:
Whenever M ′ → M → M ′′ is an exact sequence of A-modules, then the induced
sequence N ⊗A M ′ → N ⊗A M → N ⊗A M ′′ is also exact. In other words, the
functor N ⊗A − is exact.

The following exercise provides lots of examples of flat modules.

Exercise 5.4.3. Any free module is flat. Any projective module is a direct sum-
mand of a free module, hence is also flat.

2Left Hand Side
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Corollary 5.4.4. S−1A is a flat A-module.

Proof. The corollary follows from the two preceding lemmas. □

Now we can produce a lot of flat modules which are not projective (so also not
free). The simplest example is Q, a flat Z-module which is not projective (since it’s
not free, and over Z, free ⇐⇒ projective).

6. Lecture 6

6.1. Further properties of localization. In the statements below,Mi, N, P , etc.
are all A-modules, and = means that there is a canonical isomorphism of S−1A-
modules.

Lemma 6.1.1. The following properties of localization hold.

(i) S−1(M1 ⊕M2) = S−1M1 ⊕ S−1M2.
(ii) S−1(N ∩ P ) = S−1N ∩ S−1P .
(iii) S−1(M/N) = S−1M/S−1N .
(iv) S−1(rad(A)) = rad(S−1A).
(v) S−1(M ⊗A N) = S−1M ⊗S−1A S

−1N . In particular, for a prime ideal p,
we have (M ⊗A N)p =Mp ⊗Ap

Np.

Proof. In statements (ii) and (iii), we understand N,P as submodules of a module
M ; by exactness of S−1(·), we can regard S−1N,S−1P are submodules in S−1M .
In statement (v), the isomorphism is given by

m⊗ n
s
7→ m

1
⊗ n

s
=
m

s
⊗ n

1

with inverse m
s ⊗

n
t 7→

m⊗n
st .

The remaining statements are easy to check. □

6.2. Local properties. What are local properties? They are properties of an A-
module M that hold iff they hold for all the localizations Mp. Why call them
“local”? Because the ring Ap turns out to be a local ring (see Prop. 6.4.1 below).

Lemma 6.2.1. For an A-module M , the following statements are equivalent:

(1) M = 0.
(2) Mp = 0 for all p ∈ Spec(A).
(3) Mm = 0 for all m ∈ Specm(A).

Proof. (3) =⇒ (1): For x ∈ M , define Ann(x) = {a ∈ A | ax = 0}, an ideal in
A. If x ∈M and x ̸= 0, then Ann(x) ̸= (1), and so Ann(x) ⊆ m for some maximal
ideal m. But then x

1 ̸= 0 in Mm, so the latter is not zero. □

Lemma 6.2.2. For an A-module homomorphism ϕ : M → N , the following are
equivalent:

(1) ϕ is injective (resp. surjective, bijective).
(2) ϕp is injective (resp. surjective, bijective) for all p ∈ Spec(A).
(3) ϕm is injective (resp. surjective, bijective) for all m ∈ Specm(A).

Proof. For each p, the following sequence is exact, by Lemma 5.4.1;

0→ ker(ϕ)p →Mp → Np → coker(ϕ)p → 0.

Now use Lemma 6.2.1. □



22 THOMAS J. HAINES

These lemmas help us prove the following lemma (“flatness is a local property”).

Lemma 6.2.3. For an A-module M , the following are equivalent:

(1) M is A-flat.
(2) Mp is Ap-flat for every p ∈ Spec(A).
(3) Mm is Am-flat for every m ∈ Specm(A).

Proof. (1) =⇒ (2) follows from a more general fact: Let f : A → B be a
homomorphism; then M is A-flat implies that B ⊗A M is B-flat. This follows
(check this!) from the fact that for any B-module N we have an isomorphism of
B-modules

N ⊗B (B ⊗AM) ∼= N ⊗AM.

On the RHS, we are viewing N as an A-module, via the homomorphism f : A→ B.
See Atiyah-Macdonald Ch.2 for details. The point is that we may define the A-
module structure with the rule a · n := f(a)n.

(3) =⇒ (1): It’s enough to show: if N ↪→ P in A-Mod, thenM⊗AN ↪→M⊗AP
as well. But now using Lemmas 5.4.1, 6.1.1, 6.2.2, we see

N ↪→ P =⇒ Nm ↪→ Pm, ∀m
=⇒ Mm ⊗Am

Nm ↪→Mm ⊗Am
Pm, ∀m

=⇒ (M ⊗A N)m ↪→ (M ⊗A P )m, ∀m
=⇒ M ⊗A N ↪→M ⊗A P.

□

6.3. Exercises on integrality. At this point we pause to test our understanding
a little bit. The following two lemmas are exercises that I leave to you. (They can
of course be found in the standard texts.)

Lemma 6.3.1. Let A,S be as above. If A ⊂ B is an integral extension, then so is
S−1A ⊂ S−1B. More generally, if C is the integral closure of A in B, then S−1C
is the integral closure of S−1A in S−1B.

In particular, if p ∈ Spec(A) and A ⊂ B is integral, then so is Ap ⊂ Bp.

Lemma 6.3.2. If A ⊂ B is an integral extension, q ∈ Spec(B) and p := qc ∈
Spec(A), then p is maximal iff q is maximal.

Exercise 6.3.3. Prove the two lemmas above.

Using the lemmas, we have “normality is a local property”. Note that if A is a
domain with fraction field K, then every localization Ap is also a domain, with the
same fraction field.

Lemma 6.3.4. Let A be a domain with fraction field K. The following are equiv-
alent:

(i) A is normal.
(ii) Ap is normal for every p ∈ Spec(A).
(iii) Am is normal for every m ∈ Specm(A).

Proof. Consider the inclusion f : A ↪→ Ã ⊂ K, where Ã is the integral closure of
A in K. Note that (i) holds iff f is surjective. Similarly, since the exercise above

shows that (Ã)p = (̃Ap), (ii) (resp. (iii)) holds iff fp (resp. fm) is surjective for
every p (resp. m). Now the lemma follows from Lemma 6.2.2. □
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6.4. Extending and contracting ideals along A→ S−1A.

Proposition 6.4.1. Let A,S be as in the previous section.

(1) Every ideal in S−1A is an extended ideal, hence of the form S−1a, for some
ideal a ⊆ A.

(2) The rule S−1p↔ p gives a bijective correspondence between the prime ideals
in S−1A and the prime ideals in A which are disjoint from S.

In particular, taking S = A − p, we see Spec(Ap) ↔ {q ∈ Spec(A) | q ⊆ p}. Thus
(Ap, pAp) is a local ring.

Proof. (1): Let b ⊂ S−1A be an ideal, and suppose x
s ∈ b. Then x

1 ∈ b, hence
x ∈ bc and so x

s ∈ bce. But then b ⊆ bce ⊆ b (the latter inclusion being automatic),
hence b = bce.

(2): If q ⊆ S−1A is prime, then so is qc (and the latter clearly doesn’t meet
S – otherwise q would contain a unit in S−1A). Moreover that fact that q is an
extended ideal implies that q = S−1qc. (See Atiyah-Macdonald, Prop. 1.17.)

On the other hand, suppose p ⊂ A is prime. Then S−1p ⊂ S−1A is prime iff
S−1A/S−1p ̸= 0 and is a domain. Let S denote the image of S in A/p. Then
S−1A/S−1p ∼= (S)−1(A/p). The latter ring is either zero or is a non-zero ring
contained in the field of fractions of A/p, hence is a domain. Hence S−1p is either
the unit ideal, or is prime. The former holds iff S ∩ p ̸= ∅.

It follows that every prime ideal p which does not meet S gives rise to a prime
ideal S−1p, and moreoever (S−1p)c = p. The inclusion ⊇ is clear, so let us prove
⊆. Suppose x belongs to the left hand side. Then there exists p ∈ p and s ∈ S such
that x/1 = p/s, and thus there exists t ∈ S with t(sx− p) = 0. But then (ts)x ∈ p.
Since S ∩ p = ∅, this means that x ∈ p, as desired.

Putting these remarks together, the proposition is now proved. □

6.5. Krull-Cohen-Seidenberg Theorems. The following ultra-slick treatment
of these theorems is taken from lectures of R. Swan. These theorems can be proved
from what we have established about integral extensions, using localization as a
tool. This is what is done in Atiyah-Macdonald. The point here is to show how
localization may be avoided, and in fact the proof we will give is about as elementary
as can be expected.

Theorem 6.5.1. Let A ⊂ B be an integral extension. Let p ⊂ A be a prime ideal.
Then an ideal P of B is a prime ideal with P ∩A = p if and only if P is maximal
among the ideals such that P ∩A ⊂ p.

Proof. The last condition says P is maximal with respect to P ∩ S = ∅, where
S = A − p. Such an ideal is automatically prime (check this!), so in either case P
will be prime.

Now suppose that P is prime and has P ∩A = p, but is not maximal among the
ideals with P ∩A ⊂ p; then there exists an ideal Q ⊋ P with Q ∩A = p. Working
mod P we can assume P = p = 0, and that B is a domain. Suppose b ∈ Q, b ̸= 0,
and let bn + an−1b

n−1 + · · ·+ a0 = 0 be an equation for b over A of least degree n.
Then a0 ̸= 0 since B is a domain. But then a0 ∈ Q ∩A = p, contradicting the fact
that p = 0.

Conversely, suppose that P is maximal with the property P ∩ A ⊂ p. Working
mod P we can assume P = 0. We must show that p = 0. Suppose that there is an
element a ∈ p, a ̸= 0. We claim that (Ba) ∩ A ⊂ p, contradicting the maximality
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of P . Indeed, suppose ba ∈ (Ba) ∩ A. Let bn + an−1b
n−1 + · · · + a0 = 0 be an

equation for b over A. Then (ab)n + aan−1(ab)
n−1 + · · ·+ ana0 = 0, showing that

(ab)n ∈ Aa ⊂ p, so that ab ∈ p. □

The following three important results are immediate from Theorem 6.5.1.

Corollary 6.5.2 (Lying Over Theorem). If A ⊂ B is an integral extension, then
Spec(B)→ Spec(A) is surjective.

When qc = p, we says that q lies over p.

Corollary 6.5.3. Let A ⊂ B be an integral extension. Let q, q′ ∈ Spec(B) such
that q ⊆ q′ and qc = (q′)c =: p. Then q = q′.

Geometrically, this says that “if i : A ↪→ B is an integral extension, then there
are no containments in the fibers of i∗ : Spec(B)→ Spec(A)”.

Corollary 6.5.4 (Going Up Theorem). Let A ⊂ B be an integral extension. If
p ⊂ p′ are prime ideals in A, and q is a prime ideal in B lying over p, then there
exists a prime ideal q′ lying over p′, and with q ⊂ q′.

Proof. Note that q ∩ A ⊂ p′; choose an ideal q′ which is maximal among those
which contain q and have q′ ∩A ⊂ p′. By Theorem 6.5.1, we have q′ is prime, and
q′ ∩A = p′. □

7. Lecture 7

7.1. Dimension is invariant under formation of integral extensions.

Proposition 7.1.1. If A ⊂ B is an integral extension, then dim(A) = dim(B).

Proof. If P0 ⊊ P1 ⊊ · · · ⊊ Pn is a chain of prime ideals in B, then the chain
P0 ∩ A ⊊ P1 ∩ A ⊊ · · · ⊊ Pn ∩ A has the same length, by Corollary 6.5.3. If
p0 ⊊ p1 ⊊ · · · ⊊ pn is a chain of prime ideals in A, then we can lift it to a chain
P0 ⊊ P1 ⊊ · · · ⊊ Pn in B, using the Lying Over Theorem to lift p0 and then using
the Going Up Theorem repeatedely to lift pi, for i > 0. □

7.2. Going Down Theorem.

Theorem 7.2.1 (Going Down Theorem). Let A ⊂ B be an integral extension.
Assume that A is a normal domain and that B is torsion-free as an A-module. Let
p ∈ Spec(A) and P ∈ Spec(B) with P ∩ A = p. Let q ∈ Spec(A) with q ⊂ p. Then
there is a prime Q ∈ Spec(B) with Q ⊂ P and Q ∩A = q.

For the proof we need two lemmas.

Lemma 7.2.2. Let A be a normal domain with Frac(A) = K. Let f, g ∈ K[X] be
monic. If fg ∈ A[X], then f ∈ A[X].

Proof. The roots of f , being roots of fg are integral over A. Therefore so are the
coefficients of f , but these are in K, hence in A since A is normal. □

Lemma 7.2.3. Let A ⊂ B be an integral extension and let I ⊂ A be an ideal.

Let Ĩ = {x ∈ B | xn + an−1x
n−1 + · · · + a0 = 0, for some n and ai ∈ I}. Then

Ĩ =
√
BI.
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Proof. It is clear that Ĩ ⊂
√
BI. For the converse, let xn =

∑
i bici with bi ∈ B

and ci ∈ I, for i = 1, . . . , r. Then C := B[b1, . . . , br] is finite over A and xnC ⊂ IC.
Now in Lemma 2.1.1, takeM = C and ϕ = mult. by xn, to conclude that x satisfies

an equation of the required form, so that x ∈ Ĩ. □

Corollary 7.2.4. Let A ⊂ B be an integral extension. Assume A is a normal
domain and B is torsion-free as an A-module. Let K = Frac(A), and I ⊂ A be a

prime ideal. Let b ∈ B. Then b ∈
√
BI iff the minimal polynomial f of b over K

has the form f = Xn + a1X
n−1 + · · ·+ an where all ai lie in I.

Proof. Suppose that b ∈
√
BI. By Lemma 7.2.3, b ∈ Ĩ, so that b is a root of a

polynomial of form h = Xk + q1X
k−1 + · · · + qk with the qi ∈ I. Since f is the

minimal polynomial we have h = fg in K[X]. By Lemma 7.2.2, f and g lie in A[X].

Modulo I, fg = h = X
k
. Therefore, since I is prime, f = X

n
for some n ≤ k and

f has the form f = Xn + a1X
n−1 + · · ·+ an, with the ai ∈ I.

Conversely, note that f(b) = 0 holds in K ⊗A B (by definition, f is the minimal
polynomial of b over K if it is the monic of least degree in K[X] such that f(b) = 0
in K ⊗A B). But then since B is torsion-free as an A-module, we have f(b) = 0 in

B as well, so that b ∈ Ĩ. Then by Lemma 7.2.3, b ∈
√
BI, as desired. □

Proof of Theorem 7.2.1: It will suffice to show that if S := (A − q)(B − P ), then
Bq ∩ S = ∅. Why? In that case we can choose Q ⊃ Bq maximal with respect to
Q ∩ S = ∅. Then it follows (check this!) that Q is a prime ideal contained in P ,
such that Q ∩A = q.

Suppose that s ∈ A − q and t ∈ B − P , and st ∈ Bq. By Corollary 7.2.4, the
minimal polynomial f of st over K is of the form f = Xn+ q1X

n−1+ · · ·+ qn, with
the qi in q. Since s ∈ K − 0, the minimal polynomial g of t over K has the form
g = Xn + a1X

n−1 + · · ·+ an, where qi = siai for all i. By applying Corollary 7.2.4
(with I = A; note that that Corollary does hold true for I = A) to b = t, we see
that all the ai lie in A. Since s ∈ A− q, we have ai ∈ q. By Corollary 7.2.4 again,
t ∈
√
Bq. Since Bq ⊂ P , it follows that t ∈ P , which is impossible. □

7.3. Application of Going Down.

Theorem 7.3.1. Let A be a domain which is a f.g. k-algebra. Then all maximal
chains of prime ideals in A have length equal to tr.degkA.

In particular, dim(A) = tr.degkA.

First we need to review the notion of transcendence degree. If F ⊃ k is a field,
and B ⊂ F is a subset, let k(B) ⊂ F be the subfield of F generated by k and B
(= the smallest subfield that contains k,B). We say that B is a transcendence
basis provided that

• The set B is algebraically independent over k, and
• F is an algebraic extension of k(B).

Fact: Any extension of fields F/k has a transcendence basis B, and any two such
bases have the same cardinality.

Note that B = ∅ iff F/k is algebraic. If F = k(B), we say F/k is purely
transcendental.

For the proof of the fact, see N. Jacobson, Basic Algebra II, section 8.12. We
then define tr.degkF = |B|, the cardinality of any transcendence basis. If A is a
k-algebra domain with fraction field K, we define tr.degkA = tr.degkK.
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To prove the theorem, we need the following lemma. We say a prime P ∈ Spec(A)
has height n if

sup{k | ∃Pk ⊊ Pk−1 ⊊ · · · ⊆ P0 = P} = n.

(The number on the LHS is called simply ht(P ).)

Lemma 7.3.2. Let A be a domain which is a f.g. k-algebra. Let P be a prime
ideal of height 1 in A (since A is a domain, this is just a minimal non-zero prime
ideal). Then tr.degkA/P = tr.degkA− 1.

Proof. Choose k[x1, . . . , xt] ⊂ A as in the Noether Normalization theorem. Then
t = tr.degkA. By Corollary 6.5.3, P ∩ k[x1, . . . , xt] ̸= 0. Let f ∈ P ∩ k[x1, . . . , xt]
with f ̸= 0. After using a substitution of variables as in the proof of Noether
Normalization, we may assume f is monic in xt (replace the xi with yi := xi+xmi

t

if i < t, and yt := xt, for some large integers mi). Therefore k[x1, . . . , xt] is in-
tegral over k[x1, . . . , xt−1, f ], and we may replace xt by f . Then we can assume
xt ∈ p := P ∩ k[x1, . . . , xt]. If p ̸= xtk[x1, . . . , xt], then the Going Down theo-
rem shows that we can find Q ⊊ P in A with Q ∩ k[x1, . . . , xt] = xtk[x1, . . . , xt],
which would contradict the fact that P has height 1. So p = xtk[x1, . . . , xt], so
k[x1, . . . , xt−1] = k[x1, . . . , xt]/xtk[x1, . . . , xt] ⊂ A/P . Since this is an integral
extension, tr.degkA/P = t− 1, as required. □

Proof of Theorem 7.3.1: We use induction on d = tr.degkA. If d = 0, then A is a
field, which has dimension zero.

Suppose d > 0 and let 0 = P0 ⊊ P1 ⊊ · · · ⊊ Pn be a maximal chain of prime
ideals in A. Then 0 = P1/P1 ⊊ P2/P1 ⊊ · · · ⊊ Pn/P1 is a maximal chain of prime
ideals in A′ = A/P1. By Lemma 7.3.2, tr.degkA

′ = d− 1, and so n− 1 = d− 1 by
our induction hypothesis applied to A′. □

7.4. Some counterexamples. In the theorem, it is essential that A is a domain.
What happens if we allow A to be more general? It is easy to see that if A =
k[X,Y ] × k[Z], then we have a maximal chain of prime ideals in the first factor
having length 2, and a maximal chain of primes ideals in the second factor having
length 1. In this case, the space SpecA is disconnected, and in fact is the disjoint
union Spec(k[X,Y ])

∐
Spec(k[Z]) (see Atiyah-Macdonald, Ch. 1, Ex. 22), so it is

not surprising that it is made up of “pieces with different dimensions”.
How about if we avoid such silly examples by requiring A to be such that SpecA

is connected, but not necessarily irreducible? Can we still have irreducible com-
ponents that have different dimensions? The answer is yes, and an example has
already been provided. Namely, recall the ring A = k[X,Y, Z]/(XY, Y Z). As
we saw in Lecture 4, the corresponding variety is connected, a union of a line
and a plane, which clearly have different dimensions. Algebraically, note that
I = (Y )(X,Z) = (Y )∩ (X,Z), a radical ideal since (Y ) and (X,Z) are both prime.
It follows that (Y ) and (X,Z) are the only two minimal primes among those which
contain I, which corresponds to the fact that there are two irreducible components
in Spec(k[X,Y, Z]/I). Note that (Y ) is the bottom prime in a chain of length two,
and (X,Z) is the bottom prime in a chain of length one. This corresponds to the
statement that dim(V (Y )) = 2 and dim(V (X,Z)) = 1, as we already knew since
the first is the XZ-plane, and the second is the Y -axis.



MATH 603: INTRODUCTION TO COMMUTATIVE ALGEBRA 27

7.5. Returning to Geometric version of Noether Normalization. In par-
ticular, Theorem 7.3.1 says that dim(k[X1, . . . , Xn]) = n, as we claimed earlier.
Moreover, in the geometric version of Noether normalization (Theorem 3.7.1), we
claimed that t = dim(A), where t was the total number of algebraically independent
elements x1, . . . , xt in k[x1, . . . , xt] ⊂ A. This now follows from Lemma 7.1.1.

We have also justified that the map SpecA → Spec(k[x1, . . . , xt]) is surjective.
We have not yet shown that the fibers are finite sets, although that is true.

7.6. Hypersurfaces. The following statement appears in Hartshorne’s Algebraic
Geometry, Prop. 1.13. We will prove it later, using the Krull Hauptidealsatz and a
few other facts.

Proposition 7.6.1 (Codimension 1 subschemes in affine space). Then an irre-
ducible closed subset Y ⊂ Ank = Spec(k[X1, . . . , Xn]) has dimension n − 1 if and
only if Y = V (f), for some non-constant irreducible polynomial f ∈ k[X1, . . . , Xn].

Now here is a very interesting exercise, which you should compare with the above
statement. How are they related?

Exercise 7.6.2. Suppose k is a field which is NOT algebraically closed. Show that
if Z ⊂ kn is a non-empty Zariski-closed subset (the set of zeros in kn of an ideal
I ⊂ k[X1, . . . , Xn]), then there is a single polynomial f ∈ k[X1, . . . , Xn] such that
Z = Z(f), the set of zeros of f in kn.

Hint: It is enough to show that for any m ≥ 1, there is a polynomial ϕ in m
variables such that the only zero of ϕ in km is (0, 0, . . . , 0). (Then, if Z = Z(I)
where I = (f1, . . . , fm), we can put f = ϕ(f1, . . . , fm).) Prove that ϕ exists, by first
looking at the case m = 2.

7.7. Chinese Remainder Theorem. [ADD THIS HERE.]

Exercise 7.7.1. Suppose R is a ring with finitely many maximal ideals, such that
the Jacobson radical is nilpotent. Prove that R is a product of finitely many long
rings.

Show that the same conclusion fails if we replace “Jacobson radical” with “nil-
radical”, even if we make the stronger assumption that the number of prime ideals
is finite.

8. Lecture 8

Categories and functors. Presheaves and sheaves. Stone-Cech theorem. Motiva-
tion for locally ringed spaces.

9. Lecture 9

Stalks, definition of locally ringed space. Examples. Definition of OSpec(A), and
basic properties.

Exercise 9.0.1. Let A = Z[t]. Show that the open subset D(2) ∪ D(t) is not
affine. Hint: Show that OSpec(A)(D(2) ∪ D(t)) = A. Hence if affine we would
have D(2) ∪D(t) = Spec(Z[t]). Note that the prime ideal (2, t) is not contained in
D(2) ∪D(t).

Exercise 9.0.2. Prove that any two point scheme is affine.
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10. Lecture 10

Definition of affine scheme, and definition of scheme. Description of category of
(affine) algebraic varieties in scheme-theoretic language. Example (deformations).
DVRs; examples. Valuation rings. Basic properties.

11. Lecture 11

Recap of Noetherian rings/modules. Basic proposition. Proof E. Noether’s the-
orem in invariant theory. Alternate proof of Nullstellensatz via basic proposition.

12. Lecture 12

We shall follow the treatment of associated primes and primary decompositions
from [Mat2], Chapter 2, §6. You can find similar theorems (just for rings, not
modules), in Atiyah-Macdonald, Chapter 4.

12.1. Associated primes. Throughout, we assume A ̸= 0. We say an ideal q ⊂ A
is primary provided that A/q ̸= 0 and every zero-divisor in A/q is nilpotent.
Equivalently, q ̸= A, and

xy ∈ q =⇒ y ∈ q or xn ∈ q for some n ≥ 1.

If I ⊂ A is an ideal, we say it has a primary decomposition if we can write
I = q1 ∩ · · · ∩ qr for some primary ideals qi. We shall prove that when A is
Noetherian, every ideal I ⊂ A possesses a primary decomposition, and in that case
there are various uniqueness statements one can make. In fact, following [Mat2],
we shall actually prove analogous statements for all f.g. modules over A.

Fix an A-module M . Define

Ass(M) = {p ∈ Spec(A) | p = ann(x), for some x ∈M}.

We call this the set of associated primes (to M). Note that p ∈ Ass(M) iff M
contains a submodule isomorphic to A/p.

We say a ∈ A is a zero-divisor for M if ∃x ̸= 0 in M such that ax = 0.
We say a ∈ A is M -regular if it is not a zero-divisor for M .

Lemma 12.1.1. Let A be a Noetherian ring, and M ̸= 0 an A-module.

(a) Every maximal element in the family F := {ann(x) | 0 ̸= x ∈ M} belongs
to Ass(M). In particular, Ass(M) ̸= ∅.

(b) {zero-divisors for M} = ∪p∈Ass(M)p.

Proof. First note that since A is Noetherian, any non-empty family of ideals (such
as F) possesses maximal elements.
(a): If ann(x) is a maximal element of F , then ann(x) is prime: abx = 0 and bx ̸= 0
and ann(x) ⊆ ann(bx) implies by maximality that ann(x) = ann(bx), hence that
ax = 0.
(b): The inclusion ⊇ is clear. Let’s prove ⊆. Suppose x ̸= 0 and ax = 0. Then a
belongs to some maximal element of F , hence a belongs to the right hand side. □

Lemma 12.1.2. If

0→M ′ →M →M ′′ → 0

is an exact sequence of A-modules, then Ass(M) ⊆ Ass(M ′) ∪Ass(M ′′).
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Proof. Let p ∈ Ass(M). Then A/p ∼= N , for some submodule N ⊂ M . Note that
p = ann(x) for any 0 ̸= x ∈ N (since p is prime). So if N ∩M ′ ̸= 0, there exists
0 ̸= x′ ∈M ′ with p = ann(x′), so that p ∈ Ass(M ′).

On the other hand, if N ∩M ′ = 0, then N maps isomorphically onto its image in
M ′′, and so the latter contains a copy of A/p; hence in that case p ∈ Ass(M ′′). □

Lemma 12.1.3. Let A be Noetherian, and M ̸= 0 a f.g. A-module. Then there
exists a chain 0 = M0 ⊂ M1 ⊂ · · · ⊂ Mn = M of submodules such that for each i,
Mi/Mi−1 ∼= A/pi for some prime ideal pi.

Proof. Choose any p1 ∈ Ass(M). Then M1 exists with M1
∼= A/p1. If M = M1,

we are done. If M1 ̸= M , apply this to M/M1. Repeat to find the desired chain.
It terminates at M in finitely many steps, since M is Noetherian. □

For the next theorem, we need the notion of support Supp(M) of an A-module
M . By definition

Supp(M) = {p ∈ Spec(A) | Mp ̸= 0}.

Lemma 12.1.4. M a finite A-module =⇒ Supp(M) = V (ann(M)), a Zariski-
closed subset of Spec(A).

Proof. Write M = Am1 + · · ·+Amn. Fix p ∈ Spec(A). Then

Mp ̸= 0⇔ ∃i with mi ̸= 0 in Mp

⇔ ∃i with ann(mi) ⊂ p

⇔ ann(M) = ∩iann(mi) ⊂ p.

In the last ⇔, ⇒ is clear. For ⇐, use the exercise below. □

Exercise 12.1.5. If P is prime and P ⊃ ∩ni=1ai for some ideals ai, then there
exists some j such that P ⊃ aj.

Now we can state and prove the following fundamental result.

Theorem 12.1.6. Let A be Noetherian, and M a f.g. A-module. Then

(1) Ass(M) is a finite set.
(2) Ass(M) ⊂ Supp(M).
(3) The minimal elements of Ass(M) and Supp(M) coincide.

Proof. (1): By Lemma 12.1.3 there is a chain 0 =M0 ⊂M1 ⊂ · · · ⊂Mn =M such
that Mi/Mi−1 = A/pi. Now Lemma 12.1.2 (and induction) shows that

Ass(M) ⊂ ∪iAss(A/pi) = {pi}i.

This shows that Ass(M) is finite.
(2): If 0 → A/p → M is exact, then so is 0 → Ap/pAp → Mp, in which case
Mp ̸= 0.
(3): First, we need a “localyzing lemma” for the behavior of Ass. In this proof, we
use the following notation: MS := S−1M , and AS := S−1A, for any multiplicative
set S ⊂ A.

Lemma 12.1.7. (a) If N ∈ AS-mod, then AssAS
(N) = AssA(N) (via the

identification Spec(AS) ⊂ Spec(A)).
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(b) Suppose A is Noetherian and M ∈ A-mod. Then Ass(MS) = Ass(M) ∩
Spec(AS).

In particular, if A is Noetherian, p ∈ AssA(M)⇔ pAp ∈ AssAp
(Mp).

Proof. Note that the last statement is an immediate consequence of (a),(b).
(a): Let x ∈ N . We have annA(x) = annAS

(x) ∩ A. So P ∈ AssAS
(N) =⇒ p :=

P ∩A ∈ Ass(N).
Conversely, if p ∈ AssA(N) and x ∈ N is such that p = annA(x), then x ̸= 0

hence p ∩ S = ∅. Hence P = pAS is a prime ideal such that P = annAS
(x).

(b): If p ∈ Ass(M) ∩ Spec(AS), then p ∩ S = ∅ and p = annA(x), for some x ∈M .
If (a/s)x = 0 then ∃t ∈ S such that tax = 0; t /∈ p, ta ∈ p ⇒ a ∈ p. Hence
annAS

(x) = pAS , and so pAS ∈ Ass(MS).
Conversely, if P ∈ Ass(MS), then WLOG P = annAS

(x), for x ∈ M . If p :=
P ∩A, we have P = pAS and p ∩ S = ∅.
Claim: ∃t ∈ S such that p = annA(tx), hence p ∈ Ass(M) ∩ Spec(AS).
Proof of Claim: p is a f.g. ideal, say by f1, . . . , fn. Now fix = 0 in MS implies that
∃ti ∈ S such that fitix = 0 in M . Take t = t1 · · · tn. This does the job, and the
claim is proved. To see why, note that

p ⊂ annA(tx) ⊂ annAS
(tx) ∩A = annAS

(x) ∩A = p,

proving that p ∈ Ass(M) ∩ Spec(AS).
We have proved the lemma. □

Now we finish the proof of the theorem by proving part (3). It’s ETS 3 that a
minimal element of Supp(M) belongs to Ass(M). Let p be such an element.

Using Lemma 12.1.7, we have

0 ̸=Mp ⇒ ∅ ≠ Ass(Mp) = Ass(M) ∩ Spec(Ap)

⊂ Supp(M) ∩ Spec(Ap)

= {p}.

So p ∈ Ass(Mp), and hence p ∈ Ass(M), as desired. □

12.2. Consequences. Let A be a Noetherian ring, and M a f.g. A-module.

• Let {Pi}ri=1 be the set of minimal elements of Supp(M) = V (ann(M)),
or equivalently the set of minimal elements of Ass(M) (the set is finite
since Ass(M) is finite). Then V (ann(M)) = V (P1) ∪ · · · ∪ V (Pr). In other
words, the V (Pi)’s are precisely the irreducible components of the closed
set V (ann(M)).

We call the primes Pi here the isolated primes of M . We call the
remaining primes of Ass(M), the embedded primes of M .
• Letting M = A/I, we see in particular that there are only finitely many
minimal prime ideals containing I. Furthermore, in this case we have

Ass(A/I) = {P ∈ Spec(A) | ∃x ∈ A such that P = (I : x) }.

Here for any subset J ⊂ A, we define the ideal (I : J) = {a ∈ A | aJ ⊂ I}.
Thus, Ass(A/I) is precisely the set

Ass(A/I) = {the ideals (I : x), x ∈ A, which are prime}.

3Enough To Show
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• Suppose A is reduced. Then Ass(A) is precisely the set of minimal primes
P1, . . . Pr of A. Since every minimal prime ideal of A is associated (Theorem
12.1.6), we need only show that every associated prime is one of the Pi’s.
To prove this note that, A being reduced, we have a canonical inclusion

A =
A

P1 ∩ · · · ∩ Pr
↪→ ⊕iA/Pi,

and thus
Ass(A) ⊂ ∪iAss(A/Pi) = {Pi}i.

13. Lecture 13

13.1. Primary submodules. Let N ⊂ M be a submodule of the A-module M .
We say N is primary if N ̸= M and if the following property holds: if a ∈ A is a
zero-divisor of M/N , then a ∈

√
ann(M/N). Equivalently, for all a ∈ A, x ∈ M ,

we have
x /∈ N and ax ∈ N =⇒ aνM ⊂ N for some ν ≥ 1.

The primary submodules of M = A are precisely the primary ideals of A.
The following theorem gives us a crucial characterization of primary submodules

as exactly those N for which Ass(M/N) is a singleton.

Theorem 13.1.1. Suppose M is a f.g. A-module, and N ⊂ M is a submodule.
Then

N ⊂M is primary ⇔ Ass(M/N) = {P},
in which case I := ann(M/N) is primary and

√
I = P .

Corollary 13.1.2. I ⊂ A is primary iff ∃!P of the form P = (I : x), and in that

case
√
I = P .

The corollary is an immediate consequence of the theorem. Let us now prove
the theorem.

Proof. (⇐): We have Supp(M/N) = V (P ) = V (ann(M/N)), and so P =
√

ann(M/N).
Now a ∈ A is a zero-divisor for M/N implies a ∈ P (use e.g. the proof of Lemma
12.1.1 to see that a belongs to an associated prime). So N ⊂M is primary.
(⇒): Conversely, if P ∈ Ass(M/N) then every a ∈ P is a zero-divisor for M/N ,

and so (by assumption that N is primary) a ∈
√

ann(M/N). So P ⊂
√

ann(M/N).

But ann(M/N) ⊂ P (by definition of Ass(M/N)), hence P =
√

ann(M/N), and

Ass(M/N) consists of just one element, which is P =
√

ann(M/N).
Now that we have proved the equivalence ⇔, we must verify

Claim: In this case, I := ann(M/N) is primary.
Proof: Suppose a, b ∈ A, b /∈ I, and ab ∈ I. Then ab(M/N) = 0, but b(M/N) ̸= 0.
This implies that a is a zero-divisor for M/N , and thus (since N is primary) a ∈√
ann(M/N). Thus I is primary, as desired. □

If Ass(M/N) = {P}, we say N is P -primary, or a primary submodule
belonging to P .

Corollary 13.1.3. If I ⊂ A has
√
I = m, a maximal ideal of A, then I is m-

primary.

Proof. It’s ETS that if P = (I : x) is prime, then P = m. But P = (I : x) ⊃ I,

hence P =
√
P ⊃

√
I = m, which proves that P = m. □
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Example. Let k be a field, and let A = k[X,Y, Z]/(XY − Z2). Let x, y, z denote
the images of X,Y Z ∈ k[X,Y, Z] in A. Let p := (x, z) ⊂ A. Note that

• p is prime: A/p ∼= k[Y ];

•
√
p2 = p;

• p2 is not primary: xy = z2 ∈ p2, yet x /∈ p2 and y /∈
√

p2 = p.

Hence
√
I being prime is not sufficient to guarantee that I is primary.

13.2. Various definitions relating to primary decompositions. Our goal is
to investigate when a submodule N ⊂ M can be written in the form N = N1 ∩
· · · ∩ Nr, for some primary submodules Ni ⊂ M . We call such an expression a
primary decomposition of N . The following lemma says that we may as well
“group together” the Ni’s which belong to the same prime (i.e. if certain terms Nij
all belong to Pi, in the primary decomposition we denote the intersection ∩jNij
simply by the symbol Ni). In this way, we can assume that the Ni’s in a primary
decomposition belong to distinct prime ideals.

Lemma 13.2.1. If N,N ′ ⊂M are P -primary submodules, then so is N ∩N ′.

Proof. We have an inclusion

M

N ∩N ′
↪→ M

N
⊕ M

N ′
,

and thus Ass(M/(N ∩ N ′) ⊂ Ass(M/N) ∪ Ass(M/N ′) = {P}, which implies the
result. □

The above will be exploited in proving a kind of uniqueness result for primary
decompositions. What about existence? This will be done using the following
notions.

We say N ⊂ M is reducible if N = N1 ∩N2 for submodules Ni with N ⊊ Ni,
i = 1, 2. We say N is irreducible provided it is not reducible.

Lemma 13.2.2. Suppose M is Noetherian. Then any submodule N is an inter-
section of finitely many irreducible submodules.

Proof. Consider the family F := {N ⊂M | N has no such expression}. We assume
F ̸= ∅ and derive a contradiction.

Choose a maximal element N0 ∈ F (using that M is Noetherian). Then N0

is reducible, so we may write it as N0 = N1 ∩ N2, where N0 ⊊ Ni, i = 1, 2.
By maximality each Ni is an intersection of finitely many irreducible submodules;
hence so is N0. This is nonsense. □

We say an expression N = N1∩· · ·∩Nr is irredundant if no Ni can be omitted.
That is, for each i, we haveNi ⊈ ∩j ̸=iNj . We thus have the notion of an irredundant
primary decomposition N = N1∩· · ·∩Nr, an irredundant expression in which each
Ni is Pi-primary, for a prime Pi.

In an irredundant primary decomposition, if we group together the Nij ’s belong-
ing to the same prime according to Lemma 13.2.1, and write their intersection as a
single module, then we call the resulting expression a shortest primary decom-
position. It has the property that Pi ̸= Pj if i ̸= j. In that case, Ni is called
“the” Pi-primary component of N (as we shall see below, sometimes Ni is indeed
uniquely determined by Pi and N).
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The following theorem is our main result concerning the existence and uniqueness
of primary decompositions.

Theorem 13.2.3. Let A be Noetherian, and let M be a finite A-module.

(i) Any irreducible submodule is primary.
(ii) If N = N1 ∩ · · · ∩Nr, with Ass(M/Ni) = {Pi}, is an irredundant primary

decomposition of N ⊊M , then Ass(M/N) = {P1, . . . , Pr}.
(iii) Ever proper submodule N ⊊ M has a primary decomposition. If P is a

minimal element of Ass(M/N), then the P -primary component of N is
ϕ−1P (NP ), where ϕP : M → MP is the canonical map (in particular the
P -primary component is uniquely determined by M,N,P ).

14. Lecture 14

14.1. Proof of Theorem 13.2.3. (i): Assume N is not primary. Then by The-
orem 13.1.1 there exist P1 ̸= P2 in Ass(M/N). So we can find submodules Ki ⊂
M/N where Ki

∼= A/Pi, for i = 1, 2. But then K1 ∩K2 = 0 (since any 0 ̸= x ∈ Ki

has ann(x) = Pi). This shows that N is reducible.

(ii): WLOG N = 0, and 0 = N1 ∩ · · · ∩ Nr. Since M ↪→ ⊕iM/Ni, we have
Ass(M) ⊂ {P1, . . . , Pr}.

We want to prove that P1 ∈ Ass(M) (the same argument applies to any other
Pi). As N2 ∩ · · · ∩ Nr ̸= 0, we may choose 0 ̸= x ∈ N2 ∩ · · · ∩ Nr, so that
ann(x) = (0 : x) = (N1 : x). But (N1 : M) = ann(M/N1) is a primary ideal with√
(N1 :M) = P1, so P

ν
1M ⊂ N1 for some ν ≥ 1. Therefore P ν1 x ⊂ N1 and thus

P ν1 x = 0 for some ν ≥ 1. Choose ν ≥ 0 such that

P ν1 x ̸= 0, P ν+1
1 x = 0.

Let y be any non-zero element of P ν1 x, so that y satisfies

• P1y = 0, and so P1 ⊂ ann(y);
• y ∈ N2 ∩ · · · ∩Nr, and so y /∈ N1.

Since N1 is primary, we see that a ∈ ann(y) =⇒ a ∈
√

ann(M/N1) = P1. Thus
in fact P1 = ann(y), proving that P1 ∈ Ass(M), as desired.

(iii): Every proper submodule N has an irreducible decomposition, hence a primary
decomposition (by (i)). Let N = N1∩· · ·∩Nr be a shortest primary decomposition.
We want to prove that if, say, P1 is minimal in Ass(M/N), then N1 is determined
by M,N,P1.

Write P for P1 from now on. Localizing, we get NP = (N1)P ∩· · ·∩(Nr)P . Also,
there is a ν > 0 such that, for each i > 1, we have P νi ⊂ ann(M/Ni). Since we are
assuming P is minimal in Ass(M/N), we have Pi ⊈ P for i > 1. From these two
remarks we see that (M/Ni)P = 0 that is, (Ni)P =MP , for i > 1 (check this!).

It follows that NP = (N1)P , and so ϕ−1P (NP ) = ϕ−1P ((N1)P ) = N1, as desired.
Let us check the non-trivial inclusion ⊆ of this last equality more carefully. If
m ∈ ϕ−1P ((N1)P ), then we may write m

1 = n1

s for some n1 ∈ N1 and s ∈ A − P .
There is then a t /∈ P such that tm ∈ N1. Let m ∈ M/N1 denote the image of m.
We see that ∃t /∈ P such that tm = 0. If m ̸= 0, then the fact that N1 is P -primary
means that for a ∈ A, a ∈ ann(m) =⇒ a ∈

√
ann(M/N1) = P . Applying this

implication to a = t, we would have t ∈ P , a contradiction. It follows that m = 0,
i.e., m ∈ N1. This shows ϕ

−1
P ((N1)P ) ⊆ N1, as desired. □



34 THOMAS J. HAINES

14.2. Examples and applications. The next corollary follows immediately from
Theorem 13.2.3.

Corollary 14.2.1. If A is a Noetherian ring, then every proper ideal I has a
shortest primary decomposition I = q1 ∩ · · · ∩ qr. The set of ideals {p1, · · · , pr} to
which the qi’s belong is uniquely determined by I. The qi’s belonging to minimal
pi’s are uniquely determined by I.

The following example shows that an ideal may have two (or more) distinct
shortest primary decompositions.

Example. In k[X,Y ], let I = (X2, XY ) = (X) ∩ (X,Y )2 = (X) ∩ (X2, Y ). Note
that (X,Y )2 and (X2, Y ) both have as radical the maximal ideal (X,Y ), hence both
are (X,Y )-primary. The ideal (X) is prime, hence primary. So, we have two distinct
shortest primary decompositions for I. Note that Ass(A/I) = {(X), (X,Y )}, so
that (X) is isolated, and (X,Y ) is embedded.

We can also use primary decompostions to prove the unique factorization of
ideals in a Dedekind domain. We will prove in the next lecture the following
proposition/definition which characterizes Dedekind domains.

Proposition 14.2.2. Let A be a Noetherian domain with dimension 1. Then the
following statements are equivalent.

(1) A is normal.
(2) Every primary ideal in A is a power of a prime ideal.
(3) Every localization Ap, for p ̸= 0 a prime ideal, is a DVR.

If A satisfies these properties, we call it a Dedekind domain.

Using this, we get the aforementioned unique factorization of ideals in A.

Corollary 14.2.3. Suppose A is a Dedekind domain and I is a proper, non-zero
ideal. Then I = pa11 · · · parr for a uniquely determined set of non-zero prime ideals
pi, and positive integers ai, for i = 1, . . . , r.

Proof. By (2) above, the shortest primary decomposition takes the form I = pa11 ∩
· · · ∩ parr for distinct non-zero prime ideals pi and positive integers ai. Since the
dimension of A is 1, the pi’s are in fact maximal ideals, hence are pairwise coprime:
pi + pj = A, if i ̸= j. Furthermore, this implies that paii + p

aj
j = A. From this

it follows that the intersection is actually a product: I = pa11 · · · parr (for a proof,
see Atiyah-Macdonald, Prop. 1.10). The uniqueness of this expression follows from
the uniqueness statement in Corollary 14.2.1, since each pi is a minimal prime in
Ass(A/I) (in fact since dim(A) = 1, and I ̸= 0, all primes containing I are minimal
primes containing I). □

15. Lecture 15

Characterizations of DVR’s, and applications to Dedekind domains (proofs).
Characterization of normal rings.

15.1. Characterizations of DVR’s. Let A denote a DVR with fraction field K,
with valuation v : K× → Z. As usual set v(0) =∞. Note the following two facts:
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• The only non-zero ideals of A are the sets of the form mk := {y | v(y) ≥ k}.
(Check this! Use that any ideal a ̸= 0 possesses an element y with minimal
valuation.) Thus, A Noetherian, as every ascending chain of ideals taken
from the set m1 ⊃ m2 ⊃ · · · is stationary.
• The maximal ideal is m = m1. We have m = (x) for any element x satisfying
v(x) = 1. In that case, we also have mk = (xk), for all k ≥ 1. So the only
prime ideals are m, (0); and so dim(A) = 1.

Thus, any DVR is a Noetherian local domain of dimension 1, in which every ideal
is principal. In fact this characterizes DVR’s among all Noetherian local domains
of dimension 1.

The following is Proposition 9.2 from Atiyah-Macdonald.

Proposition 15.1.1. Let (A,m) be a Noetherian local domain of dimension 1, with
residue field k := A/m. Then TFAE 4:

(i) A is a DVR.
(ii) A is normal.
(iii) m is principal.
(iv) dimk(m/m

2) = 1.
(v) Every non-zero ideal is mk, for some k ≥ 0.
(vi) ∃x ∈ A such that every non-zero ideal is (xk), for some k ≥ 0.

Proof. Note that any ideal a ̸= (0), (1) is m-primary, hence a ⊃ mn for some n ≥ 1.
To see this, use that

√
a = m, since m is the only prime ideal containing a.

(i) =⇒ (ii): Every valuation ring is normal (Lemma ????).

(ii) =⇒ (iii): Assume 0 ̸= a ∈ m. Then ∃n ≥ 1 such that mn ⊂ (a), but
mn−1 ⊈ (a). Choose b ∈ mn−1− (a), and set x = a/b ∈ K. We have x−1 /∈ A (since
b /∈ (a)), hence x−1 is not integral over A. Hence x−1m ⊈ m (if x−1m ⊂ m, then
m would be a faithful A[x−1]-module, f.g. as an A-module, and thus x−1 would be
integral). But x−1m ⊂ A, hence x−1m = A, and m = (x).

(iii) =⇒ (iv): Assume m = (x). Clearly m/m2 is generated by the image of x,
hence its dimk is ≤ 1. If the dimension is zero, then m = m2 and NAK implies
m = 0, a contradiction.

(iv) =⇒ (v): dimk(m/m
2) = 1 and NAK imply m = (x) for some x. For an ideal

a ̸= (0), (1), we can choose an integer k > 0 such that m ⊃ a ⊃ mk = (xk).
Consider a ⊂ A/(xk) =: A (an Artinian ring). WLOG a ̸= (xk). Since x is

nilpotent, there exists r with a ⊂ (xr) and a ⊈ (xr+1). Take y ∈ a with y /∈ (xr+1).
Note

y = u xr ⇒ u ∈ A×

⇒ xr ∈ a

⇒ a = (xr)

⇒ a = mr = (xr).

This completes the proof.

(v) =⇒ (vi): m ̸= m2 implies ∃x ∈ m − m2. By hypothesis (x) = mr for some
r ≥ 1. But then we must have r = 1, so that m = (x) and mk = (xk) for all k ≥ 1.

4The Following Are Equivalent
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(vi) =⇒ (i): Write m = (x); note (xk) ̸= (xk+1) for all k ≥ 0. Take a ∈ A − 0,
and write (a) = (xk), some k ≥ 0. then a ∈ A×xk.
Claim: K× =

∐
k∈Z(A

×xk).

Proof: Given a
b ∈ K×, write a = uxk and b = vxm, for u, v ∈ A×. Then a

b =

uv−1xk−m.
Now, we can define a function v : K× → Z by setting v(uxk) = k. It is easy

to see that v is a discrete valuation of K, with valuation ring A. Hence A is a
DVR. □

15.2. Proof of Proposition 14.2.2. (1) ⇐⇒ (3): Use Proposition 15.1.1 above
and the fact that “normality is a local property”.

(2)⇐⇒ (3): Use Proposition 15.1.1 and the fact, proved in Atiyah-Macdonald 4.8,
that contraction of ideals gives a bijective correspondence

{primary ideas in S−1A} ←→ {contracted primary ideals in A},

and a similar one, where the word “primary” is replaced with “prime”. □

15.3. Improvement on (iii) =⇒ (vi) in Proposition 15.1.1. For later pur-
poses, we need to give a proof of the implication (iii) =⇒ (vi), without the
dimension 1 hypothesis.

Proposition 15.3.1. Suppose (A,m) is a Noetherian local domain in which m is
principal and non-zero. Then A is a PID (hence of dimension 1, hence a DVR).

Proof. Write m = (x). Consider the family F = {a ⊂ A | a is not principal}. We
will assume F ̸= ∅, and derive a contradiction.

If F ̸= ∅, it contains a maximal element, say a. So a ̸= (0), (1),m.
We will need the notion of invertible ideal. For any ideal I ⊂ A, define I−1 :=

{x ∈ K | xI ⊂ A}, otherwise known by the symbol (A : I). By definition we have
I I−1 ⊂ A. We say I is invertible if I I−1 = A. Note that every principal ideal is
invertible.
Claim: a is not invertible.
Proof: If a a−1 = A, then ∃ai ∈ a and bi ∈ a−1 such that

∑
i aibi = 1. At least one

summand aibi ∈ A×, and then

a = aibia ⊂ aiA ⊂ a,

so a = (ai), a contradiction. The claim is proved.

Now we know that a ⊂ m. Thus m−1 a ⊊ m−1 m = A (if m−1 a = A, then
a−1 = m−1 and a is invertible).

On the other hand, we know that a = m−1 ma ⊂ m−1 a. This leaves us only two
options.

Case 1: a = m−1 a. Then ma = a, hence by NAK a = (0), a contradiction.
Case 2: a ⊊ m−1 a. Then by choice of a as a maximal element of F , we know
m−1 a is principal, equal to (y), for some y ∈ A. But then a = m (y) = (xy), a
contradiction.

So, F ̸= ∅ leads to a contradiction in every case. □
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15.4. Characterization of normal domains. The first step is the following
proposition.

Proposition 15.4.1. Let A be a Noetherian domain, and P ̸= 0 a prime ideal.
Then if P is invertible, then ht(P ) = 1, and AP is a DVR.

Proof. P invertible =⇒ PAP invertible =⇒ (by proof of claim appearing in
Proposition 15.3.1 above) PAP is principal =⇒ (by Proposition 15.3.1 itself) AP
has dim 1 and is a DVR, and ht(P ) = 1. □

Proposition 15.4.2. Let A be a normal Noetherian domain. Then

(i) For all P ∈ Ass(A/(a)), ((a) ̸= (0)), we have ht(P ) = 1, hence all such
P ’s are isolated primes.

(ii) A =
⋂

ht(P )=1

AP .

Proof. (i): Fix a ̸= 0. If P ∈ Ass(A/(a)), we can write P = (aA : b), for some
b ∈ A. Then

m := PAP = (aAP : b) = (AP : ba−1),

and thus ba−1m ⊂ AP and ba−1 /∈ AP .
If ba−1m ⊂ m, then ba−1 is integral over AP , contradicting the normality of AP .

Hence ba−1m = AP , and so m−1 m = AP . By Proposition 15.4.1, ht(m) = ht(P ) =
1.

(ii): It’s ETS the following statement: if a, b ∈ A, a ̸= 0 and b ∈ aAP for all P of
ht 1, then b ∈ aA.

Consider a shortest primary decomposition aA = q1 ∩ · · · ∩ qr, where Pi :=
√
qi

for each i.
By (i), each Pi has ht 1. Therefore each Pi is minimal, and by the uniqueness

statement in Corollary 14.2.1, each qi is uniquely determined. In fact, we have

qi = A ∩ aAPi
.

Since b belongs to the intersection of all the terms on the RHS by hypothesis, it
also belongs to ∩iqi = aA, as desired. □

Note that we had to use the full strength of the uniqueness of shortest primary
decompositions to prove this statement.

We conclude this subsection with a characterization of the Noetherian domains
which are normal.

Theorem 15.4.3. Let A be a Noetherian domain. Then A is normal if and only
if the following two statments hold:

(a) If P is a ht 1 prime ideal, then AP is a DVR.
(b) If a ̸= 0, every P ∈ Ass(A/(a)) has ht 1.

Proof. First assume A is normal. Then (a) holds, since AP is a Noetherian local
domain of dimension 1 which is normal, hence a DVR by Proposition 15.1.1. Also,
Proposition 15.4.2 ensures that (b) holds.

Conversely, suppose (a) and (b) hold. By the proof of (ii) in Proposition 15.4.2,
(b) implies that A =

⋂
ht(P )=1

AP . By (a), each AP appearing in this intersection is

normal, and thus A is normal too. □
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16. Lecture 16

Beginning of completions. Basic questions arising for Ĝ. On exactness of G 7→ Ĝ,

and completeness of Ĝ.

16.1. Completions of abelian topological groups. Suppose (G,+) is an abelian
topological group. This means that G is an abelian group and also a topological
space, such that the group operations + : G × G → G and inv : G → G are
continuous functions (where in the first case, G×G has the product topology).

Note that G is not necessarily Hausdorff. In fact, G is Hausdorff if and only if
{0} is a closed set. One direction is immediate: if G is Hausdorff, then any point
is a closed set; in particular {0} is closed. Conversely,, suppose {0} is a closed set,
and consider the continuous map

d : G×G→ G

given by d(x, y) = x− y. Then clearly d−1{0} = ∆ ⊂ G×G, where ∆ denotes the
diagonal subset. So ∆ is a closed subset, and it follows that G is Hausdorff. (In
fact, a space X is Hausdorff iff the diagonal ∆ ⊂ X ×X is closed.)

We define the completion Ĝ to be the set of all equivalence classes of Cauchy
sequences in G. Recall that a sequence {xn} isCauchy if xn−xm → 0 as n,m→∞
(I leave it to you to make this precise). Also, two Cauchy sequences {xn} and {yn}
are equivalent provided that xn − yn → 0 as n→∞.

Clearly, we may add or subtract Cauchy sequences term-by-term, and this gives

well-defined operations of +,− on Ĝ. It is easy to check that Ĝ is itself an abelian

group, and that the map G→ Ĝ given by taking g ∈ G to the “constant” Cauchy
sequence {g}, is a group homomorphism.

Lemma 16.1.1. G is Hausdorff if and only if G ↪→ Ĝ.

Proof. Let H := {0}−, the closure of the subgroup {0}. Clearly H is a subgroup
of G.
Claim: {0}− =

⋂
0∈U

U .

Proof:

x ∈
⋂
0∈U

U ⇔ 0 ∈ x− U, ∀U ∋ 0

⇔ x ∈ {0}−,
the last equivalence holding because the open sets x−U form a neighborhood basis
of open sets containing x, as U varies over all open subsets containing 0.

Finally, H = ker(G→ Ĝ). So we are done. □

Now we assume the topology on G is such that there is a countable sequence of
subgroups

G = G0 ⊃ G1 ⊃ G2 ⊃ · · · ⊃ Gn ⊃ · · ·
which form a basis of opens sets around 0 ∈ G. This means that a subset V ⊂ G is
a neighborhood of 0 iff it contains contains some Gn. In particular, each Gn is an
open and therefore a closed subgroup of G.

We have projections θn+1 : G/Gn+1 → G/Gn, so we can form the inverse limit

lim
←−

G/Gn ⊂
∏

G/Gn,
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the subset of the direct product consisting of tuples (xn)n ∈
∏
G/Gn such that for

all n ≥ 0, θn+1 xn+1 = xn.

Unless otherwise mentioned, Ĝ will denote the completion of G with respect to
the topology determined by the filtration G ⊃ · · · ⊃ Gn ⊃ · · · .

Proposition 16.1.2. There is a canonical isomorphism of abelian groups

Ĝ = lim
←−

G/Gn.

Proof. If {ξn} is a Cauchy sequence, then ξN is ultimately constant in G/Gn. So

we can define a map Ĝ→ lim
←−

G/Gn by sending {ξn} 7→ (xn)n, where

xn ≡ ξN mod Gn, ∀N >> 0.

To define the inverse map, let ξn ∈ G be an arbitrary lift of xn ∈ G/Gn. Then
{ξn} is a Cauchy sequence whose equivalence class is independent of the choice of
lifts. □

Each G/Gn is a discrete abelian group, and the product topology on
∏
G/Gn

makes the latter a topological abelian group. Then Ĝ = lim
←−

G/Gn is also a topo-

logical abelian group (give it the subspace topology from
∏
G/Gn).

Questions: In what sense is G 7→ Ĝ functorial? Is
̂̂
G ∼= Ĝ? Does the topology on

Ĝ depend on the choice of subgroups Gn?
We shall answer these questions (at least for the concrete cases we need) in the

next few sections.

16.2. Functoriality of G 7→ Ĝ. So far, it is pretty obvious that G 7→ Ĝ gives
us a functor Top.Ab → Ab. In fact any continuous homomorphism f : G1 → G2

determines a homomorphism f̂ : Ĝ1 → Ĝ2: if {ξn} ⊂ G1 is Cauchy, then {f(ξn)} ⊂
G2 is also Cauchy.

Exercise 16.2.1. Assume that the topologies on G1 and G2 are defined by countable

neighborhood bases of subgroups. Show that for the topologies on Ĝ1 and Ĝ2 defined

above, the map f̂ : Ĝ1 → Ĝ2 just defined is continuous.

Our next goal is to show that the functor G 7→ Ĝ is exact, in a certain sense. To
state the proposition suppose we are given an exact sequence of topological abelian
groups

0 // G′ // G
p // G′′ // 0

where we are assuming G has topology given by the filtration Gn, G
′ ⊂ G has the

subspace topology (therefore has basis G′n := G′ ∩ Gn around 0) and G′′ has the
quotient topology (therefore has basis G′′n := p(Gn) around 0).

Proposition 16.2.2 (Mittag-Leffler lemma). The sequence

0 // Ĝ′ // Ĝ
p // Ĝ′′ // 0

is exact, where the completions Ĝ′ and Ĝ′′ are defined using the filtrations G′n and
G′′n respectively.
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Proof. It’s ETS that

0 // lim
←−

G′/G′n // lim
←−

G/Gn
p // lim

←−
G′′/G′′n // 0

is exact. More generally, suppose we have an exact sequence of inverse systems of
abelian groups

0 // A• // B•
p // C• // 0.

Then we will prove

(1)

0 // lim
←−

An // lim
←−

Bn
p // lim

←−
Cn

is exact;
(2) the map p : lim

←−
Bn → lim

←−
Cn is surjective, if we assume θn+1 : An+1 → An

is surjective for all n ≥ 0.

Let A :=
∏
An, and define dA : A → A by (an)n 7→ (an − θn+1an+1)n. Note that

ker dA = lim
←−

An. Similarly define B,C, dB , dC . We have the commutative diagram

with exact rows
0 // A //

dA

��

B //

dB

��

C //

dC

��

0

0 // A // B // C // 0.
The snake lemma gives the short exact sequence

0 // ker dA // ker dB // ker dC ,

ie., statement (1).
For (2), again by the snake lemma it’s ETS that coker dA = 0, i.e that dA is

surjective. So, given (an)n ∈ A, we must find (a′n)n ∈ A such that

an = a′n − θn+1a
′
n+1,

for all n ≥ 0. Since θn+1 is surjective, we can solve for the a′n’s recursively. □

Corollary 16.2.3. For all n, we have inclusions Ĝn ↪→ Ĝ.

Now we can define a topology on Ĝ by declaring that the sequence of subgroups

Ĝ ⊃ Ĝ1 ⊃ Ĝ2 ⊃ · · ·
defines a basis of open subsets around 0 ∈ Ĝ.

Exercise 16.2.4. Show that this topology on Ĝ agrees with the one defined by giving
lim
←−

G/Gn the subspace topology from the product
∏
G/Gn.

Proposition 16.2.5. There is a canonical isomorphism Ĝ →̃ ̂̂
G. In particular, Ĝ

is Hausdorff and complete (every Cauchy sequence in Ĝ converges).

Proof. The exact sequence

0 // Gn // G // G/Gn // 0

gives us the exact sequence

0 // Ĝn // Ĝ // Ĝ/Gn // 0.
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Since G/Gn is discrete, we have Ĝ/Gn = G/Gn, and hence a canonical isomorphism

G/Gn →̃ Ĝ/Ĝn.

So

Ĝ = lim
←−

G/Gn →̃ lim
←−

Ĝ/Ĝn =
̂̂
G.

□

16.3. Examples: I-adic completions of rings and modules. In the following
examples, A denotes a ring with ideal I ⊂ A, and M is an A-module.
Examples

(a) Let G = A, Gn = In. Note that A is a topological ring WRT 5 the I-adic
topology given by

A ⊃ I ⊃ I2 ⊃ · · · .
(b) Let G =M , Gn = InM . Then M is a topological A-module when both A

andM are given the I-adic topologies. Furthermore Â is a topological ring,

and M̂ is a topological Â-module, i.e. the natural action map Â× M̂ → M̂

is continuous. This follows from the fact that Â × InM̂ is mapped by the

action map into InM̂ .

(c) M is Hausdorff for the I-adic topology iff [kerM → M̂ ] = ∩∞n=1I
nM = (0).

(d) If f : M → N is A-linear, it is automatically continuous for the I-adic

topologies (check this!). Thus M 7→ M̂ is a functor from A-modules to

Â-modules.
(e) Letting A = Z, and I = (p), we get the p-adic ring Â = Zp. Similarly,

letting A = k[X] and I = (X), we get Â = k[[X]].

17. Lecture 17

Applications to I-adic completions of A and M . (Stable) I-filtrations, and proof
of Artin-Rees lemma. Application: I-adic completion is an exact functor on cate-
gory of f.g. modules over a Noeth. ring. More applications.

*************

17.1. Basic notions related to I-filtrations. Let A be Noetherian, I ⊂ A an
ideal, and M a f.g. A-module.

Goal: If 0 → M ′ → M → M ′′ → 0 is exact, then 0 → M̂ ′ → M̂ → M̂ ′′ → 0 is
exact, where each completion is defined using the I-adic topology.
N.B.: This does not follow immediately from Proposition 16.2.2: it is not at all
obvious that the I-adic topology on M ′ is the subspace topology M ′ inherits from
M . We need to prove this.

Theorem 17.1.1. Let A, I,M be as above, and let M ′ ⊂M be a submodule. The
the filtrations InM ′ and M ′ ∩ InM have bounded difference, hence define the same
topology on M ′ (and hence the same completion).

Let us first recall some basic facts and terminology. We say M = M0 ⊃ M1 ⊃
M2 ⊃ · · · is an I-filtration if IMn ⊂ Mn+1 for all n ≥ 0. We say it is a stable
I-filtration if also IMn = Mn+1 for all n >> 0. For instance, InM is a stable
I-filtration.

5With Respect To
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Lemma 17.1.2. Any stable I-filtrations Mn, M
′
n have bounded difference: there

exists n0 such that Mn+n0 ⊂M ′n and M ′n+n0
⊂Mn for all n ≥ 0.

Proof. WLOG M ′n = InM . Since Mn is an I-filtration, InM ⊂ Mn, ∀n, hence
In+n0M ⊂Mn, ∀n, n0.

SinceMn is stable, ∃n0 such that InMn0 =Mn+n0 , ∀n, henceMn+n0 = InMn0 ⊂
InM, ∀n. □

By the lemma, it’s ETS that M ′ ∩ InM is a stable I-filtration on M ′. We need
to take a detour through graded rings/modules.

17.2. Graded rings and modules. Let A = ⊕∞n=0An be a graded ring: A0 ⊂ A
is a subring, and AnAm ⊂ An+m, ∀n,m. In particular, A+ := ⊕∞n=1An is an ideal
in A.

Let M = ⊕∞n=0Mn be a graded A-module: AnMm ⊂ Mn+m, ∀n,m. In
particular, each Mn is an A0-module..

Let N also be a graded A-module. An A-module morphism f : M → N is
graded if f(Mn) ⊂ Nn, ∀n.

Lemma 17.2.1. TFAE:

(1) A is Noetherian.
(2) A0 is Noetherian and A is a f.g. A0-algebra.

Proof. (2)⇒ (1): Use Hilbert’s Basis Theorem.
(1) ⇒ (2): A0 = A/A+, hence is Noetherian. The ideal A+ is f.g.. Suppose
A+ = (y1, . . . , yr), where WLOG yi ∈ Aki , for ki > 0. Let A′ := A0[y1, . . . , yr].
We will prove that A′ = A; it’s ETS that An ⊂ A′ for all n, which we prove by
induction on n. If y ∈ An, write y =

∑
i aiyi for some ai ∈ An−ki (take ai = 0 if

n < ki). We are done because the induction hypothesis gives ai ∈ A′ for all i. □

Now let A be a ring, and let M be an A-module equipped with an I-stable
filtration Mn. We will apply the above considerations to the graded ring A∗ :=
⊕∞n=0I

n and its graded module M∗ := ⊕∞n=0Mn. (Check that these are indeed
graded rings/modules.)

Lemma 17.2.2. With the notation above, assume A is Noetherian and M is f.g.
Then TFAE:

(i) M∗ is a f.g. A∗-module.
(ii) Mn is stable.

Proof. Since Mn is a f.g. A-module, so is Qn := ⊕nr=0Mr ⊂ M∗. It is easy to see
(check this!) that Qn generates the A∗-submodule

M∗n :=M0 ⊕ · · · ⊕Mn ⊕ IMn ⊕ I2Mn ⊕ · · · .
Note that M∗n is f.g. as an A∗-module (since Qn is f.g. as an A-module). Since
A∗ is Noetherian (Lemma 17.2.1), M∗ is f.g. as an A∗-module iff the following
ascending chain which exhausts M∗ is stationary:

M∗n ⊂M∗n+1 ⊂ · · · ,
which holds iff

M∗ =M∗n for some n⇔Mn+n0
= InMn0

, for some n0 and every n

⇔Mn is stable.
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□

This gives us the next very useful result.

Proposition 17.2.3 (Artin-Rees Lemma). Suppose A is Noetherian, I ⊂ A is an
ideal, M is a f.g. A-module, Mn is a stable I-filtration in M , and M ′ ⊂ M is a
submodule. Then M ′ ∩Mn is a stable I-filtration on M ′.

Proof. We have I(M ′ ∩Mn) ⊂ M ′ ∩ IMn ⊂ M ′ ∩Mn+1, so M
′ ∩Mn is an I-

filtration. Applying Lemma 17.2.2 to both M∗ and ⊕nM ′ ∩Mn, we see first that
M∗ is a f.g. A∗-module, and further that

⊕nM ′ ∩Mn is a graded A∗-submodule of M∗ ⇒ it is a f.g. A∗-module

⇒M ′ ∩Mn is stable.

□

17.3. Some consequences of Artin-Rees. There is an obvious map Â⊗AM →
M̂ (here completions are the I-adic ones).

Proposition 17.3.1. (1) If M is f.g, then Â⊗AM ↠ M̂ .

(2) If A is Noetherian and M is f.g., then Â⊗AM →̃ M̂ .

Proof. (1): There is an exact sequence 0 → N → An → M → 0. This gives a
commutative diagram with exact upper row

Â⊗AM //

��

Ân //

∼=
��

Â⊗AM //

��

0

0 // N̂ // (̂An)
δ // M̂ // 0.

(We could have asserted that the bottom row is also exact, had we assumed A
Noetherian; in any case the map δ is surjective, by the Mittag-Leffler lemma.) Now
it follows that the right vertical map is surjective, and (1) holds.
(2): If A is Noetherian, then the bottom row is exact, and N is f.g., so we have
the surjectivity of the left vertical arrow from part (1). But now the snake lemma
implies that the right vertical arrow is an isomorphism. □

Corollary 17.3.2. If A is Noetherian, then any I-adic completion Â is a flat
A-module.

Proof. The implication M ′ ↪→ M ⇒ Â ⊗A M ′ ↪→ Â ⊗A M holds when M ′,M
are f.g. modules, by the left-exactness of the functor ·̂ on f.g. modules. But this
is sufficient to prove this implication for arbitrary M ′,M , by Atiyah-Macdonald,
Prop. 2.19. □

18. Lecture 18

Further consequences of Artin-Rees, such as Krull’s theorem. Associated graded

rings/modules. Proof thatANoeth⇒ ÂNoeth. Geom. meaning ofG(A): “tangent
cone”. Hensel’s lemma.

************************
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18.1. Further consuequences of Artin-Rees.

Lemma 18.1.1. Suppose A is Noetherian, I ⊂ A is an ideal, and ·̂ denotes I-adic
completion.

(0) If M is a f.g. A-module, and M ′ ⊂M is a submodule, then ∃k ∈ Z≥0 such
that In−k(IkM ∩M ′) = InM ∩M ′, for all n ≥ k.

(1) Î = ÂI ∼= Â⊗A I.
(2) În = În.

(3) In/In+1 ∼= În/În+1. Similarly, A/In = Â/În.

(4) Î ⊂ Jac. rad. of Â.

Proof. (0): This is a reformulation of the fact that InM ∩M ′ is a stable I-filtration
on M ′, a consequence of the Artin-Rees lemma.

(1): We have established the natural isomorphism Â⊗AI →̃ Î. Note that the image

of this map is just ÂI.

(2): By (1), we have În = ÂIn = (ÂI)n = În.

(3): By (2) and exactness of ·̂ , we have În/În+1 = În/În+1 = ̂In/In+1. This is
just In/In+1, since the latter is discrete.

(4): Note that since În = În, the ring Â is complete for the Î-adic topology. But

then for any α ∈ Î, we have the convergent geometric series

(1− α)−1 = 1 + α+ α2 + · · · ∈ Â,

and so 1− α ∈ Â×. It follows that α belongs to the Jacobson radical of Â. □

Lemma 18.1.2. If (A,m) is a Noetherian local ring, and Â is the m-adic comple-

tion, the (Â, m̂) is local.

Proof. By (3), Â/m̂ = A/m, and so m is a maximal ideal in Â. By (4), m is the
Jacobson radical, and hence is the only maximal ideal. □

Theorem 18.1.3 (Krull’s Theorem). Suppose A is Noetherian, I ⊂ A is an ideal,

M is a f.g. A-module, and M̂ is its I-adic completion. Let E := ∩∞n=0I
nM , the

kernel of the natural map M → M̂ . Then

E = {x ∈M | (1− α)x = 0 for some α ∈ I}.

Proof. Note that the subspace topology E inherits from M is the trivial one: the
only open subsets are ∅ and E itself. By the Artin-Rees lemma, the I-adic topology
on E is also trivial, which means that E = IE. If E = Ax1+· · ·+Axn, then we may
write xi =

∑
j αijxj , for some αij ∈ I. Then the element det(αij − δij) ∈ ±1 + I

kills E (by the “Cramer’s Rule Trick”).
Conversely, (1−α)x = 0, α ∈ I =⇒ x = αx = α2x = · · · ∈ ∩∞n=1I

nM = E. □

Corollary 18.1.4. If A is a Noetherian domain, and I ̸= (1), then ∩∞n=1I
n = 0.

Proof. Note that 1 + I has no zero-divisors. □

Corollary 18.1.5. If A is Noetherian and the ideal I belongs to the Jacobson
radical of A, and M is a f.g. A-module, then ∩∞n=1I

nM = 0 (and thus M is
Hausdorff WRT the I-adic topology). In particular, if (A,m) is Noetherian local,
and M is f.g., then ∩∞n=1m

nM = 0.

Proof. Note that 1 + I ⊂ A×. □
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Corollary 18.1.6. If B is Noetherian, and p ∈ Spec(B), then ker(B → Bp) is the
intersection of the p-primary ideals of B.

Proof. See Atiyah-Macdonald, 10.21. □

18.2. A Noetherian implies Â Noetherian. Our goal is to prove that Â is
Noetherian if A is. We need to study associated graded rings/modules.

Suppose I is an ideal in a ring A, and M is an A-module equipped with an
I-filtration Mn. Define the associated graded ring GI(A) := ⊕∞n=0I

n/In+1.
Similarly, define the associated graded module GI(M) := ⊕∞n=0Mn/Mn+1.

It is clear that GI(A) is a graded ring, with multiplication defined by xn · xm =
xnxm (where this notation has the obvious meaning). Also, GI(M) is a graded
module over GI(A).

Proposition 18.2.1. Suppose A is Noetherian.

(1) GI(A) is Noetherian.

(2) GÎ(Â) = GI(A).
(3) If M is a f.g. A-module, and Mn is stable, then G(M) is f.g. G(A)-module.

Proof. (1): Write I = (x1, . . . , xr), and I/I2 = (x̄1, . . . , x̄r). Then G(A) =
A/I[x̄1, . . . , x̄r], hence is Noetherian by the Hilbert basis theorem.
(2): This is clear from Lemma 18.1.1.
(3): Suppose Mn0+n = InMn0 for n ≥ 0. Then G(M) is generated over G(A) by
⊕n0
n=0Mn/Mn+1. Each Mn/Mn+1 is f.g. as an A/I-module, hence we are done. □

We need a kind of converse to the implication in (3) above. The following lemma
is a crucial tool.

Lemma 18.2.2. Suppose ϕ : A→ B is a homomorphism of filtered abelian groups,
i.e., ϕ(An) ⊂ Bn for all n. Clearly ϕ induces maps G(ϕ) : G(A) → G(B) and

ϕ̂ : Â→ B̂. Then:

(1) G(ϕ) injective =⇒ ϕ̂ is injective.

(2) G(ϕ) surjective =⇒ ϕ̂ is surjective.

Proof. See Atiyah-Macdonald, 10.23. □

Lemma 18.2.3. Suppose A is I-adically complete, and M has a separated I-
filtration Mn (i.e. ∩nMn = 0). Then G(M) f.g. over G(A) =⇒ M is f.g.
over A.

Proof. Choose a finite set of homogeneous generators xi ∈ Mn(i) for G(M) over

G(A). Define F i = A endowed with the stable I-filtration F ik := Ik−n(i) (where we
set Iν = A if ν < 0). Define

ϕ : F := ⊕iF i →M

by ei 7→ xi ∈Mn(i), where ei is the ith standard basis vector. This map is filtered
in the sense of the previous lemma. By definition G(ϕ) is surjective, and so by

Lemma 18.2.2, ϕ̂ is surjective. Now consider the commutative diagram

F
ϕ //

∼=
��

M

��
F̂

ϕ̂ // M̂.
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The left vertical arrow is an isomorphism because A = Â. Since ϕ̂ is surjective, we
see that the right vertical arrow is surjective. But then the right vertical arrow is
an isomorphism (it is injective since ∩nMn = 0). Now going around the diagram,
we see that ϕ is surjective, and so M is f.g. as an A-module. □

Corollary 18.2.4. Let A,M be as above. Then G(M) is a Noetherian G(A)-
module =⇒ M is a Noetherian A-module.

Proof. Let M ′ ⊂ M be a submodule; we want to show M ′ is f.g. as an A-module.
Consider the separated I-filtration M ′n := M ′ ∩ Mn. We have M ′n/M

′
n+1 ↪→

Mn/Mn+1, which implies that G(ϕ) : G(M ′) ↪→ G(M). Thus G(M ′) is a f.g.
G(A)-module, and then by Lemma 18.2.3, we see M ′ if a f.g. A-module. □

Theorem 18.2.5. A Noetherian =⇒ Â Noetherian.

Proof. Note that GI(A) = GÎ(Â) so the latter is Noetherian. Also, Â is Î-adically

complete (Lemma 18.1.1), and so the Î-adic topology is separated: ∩nÎn = 0.

Applying the above corollary to M = Â, we get that Â is Noetherian. □

Remark 18.2.6. • If k is a field, then k[[X1, . . . , Xn]] is Noetherian, since it
is the (X1, . . . , Xn)-adic completion of the Noetherian ring k[X1, . . . , Xn].
• Let m ∈ Specm(A). Then the following two m-adic completions are canoni-

cally isomorphic: Â = Âm. Why? Use the identities Am/m
nAm = (A/mn)m =

A/mn.

18.3. Geometric meaning of the associated graded ring: the tangent cone.
The following discussion is taken from Mumford’s book The Red Book of Varieties
and Schemes, III, §3. Suppose k = k. Given a closed point x ∈ V (I) for I ⊂
k[X1, . . . , Xn] a radical ideal, let A = k[X1, . . . , Xn]/I and let m ∈ Specm(A) be
the maximal ideal corresponding to x. Then we define the tangent cone to V (I) at
x to be the affine scheme Spec(Gm(A)).

How can we “compute” this scheme? Mumford explains it, and here we just
give the answer: WLOG x is the origin in the ambient affine space An. For any
element 0 ̸= f ∈ k[X1, . . . , Xn], write it in the form f = fs + fs+1 + · · · + fs+r,
where fs ̸= 0 and each summand fk is the degree k homogeneous part of f ; denote
the lowest degree term fs simply by f∗. Let I∗ be the ideal generated by all f∗,
where f ranges over all elements 0 ̸= f ∈ I. Then

Gm(A) = k[X1, . . . , Xn]/I
∗.

From this, we can see why Spec(Gm(A)) is called the tangent cone. Let’s consider
two examples:
Curve with cusp: Let V (I) be the plane curve given by Y 2−X3. Then f∗ = Y 2,
and so the tangent cone at (0, 0) ∈ V (I) is the spectrum of the ring k[X,Y ]/Y 2, in
other words, the “X-axis with multiplicity two”. Note that the tangent cone is an
affine scheme but is not an affine variety (the ring is not reduced), even though the
curve we started out with was a variety. This is another example of how schemes
enter into the study of varieties.
Nodal curve: Let V (I) be the place curve given by X2 − Y 2 +X3. Then f∗ =
(X − Y )(X + Y ), and the tangent cone at (0, 0) is the union of the lines X = ±Y .
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18.4. Hensel’s Lemma. This is another application of complete local rings. For
motivation, consider the equation X2 + 1 = 0 in Z[X]. It has no solutions X ∈ Z.
However, modulo 5, this equation has two distinct solutions, namely, X = 2, 3. We
can’t lift these solutions to Z, but we can lift them to the completion of Z at the
prime ideal 5Z, namely the 5-adic numbers Z5. Indeed that is a very special case
of the following result.

Proposition 18.4.1 (Hensel’s Lemma). Let (A,m) be a local ring such that A is
m-adically complete. Let k := A/m. Suppose F (X) ∈ A[X] is monic, and write
F (X) ∈ k[X] for its reduction modulo m. If F = gh in k[X], where (g, h) = 1 and
g, h are monic, then there exist monic G,H ∈ A[X] such that F = GH and G = g,
H = h.

Proof. Choose arbitrary monics G1, H1 ∈ A[X] which lift g, h respectively. Then
F ≡ G1H1 mod m[X].

By induction, suppose we have constructed monics Gn, Hn ∈ A[X] with Gn = g,
Hn = h, and F ≡ GnHn mod mn[X]. Then we can write

F −GnHn =
∑
i

ωiUi(X)

where ωi ∈ mn and deg(Ui) < deg(F ), for all i.
Since (g, h) = 1, there exist vi, wi ∈ k[X] such that Ui = gvi + hwi. WLOG

deg(vi) < deg(h) (if necessary, replace vi with its remainder mod h, absorbing the
difference into wi).

Then deg(hwi) = deg(Ui − gvi) < deg(F ), hence deg(wi) < deg(g).
Choose Vi,Wi ∈ A[X] such that Vi = vi,Wi = wi, and with deg(Vi) = deg(vi)

and deg(Wi) = deg(wi). Set

Gn+1 = Gn +
∑
i

ωiWi

Hn+1 = Hn +
∑
i

ωiVi.

Note that F ≡ Gn+1Hn+1 mod mn+1[X] (check this!). We then set

lim
n→∞

Gn = G

lim
n→∞

Hn = H.

(By construction and the completeness of A, these limits exist.) It is easy to check
that G,H have the desired properties. □

19. Lecture 19

Hilbert functions, etc: Motivation comparing dimA0[X1, . . . , Xs] = s with ordt=1P (A, t)
and degnℓA0An...

Rationality and explicit expression for P (M, t). Lemma for I-stable filt Mn of
graded A-module M : ℓ(M/Mn) = g(n) for n >> 0.

*******************
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19.1. Combinatorics and a motivating example. We consider the polynomial
ring A = A0[X1, . . . , Xs], where A0 is an Artin ring (that is, a Noetherian ring
of dimension 0). This is a graded ring A = ⊕n≥0An, where An is the free A0-
module generated by the set of monomials of form Xm1

1 · · ·Xms
s , where mi ≥ 0

and
∑
imi = n. It is not hard to count these monomials: arrange n + s − 1 dots

in a row, and cross out s − 1 of them. We get s ordered clumps of dots, with say
mi dots in the ith clump, and the total number of remaining dots is n. Clearly
such arrangements correspond bijectively to the monomials we are counting. On
the other hand, the number of possible such arrangements is simply

(
n+s−1
s−1

)
.

As a consequence, setting all Xi to t in the obvious formula

(19.1.1)

s∏
i=1

(1−Xi)
−1 =

∑
n≥0

(
∑
|m|=n

Xm1
1 · · ·Xms

s )

yields

(19.1.2) (1− t)−s =
∑
n≥0

(
n+ s− 1

s− 1

)
tn =

∑
n≥0

rankA0(An)t
n,

where rankA0(An) denotes the rank of the A0-module An. We have

rankA0
(An) = ℓA0

(An) · ℓA0
(A0)

−1,

where ℓA0
(An) denotes the length of the A0-module An.

We will see later that dim A = s+ dim A0 = s (we already know this when A0

is a field) 6. Thus, we see that the dimension of A, which is s, is also the order of
the pole at t = 1 in the power series

∑
n≥0 ℓA0

(An)t
n. We will generalize this fact

to other rings in the next sections.

19.2. Hilbert functions. Let A = ⊕nAn be a Noetherian graded ring (so that A0

is Noetherian, and there is a finite set of homogeneous elements xi ∈ Aki , ki > 0,
such that A = A0[x1, . . . , xs]). Let M = ⊕nMn be a f.g. graded A-module
(so that each Mn is a f.g. A0-module: indeed, if M is generated over A by ho-
mogeous m1, . . . ,mt of degree r1, . . . , rt, then Mn is generated over A0 by terms
g(x1, . . . , xs)mj where rj ≤ n and g is a monomial of degree n− rj).

Let λ be a Z-valued additive function on the category of finite-length A0-modules.
This means that for a short exact sequence of such A0-modules

0→M ′ →M →M ′′ → 0

we have λ(M) = λ(M ′)+λ(M ′′). It follows that if 0→ K0 → K1 → · · · → Kl → 0
is exact in this category, then

∑
i(−1)iλ(Ki) = 0.

We define the Poincare series of M (WRT λ) to be the formal power series

P (M, t) :=

∞∑
n=0

λ(Mn)t
n ∈ Z[[t]].

Theorem 19.2.1. We have P (M, t) =
f(t)∏s

i=1(1− tki)
, for some f(t) ∈ Z[t].

6Actually, we won’t have time for this. Here are the basic facts. If A is any ring and B = A[X],
then dim A + 1 ≤ dim B ≤ 2dim A + 1. If A is Noetherian, then dim A + 1 = dim B. A good

reference for this is [Serre], III.D.1.
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Proof. Induction on s. If s = 0, then A = A0 and Mn = 0 for n >> 0. Thus
P (M, t) ∈ Z[t] in this case.

Assume the theorem holds for graded rings generated over A0 by s−1 elements.
We have an exact sequence for every n

(19.2.1) 0 // Kn
// Mn

xs // Mn+ks
// Ln+ks // 0.

Let K := ⊕nKn and L := ⊕nLn (for the latter, the initial terms for n < ks are not
defined – simply set them equal to 0). These are f.g. graded A-modules, killed by
xs (check!), so are f.g. graded A0[x1, . . . , xs−1]-modules.

Multiplying
λ(Kn)− λ(Mn) + λ(Mn+ks)− λ(Ln+ks)

by tks and summing over n, we get the equality

(1− tks)P (M, t) = −tksP (K, t) + P (L, t) + g(t),

for some g(t) ∈ Z[t]. Using the induction hypothesis applied to K,L, the result
follows. □

Now we define
d(M) := ordt=1P (M, t),

the order of the pole at t = 1. The number d(M) is an integer ≤ s.

Corollary 19.2.2. If ki = 1 for all i, then λ(Mn), as a function of n, belongs to
Q[n] for sufficiently large n, having degree d(M)− 1.

Proof. Let d := d(M). WLOG P (M, t) = f(t)
(1−t)d , where f(1) ̸= 0. Write f(t) =∑N

k=0 akt
k. Now λ(Mn) is the coefficient of tn in the product

N∑
k=0

akt
k · (1− t)−d,

which by using (19.1.2) with s = d is

λ(Mn) =

N∑
k=0

ak

(
n− k + d− 1

d− 1

)
as long as n ≥ N . Viewed as a polynomial in n (with Q-coefficients), this has
leading term

(

N∑
k=0

ak)n
d−1/(d− 1)!,

proving the corollary. □

The following related result is also useful.

Proposition 19.2.3. Suppose x ∈ Ak is not a zero-divisor forM . Then d(M/xM) =
d(M)− 1.

Proof. In (19.2.1) we have Kn = 0, and the exact sequence becomes

0 // Mn
x // Mn+k

// Ln+k // 0.

From the previous argument, we see that (1− tk)P (M, t) = P (M/xM, t)+g(t) (for
some polynomial g) and this implies the result. □
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Proposition 19.2.4. Let (A,m) be a Noetherian local ring, and I an m-primary
ideal. Let M be a f.g. A-module, with a stable I-filtration Mn. Then

(i) ℓA(M/Mn) <∞.
(ii) If I is generated by s elements x1, . . . , xs, then ℓ(M/Mn) = g(n) for n >>

0, where g ∈ Q[n] is a polynomial in n with degree ≤ s.
(iii) The degree and leading coefficient of g(n) depend on M and I, but not the

choice of I-stable filtration Mn.

Proof. (i): It’s ETS ℓ(Mn/Mn+1) < ∞. Now Mn/Mn+1 is a f.g. A/I-module,
and as A/I is Artin (being Noetherian and dim 0 – check this, using that I is
m-primary), this means that ℓ(Mn/Mn+1) = ℓA/I(Mn/Mn+1) <∞.
(ii): The associated graded ringG(A) = A/I[x1, . . . , xs] is Noetherian, andG(M) =
⊕nMn/Mn+1 is f.g. as a G(A)-module (since the filtration is stable). Therefore,
by Corollary 19.2.2, ℓ(Mn/Mn+1) = f(n) is a polynomial in Q[n] for n ≥ n0 (some
n0), having degree ≤ s− 1. Now the equality

ℓ(M/Mn+1) = ℓ(M/Mn0
) + ℓ(Mn0

/Mn0+1) + · · ·+ ℓ(Mn−1/Mn) + ℓ(Mn/Mn+1),

shows that for n ≥ n0, ℓ(M/Mn) is given by a polynomial g(n) ∈ Q[n] having
degree ≤ s.
(iii): Let M̃n denote another I-stable filtration on M , and g̃(n) ∈ Q[n] be the

corresponding polynomial giving ℓ(M/M̃n) for n >> 0. Since Mn and M̃n have

bounded difference, ∃n0 such that Mn+n0 ⊂ M̃n and M̃n+n0 ⊂ Mn for all n ≥ 0.
It follows that g(n+ n0) ≥ g̃(n) and g̃(n+ n0) ≥ g(n) for all n >> 0 This implies
that g and g̃ have the same degree and leading coefficient. □

19.3. Characteristic polynomial of a primary ideal. We define χMI (n) :=
g(n) = ℓ(M/Mn). In the special case M = A, we call χI(n) := χAI (n) the charac-
teristic polynomial of the m-primary ideal I.

Lemma 19.3.1. Let (A,m), I be as above. Then deg χI(n) = deg χm(n), so that
deg χI(n) is independent of the choice of I.

Proof. There exists an integer r ≥ 1 such that m ⊃ I ⊃ mr, so that mn ⊃ In ⊃ mrn,
for all n ≥ 0.

This implies that χm(n) ≤ χI(n) ≤ χm(rn) for all n ≥ 0, which implies the
result. □

Thus we may define the quantity d(A) := deg χI(n), where I is any m-primary
ideal. Note that

d(A) = d(Gm(A)),

where the RHS is defined as in the beginning of this section. From Corollary 19.2.2
and the equality

degnℓ(A/m
n) = degnℓ(m

n/mn+1) + 1

we see that d(A) = d(Gm(A)).

20. Lecture 20

Proof that d(A) = dim(A) = δ(A), for Noetherian local rings A.
**********************
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20.1. The equality of three characterizations of Krull dimension. Let (A,m)
be a Noetherian local ring. We have not yet shown that the dimension of A is finite.
We will next prove the stronger fact that the following three numbers are equal:

• dim A
• δ(A) := the minimal number of generators of an m-primary ideal
• d(A) = degn χI(n), for any m-primary ideal I.

We’ll show that δ(A) ≥ d(A) ≥ dim A ≥ δ(A). We have already proved δ(A) ≥
d(A). Indeed, this follows from Proposition 19.2.4, (ii).

Next, we will show d(A) ≥ dim A, by induction on d(A). If d(A) = 0 then
ℓ(A/mn) is constant for large n, and hence mn = mn+1 for large n. By NAK this
implies that mn = 0 and so A ∼= A/mn. Thus A is Artin, and so dim A = 0.

Now assume that d(A) ≥ 1, and that the inequality holds for rings A′ with
d(A′) < d(A).
Claim: dim A ≥ 1.
Proof: If dim A = 0, then m is the unique prime ideal, and so (0) is m-primary. So
using Lemma 19.3.1 we see χI(n) is constant and d(A) = 0, a contradiction.

Now write r ≥ 1 for dim A. Choose a chain of prime ideals p0 ⊊ p1 ⊊ · · · ⊊ pr
in A.
Claim: r ≤ d(A).
Proof: Choose x ∈ p1, x /∈ p0. Let x

′ = x ∈ A/p0 =: A′.
Note that d(A′) ≤ d(A): m′ := m ⊂ A′ is maximal, and A/mn ↠ A′/(m′)n. This

implies ℓ(A′/(m′)n) ≤ ℓ(A/mn), and so d(A′) ≤ d(A).
Using this together with Lemma 20.1.1 below (applied to B = A′ and y = x′), we

see d(A′/(x′)) ≤ d(A′)− 1 ≤ d(A)− 1, and hence the induction hypothesis applies
to the ring A′/(x′). Thus dim A′/(x′) ≤ d(A′/(x′)).

But modulo (x′), we have the chain p1 ⊊ · · · ⊊ pr in Spec(A′/(x′)), and so the
above remarks give us r− 1 ≤ d(A)− 1, or dim A ≤ d(A), as desired. The claim is
proved, modulo the lemma below.

Lemma 20.1.1. Let (B, n) be a Noetherian local ring with n-primary ideal I, and
let M be a f.g. B-module. If y ∈ B is not a zero-divisor in M , and if M :=M/yM ,

then deg χMI ≤ deg χMI − 1. In particular, taking M = B, we have d(B/yB) ≤
d(B)− 1.

Proof. We have N := yM ∼=M as a B-module. Consider the exact sequence

0→ N/(N ∩ InM)→M/InM →M/InM → 0.

We have

ℓ(M/InM) = ℓ(N/(N ∩ InM)) + ℓ(M/InM).

By Artin-Rees and N ∼=M (and using Proposition 19.2.4, (iii)), the first summand
on the RHS has the same degree and leading coefficient as the LHS. This implies
the desired bound on the degree of the remaining term on the RHS. □

It remains to prove the dim A ≥ δ(A). Write d = dim A. It’s enough to construct
a sequence of elements

x1, . . . , xi, . . . , xd

such that for each i the following holds:

(20.1.1) For any prime p ⊃ (x1, . . . , xi), we have ht(p) ≥ i.
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Indeed, then for any prime p ⊃ (x1, . . . , xd) we would have ht(p) ≥ d, which
can only happen if p = m. Thus (x1, . . . , xd) is m-primary, and is generated by d
elements. Thus, d ≥ δ(A).

We will construct the sequence x1, . . . , xd as in (20.1.1) by induction. Suppose
i ≥ 1 and we have already constructed x1, . . . , xi−1 satisfying (20.1.1). Let pj , for
j = 1, . . . , l, be the minimal primes containing (x1, . . . , xi−1) having height i − 1
(there might be no such primes).
Claim: m ⊈ ∪lj=1pj .
Proof: If m ⊂ ∪jpj , then by Atiyah-Macdonald 1.11, we would have m ⊂ pj for
some j. This would imply m = pj , and so ht(m) = i− 1 < d, a contradiction.

So we may choose an element xi ∈ m, xi /∈ ∪jpj . We claim that x1, . . . , xi
satisfies (20.1.1).

Suppose that we have a prime q ⊃ (x1, . . . , xi). We need to show that ht(q) ≥ i.
Clearly q ⊃ p, where the latter is some minimal prime containing (x1, . . . , xi).
Case 1: p = pj , for some j. Then as q ̸= pj (by choice of xi), we have ht(q) ≥
ht(p) + 1 = i.
Case 2: p ̸= pj for all j. Then ht(q) ≥ ht(p) ≥ i.

In summary, we have now proved the following fundamental theorem.

Theorem 20.1.2. Let (A,m) be a Noetherian local ring. Then dim A = d(A) =
δ(A). In particular, dim A <∞.

20.2. Consequences of the dimension theorem for Noetherian local rings.
Recall that for any prime ideal in any ring A, we have ht(p) = dim Ap.

Corollary 20.2.1. If A is Noetherian, and p is a prime ideal, then ht(p) < ∞,
and therefore prime ideals in A satisfy the d.c.c. (descending chain condition: all
descending chains are eventually stationary).

Example: It is clear that the Noetherian hypothesis is necessary: consider A =
k[X1, X2, X3, . . . ] the polynomial ring in infinitely many variables. Then the chain
of prime ideals

(X1, X2, X3, . . . ) ⊋ (X2, X3, X4, . . . ) ⊋ (X3, X4, X5, . . . ) · · ·
is not stationary.

Corollary 20.2.2. If (A,m) is Noetherian local, and k := A/m, then dim A ≤
dimk m/m2.

Proof. Indeed, NAK implies that m is generated by at most dimk m/m2 elements.
□

Corollary 20.2.3. If A is Noetherian, then any minimal prime p ⊃ (x1, . . . , xr)
has ht(p) ≤ r.

Proof. The ideal (x1, . . . , xr) becomes pAp-primary in Ap. So the result follows
from the inequality dim Ap ≤ r. □

Corollary 20.2.4 (Krull’s Hauptidealsatz). Let A be a Noetherian ring, and x ∈ A
neither a unit nor a zero-divisor. Then every minimal prime p ⊃ (x) has ht(p) = 1.

Proof. By the preceding corollary, ht(p) ≤ 1. If ht(p) = 0, then p belongs to 0, and
thus every element in p is a zero-divisor (Lemma 12.1.1, (b)), a contradiction. □
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Corollary 20.2.5. If (A,m) is Noetherian local, and x ∈ m is not a zero-divisor,
then dim A/(x) = dim A− 1.

Proof. We have already proved, just a few paragraphs ago, that d(A/(x)) ≤ d(A)−
1, and so ≤ holds. To prove the opposite inequality, write d = dim A/(x), and sup-
pose x1, . . . , xd generate an m/(x)-primary ideal. It follows that I := (x, x1, . . . , xd)
is m-primary: if the only prime ideal containing I/(x) is m/(x), then the only prime
ideal containing I is m. Hence d+ 1 ≥ dim A, as desired. □

Corollary 20.2.6. Let (Â, m̂) denote the m-adic completion of (A,m). Then

dim A = dim Â.

Proof. Since A/mn ∼= Â/m̂n for all n ≥ 0, we have δ(A) = δ(Â). □

Example: We have dim k[[X1, . . . , Xn]] = n. In the corollary above, take A =
k[X1, . . . , Xn]m, where m = (X1, . . . , Xn), and observe that k[[X1, . . . , Xn]] is the
m-adic completion of A.

21. Lecture 21

When a Noetherian domain is a UFD. Definition of regular local rings.
**************************

21.1. Applications, in particular of Krull’s Hauptidealsatz. Recall: for A a
domain, we define

• a ̸= 0 is irreducible if a /∈ A× and a is not the product of two non-units.
• A is a UFD if each a ̸= 0 is the pruduct of a unit and finitely many
irreducible elements, uniquely up to units and reordering.

Lemma 21.1.1. A Noetherian domain A in which every irreducible element gen-
erates a prime ideal is a UFD.

Proof. First we need to show the existence of factorizations.
Consider the family of (principal) ideals

S := {0 ̸= (a) | a is not the product of finitely many irred. elements}.
If S ̸= ∅, then S has a maximal element (a). The element a is neither a unit nor
irreducible. So a = a1a2, where ai is a non-unit. We have (a) ⊊ (ai), for i = 1, 2,
and by maximality both ai are products of finitely many irreducible elements. Hence
so is a, a contradiction.

Therefore, given a, we may write a = ua1 · · · ar, where u ∈ A× and each ai is
irreducible. To prove uniqueness, assume

ua1 · · · ar = vb1 · · · bs
where v ∈ A× and each bj is irreducible. Since vb1 · · · bs ∈ (a1) (a prime ideal by
hypothesis), WLOG b1 ∈ (a1). Thus

(b1) ⊂ (a1);

this is an inclusion of prime ideals by hypothesis, and such primes are ht 1, by
Corollary 20.2.4. Thus (b1) = (a1).

7 Thus WLOG b1 = a1 (absorbing a unit into

7We can also argue as follows: note that if b is irreducible, then the ideal (b) is a maximal
element in the collection of all proper principal ideals; this shows (b1) = (a1), without invoking

Krull’s Hauptidealsatz (pointed out in class by Moshe Adrian).
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v, say), and then we may cancel these from both sides. Continuing, the uniqueness
statement follows. □

Theorem 21.1.2. A Noetherian domain A is a UFD iff every prime of ht 1 is
principal.

Proof. (⇐): Suppose π ∈ A is irreducible. By the preceding lemma, it’s ETS (π)
is prime. Let p ⊃ (π) be a minimal prime ideal. Corollary 20.2.4 implies ht(p) = 1,
and so p is principal by hypothesis, say p = (a). Then (as noted in the footnote
above) (π) = (a) and so (π) is indeed prime.
(⇒): Suppose ht(p) = 1. Choose x ̸= 0, x ∈ p. WLOG (factor x), we can assume
x is irreducible. Note that because A is a UFD, (x) is then a prime ideal (check
this!).

Then (0) ⊊ (x) ⊂ p, and (x) is prime, so ht(p) = 1 =⇒ (x) = p, and p is
principal, as desired. □

The following fact is important in number theory.

Corollary 21.1.3. Let A be a Dedekind domain (i.e. a Noetherian normal domain
of dimension 1). Then TFAE:

(1) A is a UFD.
(2) Every non-zero prime ideal in A is principal.
(3) A is a PID.

Proof. (1)⇔ (2): Note that a prime ideal is non-zero iff it has ht 1.
(2) ⇔ (3): Every proper non-zero ideal a is product of non-zero prime ideals a =
pa11 · · · parr . Hence every such a is principal if and only if every non-zero prime ideal
is principal. □

Aside: The geometric meaning of the Theorem (see Hartshorne II, Prop. 6.2): Let
A be a Noetherian domain. and X = Spec(A). Then A is a UFD iff A is normal
and Div(X)/(principal divisors) = {0}.

21.2. Definition of regular local ring. Throughout this subsection, let (A,m)
denote a Noetherian local ring, with residue field k = A/m. Let d = dim A.

Theorem 21.2.1. TFAE:

(i) Gm(A) ∼= k[t1, . . . , td] as graded k-algebras (the ti’s are indeterminates).
(ii) dimkm/m

2 = d.
(iii) m can be generated by d elements.

We call a Noetherian local ring A a regular local ring if the equivalent condi-
tions (i)-(iii) hold.

For the proof, note that (i)⇒ (ii) is clear, and (ii)⇒ (iii) follows by NAK.
Before giving the proof of (iii)⇒ (i), we need some preliminaries. First, we call

any set of d elements x1, . . . , xd which generate an m-primary ideal a system of
parameters. Choose such a system and set I = (x1, . . . , xd).

Lemma 21.2.2. Let x1, . . . , xd ∈ I/I2. Let f(t1, . . . , td) ∈ A[t1, . . . , td] be homo-
geneous of degree s. If f(x1, . . . , xd) ∈ Is+1, then f ∈ m[t1, . . . , td].
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Proof. Let f(t1, . . . , td) ∈ A/I[t1, . . . , td] denote the image of f modulo I. There is
a surjective graded A/I-algebra homomorphism

α : A/I[t1, . . . , td] ↠ GI(A)

given by ti 7→ xi, for i = 1, . . . , d. By assumption f ∈ ker(α).
Assume that not all coefficients of f belong to m; then some coefficient of f is a

unit, and so (check this!), f is not a zero-divisor in A/I[t1, . . . , td]. Then we have

d = d(GI(A)) ≤∗ d(A/I[t1, . . . , td]/(f))
= d(A/I[t1, . . . , td])− 1

= d− 1,

which is a contradiction. We are done, modulo the inequality ≤∗ above. This
follows from the following general lemma. □

Lemma 21.2.3. Let M = ⊕nMn ↠ N = ⊕nNn be a surjective homomorphism of
graded modules over the graded ring A/I[t1, . . . , td]. Then ℓA/I(Nn) ≤ ℓA/I(Mn),
and thus d(N) ≤ d(M).

Proof. Note that d(N)− 1 = degnℓ(Nn), and similarly for M replacing N . □

Proof of Theorem 21.2.1, (iii)⇒ (i): Suppose m = (x1, . . . , xd). Define the graded
A/m-algebra surjective homomorphism

A/m[t1, . . . , td] ↠ Gm(A)

by ti 7→ xi ∈ m/m2. By Lemma 21.2.2, this is injective, hence is an isomorphism.
□

Corollary 21.2.4. Suppose (Â, m̂) is the m-adic completion of the Noetherian local

ring (A,m). Then A is regular iff Â is regular.

Proof. Indeed, we have Gm(A) = Gm̂(Â), and so the latter is a polynomial ring

over k in d = dim(A) = dim(Â) variables. □

As a corollary of Lemma 21.2.2 above, we have the following result we will use
later.

Corollary 21.2.5. Suppose A contains a field k mapping isomorphically onto A/m.
Then any system of parameters x1, . . . , xd is algebraically independent over k.

Proof. Let I be the ideal generated by the elements x1, . . . , xd. Suppose (x1, . . . , xd)
is a zero of 0 ̸= f(t1, . . . , td) ∈ k[t1, . . . , td]. Write f = fs + (deg > s terms), where
fs ̸= 0 is homogeneous of degree s. Then fs(x1, . . . , xd) ∈ Is+1, and so by Lemma
21.2.2, all coefficients of fs belong to k ∩m = 0, a contradiction. □

21.3. Regular local rings are domains, and a consequence.

Proposition 21.3.1. If A is a regular local ring, then A is a domain.

This follows from the next lemma.

Lemma 21.3.2. Let A be any ring and I is an ideal such that ∩n≥1In = 0. Assume
that GI(A) is a domain. Then A is a domain.
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Proof. If x, y ̸= 0, then there exist non-negative integers n,m with x ∈ In − In+1

and y ∈ Im − Im+1. So 0 ̸= x ∈ In/In+1 and 0 ̸= y ∈ Im/Im+1. Since GI(A) is a
domain, it follows that 0 ̸= xy ∈ In+m/In+m+1. Thus xy ̸= 0. □

Here is a nice consequence:

Corollary 21.3.3. The dimension 1 regular local Noetherian rings are precisely
the dimension 1 local Noetherian domains such that m is principal, ie., the DVR’s.

By a curve we mean a 1-dimensional variety over a field k. We usually assume
k = k, though this is not always necessary. We say a curve X is regular if every
local ring Ox is regular, for every closed point x. The above corollary means that
an irreducible curve X is regular iff it is normal (meaning each Ox is normal).

22. Lecture 22

More dimension theory. Comparison of regular local rings with non-singular
points on alg. var.

******************

22.1. More dimension theory. We can now give the proof of a fact we mentioned
earlier (Proposition 7.6.1).
“if”: Since f is irreducible and k[X1, . . . , Xn] is a UFD, the ideal (f) is prime, call
it P . Because any maximal chain of prime ideals in k[X1, . . . , Xn] has length n, we
know that

ht(P ) + dim(A/P ) = n.

By Krull’s Hauptidealsatz, ht(P ) = 1, and so dim(Y ) = dim(A/P ) = n− 1.
“only if”: Since Y is closed and irreducible, Y = V (P ) for some prime ideal P . Since
dim(Y ) = n− 1, the above reasoning shows that ht(P ) = 1. Since k[X1, . . . , Xn] is
a UFD, P is principal, say P = (f). Since P is prime, f must be irreducible. □

Our next goal is to prove a related result, where k[X1, . . . , Xn] is replaced with
an arbitrary f.g. k-algebra which is a domain.

Proposition 22.1.1. Suppose k = k. Let A be a f.g. k-algebra, which is a domain.
Suppose f ∈ A, f /∈ A×, f ̸= 0. Let d = dim(A). Then V (f) = Spec(A/(f)) is
pure of dimension d− 1.

To say that V (f) is pure of dimension d− 1 means, by definition, that all the
irreducible components of Spec(A/(f)) have dimension d− 1.

Proof. Let Z1, . . . , Zl be the irreducible components of V (f) = Spec(A/(f)). Then
Zi = V (Pi), where Pi ranges over the finite set of minimal primes Pi ⊃ (f). By
Krull’s Hauptidealsatz, ht(Pi) = 1 for each i, and from the equality

ht(Pi) + dim(A/Pi) = dim(A) = d

we get dim(Zi) = dim(A/Pi) = d− 1, for each i. □

Here is another useful result.

Proposition 22.1.2. Suppose A = k[X1, . . . , Xn]/(f1, . . . , ft), and (f1, . . . , ft) ̸=
(1). Then dim(A) ≥ n− t.
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Proof. An irreducible component of Spec(A) is of the form V (P ) ⊂ Spec(k[X1, . . . , Xn])
where P ⊃ (f1, . . . , ft) is minimal. We have the equality

ht(P ) + dim(V (P )) = n.

On the other hand, we know that ht(P ) ≤ t. Putting these together, we find

dim(V (P )) ≥ n− t.

Since dim(A) = supPdim(V (P )), the desired inequality follows. □

We say a closed irreducible subset Y ⊂ Ank as above is a local complete in-
tersection if there exist f1, . . . , ft ∈ k[X1, . . . , Xn] such that I(Y ) = (f1, . . . , ft)
and

dim Y = n− t.

22.2. Regularity vs non-singularity. The following comparison between regu-
larity of local rings and non-singularity of points on varieties is taken from Hartshorne,
I §5.

Fix k = k, and a closed subvariety Y ⊂ Ank (i.e. a Zariski-closed subset of
Spec(k[X1, . . . , Xn]), which is reduced: we can write Y = V (I(Y )) where I(Y ) ⊂
k[X1, . . . , Xn] is a radical ideal; then Y ∼= Spec(k[X1, . . . , Xn]/I(Y )) and the ring
of regular functions on Y , namely OY := k[X1, . . . , Xn]/I(Y ) has no non-zero
nilpotents). Suppose in addition that Y is irreducible: this means I(Y ) is a prime
ideal.

Write I(Y ) = (f1, . . . , ft).
Suppose the closed point P = (a1, . . . , an) belongs to Y , i.e. (X1− a1, . . . , Xn−

an) ⊃ I(Y ). Then we say Y is non-singular at P if

(22.2.1) rank J(P ) = n− dim(Y ),

where J denotes the Jacobian matrix

J =
( ∂fi
∂Xj

)
ij

a t× n matrix with entries which belong to k[X1, . . . , Xn], so may be evaluated at
the point P , yielding J(P ).

Remark 22.2.1. • In order for the definition to make sense, we must have
n − dim Y ≤ min{t, n}. But Y ̸= ∅ =⇒ (f1, . . . , ft) ̸= (1), and then
n− dim Y ≤ t follows from Proposition 22.1.2.
• The definition appears to depend on the choice of the generators f1, . . . , ft
for I(Y ). We shall see below that in fact it does not.
• We shall see below that we always have the inequality rank J(P ) ≤ n −
dim(Y ), so saying the P is a non-singular point of Y is saying that the
rank of J(P ) is as large as possible.

Let us denote the maximal ideal (X1 − a1, . . . , Xn − an) corresponding to P by
aP ∈ Specm k[X1, . . . , Xn]. Let m ∈ Specm(OY ) denote the image of aP under the
projection k[X1, . . . , Xn] ↠ OY . We use the same symbol m to denote the maximal
ideal in the local ring A := OY,m.

Theorem 22.2.2. Y is non-singular at P iff A is regular.
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Proof. For brevity write k[X] = k[X1, . . . , Xn].
Claim 1: There is a k-linear isomorphism θ′ : aP /a

2
P →̃ kn.

Proof: Define θ : k[X]→ kn by

θ(f) =
[ ∂f
∂X1

(P ), . . . ,
∂f

∂Xn
(P )

]
.

It is clear that θ(a2P ) = 0. Also, the image of the set {Xi − ai}i gives a k-basis
for aP /a

2
P , which is taken by θ to the standard basis of kn. Hence θ induces the

isomorphism θ′.

Claim 2: rank J(P ) = dimk θ(I(Y )) = dimk
I(Y ) + a2P

a2P
.

Proof: Any h ∈ I(Y ) can be written in the form h = g1f1 + · · · + gtft, for some
gi ∈ k[X]. We have θ(h) = g1(P )θ(f1) + · · · gt(P )θ(ft), which shows that the rows
of J(P ) span θ(I(Y )). The first equality follows.

For the second equality, note that θ(I(Y )) = I(Y )
I(Y )∩a2

P

∼= I(Y )+a2
P

a2
P

.

Claim 3: m/m2 = aP /(I(Y ) + a2P ), as k-vector spaces.
Proof: We have

m = aP aP
/I(Y )aP

m2 = (a2P + I(Y ))aP
/I(Y )aP

, and thus

m/m2 = (aP /(a
2
P + I(Y )))aP

,

which is just aP /(a
2
P + I(Y )).

Putting Claims 1-3 together, we get

(22.2.2) dimkm/m
2 + rank J(P ) = n.

This equation implies the theorem. Indeed, recall that since OY is a f.g. k-
algebra and a domain, we have dim Y = dim A. Write r for this dimension. Then
the ring A is regular iff dimkm/m

2 = r which by (22.2.2) holds iff rank J(P ) =
n− r. □

We also see that since we always have the inequality dim Y ≤ dimkm/m
2, equa-

tion (22.2.2) implies that we always have the inequality

(22.2.3) rank J(P ) ≤ n− dim Y.

In particular, the point P is singular (ie. not non-singular) if and only

rank J(P ) < n− dim Y.

Examples:

• If Y ⊂ Ank is cut out by a single non-zero non-unit element f ∈ k[X], then
P ∈ Y is non-singular iff J(P ) ∈ kn is not the zero vector.
• For the curves cut out by X2− Y 3 and X2− Y 2 +X3 in the plane A2, the
only singularity in each case is P = (0, 0), as is easily checked.

Exercise 22.2.3. Let Y be an irreducible (affine) variety, that is, in the affine
case Y = Spec(A) where A is a f.g. domain over an algebraically field k. Show
that the set Sing(Y ) of singular points is a proper Zariski-closed subset of Y . [See
Hartshorne, Algebraic Geometry, II, §8, Cor. 8.16.]
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Exercise 22.2.4. Let Y be an irreducible hypersurface in Ank , i.e. Y = V (f), where

f ∈ k[X1, . . . , Xn] is an irreducible element. Show that Sing(Y ) = V (f, ∂f
∂X1

, . . . , ∂f
∂Xn

).

Show that the singularities are isolated, meaning that dim Sing(Y ) = 0, if and only

the k-vector space k[X1, . . . , Xn]/(f,
∂f
∂X1

, . . . , ∂f
∂Xn

) is finite-dimensional.

As a final remark, let (x1, . . . , xd) = m denote a system of parameters in a d-
dimensional regular local ring (A,m), where A is also a k := A/m-algebra (for
example, A could be a localization at a maximal ideal of a f.g. k-algebra). Then
we can define a k-algebra homomorphism

ϕ : k[t1, . . . , td]→ A

by sending ti 7→ xi, for i = 1, . . . , d. This induces an isomorphism

G(ϕ) : k[t1, . . . , td] →̃ Gm(A).

Hence by Lemma 18.2.2, the induced map ϕ̂ on completions is also an isomorphism:

ϕ̂ : k[[t1, . . . , td]] →̃ Â.

This proves the following result.

Proposition 22.2.5. If P ∈ Y is any non-singular point on a d-dimensional irre-
ducible variety Y , there is an isomorphism

k[[t1, . . . , td]] ∼= ÔY,P .

22.3. Some deeper connections of regularity with geometry. IfX = Spec(A),
where A is a Noetherian domain, we say X is regular if Am is a regular local ring
for every maximal ideal m ∈ Specm(A). Similarly, we say X is normal if Am is
normal for all m. (We already know that this is equivalent to saying A is normal,
even without the assumption that A be Noetherian.) Similar terminology applies
to reduced and irreducible schemes.

Fact 1: Assume (A,m) is a regular local ring (hence a domain). Then A is normal.
Thus, a regular scheme is normal.

In fact, a much stronger result is true: any regular local ring is a UFD (the
Auslander-Buchsbaum theorem). The proof of this is beyond the scope of this
course. We will prove Fact 1 in the next lecture.

Fact 2: Any normal scheme is regular in codimension 1.

What does “regular in codim 1 mean”? Let us discuss this in the affine case, i.e.
where A is a Noetherian domain. Then X = Spec(A) is regular in codimension
1 if for any height 1 prime ideal P ⊂ A, the ring AP is regular. Now the proof of
Fact 2 is almost trivial: the ring AP is a Noetherian local domain of dimension 1,
and if A is normal, AP is also normal; thus, AP is a DVR, hence is regular.

Fact 2 can be used to prove the following proposition.

Proposition 22.3.1 (Consequence of Fact 2). If X is a normal variety, and
Sing(X) ⊂ X is the (Zariski-closed) set of singular points, then codim(Sing(X)) ≥
2. In particular, any normal curve is non-singular, and any normal surface has
only isolated singularities.

A key ingredient of the proof is a theorem of Serre which states that if A is
regular, then so is Ap for every p ∈ Spec(A) (see [Serre], IV.D.Prop.23). We will
not prove this, but it is quite important.
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Many interesting singular varieties are normal: for example Schubert varieties
are usually singular, but they are at least always normal. We shall give some
concrete examples next lecture.

23. Lecture 23

Proof that A regular implies A is normal (using almost integral extensions).
Example of k[X,Z]/(Z2 − f). Definition of module of relative differentials: con-
struction of the universal derivation.

**********************

23.1. Proof that “regular” implies “normal”. We will now prove Fact 1 from
the previous lecture. We will follow the treatment in [Mat1],17.D, p.119.

Proposition 23.1.1. If A is a regular local ring, then A is normal.

To prove this, we need some preliminaries. Temporarily, we let A denote any
domain, with K = Frac(A).

We say u ∈ K× is almost integral if ∃ 0 ̸= a ∈ A such that aun ∈ A, ∀n > 0.
We abbreviate “almost integral” by a.i. Note that u, v a.i. implies that uv and
u± v are also a.i.

Lemma 23.1.2. (i) If u is integral, it is a.i.
(ii) The converse holds if A is Noetherian.

Proof. (i): Write u = a/b, for a, b ∈ A− 0. Consider a relation(a
b

)n
+ αn−1

(a
b

)n−1
+ · · ·+ α0 = 0,

where αi ∈ A for all i. Then it is easy to see that bn−1
(a
b

)k
∈ A, for all k > 0.

Hence u is a.i.
(ii): If u is a.i. with aun ∈ A for all n > 0, we have an inclusion A[u] ⊂ a−1A. Then
since A is Noetherian, the A[u] is a finite A-module. It follows that u is integral
over A. □

Now to prove the proposition above, it is enough to establish the implication
“Gm(A) normal domain =⇒ A normal domain”. We will prove something more
general.

Proposition 23.1.3. Suppose A is a Noetherian ring, with I ⊂ A an ideal belong-
ing to the Jacobson radical. Then

GI(A) is a normal domain =⇒ A is a normal domain.

Proof. As a consequence of Krull’s theorem, we know that ∩∞n=0I
n = 0. So for

0 ̸= a ∈ A there is a unique non-negative integer n with a ∈ In − In+1. Denote
ord(a) = n, and let a∗ be the image of a in In/In+1. By convention, set 0∗ = 0 ∈
GI(A).

We already know that A is a domain; let K = Frac(A). Suppose a/b ∈ K× is
integral. We want to show that a ∈ bA. Since A/bA is Hausdorff in the I-adic
topology, we have

bA = ∩∞n=0(bA+ In).
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Hence, it’s ETS the implication

(23.1.1) a ∈ bA+ In−1 =⇒ a ∈ bA+ In.

Write a = br + a′, where r ∈ A and a′ ∈ In−1. This gives a′/b = a/b − r,
which is integral over A. Hence by replacing a with a′ we may assume WLOG that
a ∈ In−1.

Now a/b a.i. means that ∃ 0 ̸= c ∈ A such that cam ∈ bmA, for all m > 0.
Since GI(A) is a domain, the map x 7→ x∗ is multiplicative, so we have c∗(a∗)m ∈
(b∗)mGI(A). Hence a∗/b∗ ∈ GI(A) is a.i. Since GI(A) is Noetherian, this shows
that a∗/b∗ is integral. But then since GI(A) is normal, we have a∗ ∈ b∗GI(A).

Write a∗ = b∗d∗, for some element d ∈ A (check: we can do this). Then we have
a∗ = (bd)∗, and so

n− 1 ≤ ord(a) < ord(a− bd),
which implies that a ∈ bd+ In, as desired. This completes the proof. □

23.2. The varieties cut out by Z2−f . Again let k[X] = k[X1, . . . , Xn]. Suppose
f ∈ k[X] is not a square, so that Z2 − f ∈ k[X,Z] is irreducible. Some time ago
we asked: when is the domain A := k[X,Z]/(Z2 − f) normal? Here is the answer:

Proposition 23.2.1. Assume char k ̸= 2. Then A is normal iff f is square-free.

Proof. (⇒) : Suppose f is not-square free. We will produce an element in the
fraction field of A but not in A, which is a.i. (hence integral over A). This will
show that A is not normal.

Write f(X) = h(X)g(X)2. Then we claim that Z/g(X) is a.i. Indeed, note that
for every n ≥ 0 we have the following two equalities

g(X)
( Z

g(X)

)2n

= g(X)h(X)n

g(X)
( Z

g(X)

)2n+1

= Zh(X)n.

(⇐): For this direction, we prove something more general.

Lemma 23.2.2. Let R be a UFD in which 2 is a unit. Suppose f ∈ R is square-free.
Then R[Z]/(Z2 − f) = R[

√
F ] is normal.

Proof. Write α = Z =
√
f . Then K := Frac R ⊂ Frac R[α], and α is an element of

the latter.
If α ∈ K, then α ∈ R (since R is normal), and this contradicts the assumption

that f is not a square. So α /∈ K, and so K(α) = K[α] = K +Kα.
Suppose λ = x+ yα ∈ K(α) (x, y ∈ K) is integral over A[α]. We will show that

x, y ∈ R, showing that R[α] is normal.
First, WLOG y ̸= 0. Indeed, if y = 0, then x is integral over R, hence x ∈ R.

Now the minimal polynomial for λ over K takes the form

minK(λ) = X2 − 2xX + (x2 − y2f).

Now λ is integral over R[λ] (thus over R) ⇔ 2x, x2 − y2f ∈ R, which holds
⇔ x,−y2f ∈ R. So the latter holds.

We claim that y ∈ R. If π is an irreducible element of R and π divides the
denominator of y, then −y2f ∈ R implies that π2 divides f , a contradiction of f
being square-free. Thus y ∈ R and the lemma is proved. □
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The lemma clearly implies the direction (⇐) of the proposition. □

The following exercise gives some very concrete examples of varieties which are
normal and singular.

Exercise 23.2.3. Suppose that f(X1, . . . , Xn) = (X1 − a1)(X2 − a2), where a1 ̸=
a2. Let Y = Spec(k[X,Z]/(Z2 − f)). By the above proposition, Y is a nor-
mal irreducible variety. Show that Y has a singularity at any point of the form
(a1, a2, x3, . . . , xn, 0). What is the dimension of the singular locus? What is its
codimension in Y ?

23.3. Derivations and the module of Kähler differentials. We will develop
the algebraic theory of differential 1-forms. We actually develop a “relative” version,
i.e. we fix a ring k, and a k-algebra A (that is, a ring A with a ring homomorphism
k → A). We will define an A-module ΩA/k = Ω1

A/k, which is uniquely determined

in a certain sense.
To do so, we first fix an A-module M and define the set Derk(A,M) of k-

derivations A → M . What is a k-derivation? It is a k-linear map D : A → M
satisfying the Leibniz rule:

D(ab) = aDb+ bDa.

The set Derk(A,M) is naturally an A-module: (aD)(b) := a(Db). Also, an A-linear
map ϕ :M →M ′ gives rise to Derk(A,M)→ Derk(A,M

′) by D 7→ ϕ ◦D.

Theorem 23.3.1. The covariant functor M 7→ Derk(A,M) is represented by a
unique pair (M0, d):

- d : A→M0 is a k-derivation;
- For every k-derivation D : A→M , there exists a unique A-homomorphism
ϕ :M0 →M such that D = ϕ ◦ d.

The pair (M0, d) is unique up to a unique isomorphism. We denote M0 by ΩA/k
and call it the module of relative differentials. The theorem gives a (functorial
in M) isomorphism

(23.3.1) Derk(A,M) = HomA(ΩA/k,M).

Construction of (M0, d): Consider the A-algebra homomorphism

µ : A⊗k A→ A

defined by x⊗ y 7→ xy. Let I := ker(µ). Let ΩA/k := I/I2. The exact sequence

0 // I/I2 // A⊗k A/I2
µ′
// A // 0

splits in A-Mod in two ways: λ1(a) := 1 ⊗ a, and λ2(a) := a ⊗ 1 both determine
sections of µ′. Therefore the difference λ1 − λ2 has image in I/I2, and since λi is
a k-algebra map, the map

d := λ1 − λ2 : A→ I/I2

is a k-derivation. Indeed, I/I2 has A-module structure given by multiplication by
either 1 ⊗ a or a ⊗ 1, so that (λ1 − λ2)(ab) = λ1(a)λ1(b) − λ2(a)λ2(b) is the sum
the following two expressions:

a(λ1 − λ2)(b) = λ1(a)(λ1(b)− λ2(b))
b(λ1 − λ2)(a) = λ2(b)(λ1(a)− λ2(a)).
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The proof gives us a principle which we will use repeatedly:

Lemma 23.3.2. Suppose λ1, λ2 : A → B are k-algebra homomorphisms, and as-
sume λ1 − λ2 takes values in an A-submodule N ⊂ B whose A-module structure is
given by multiplication by λ1(a) and assume λ1(a)−λ2(a) acts by zero on N . Then
λ1 − λ2 : A→ N is a k-derivation.

We will complete the proof that (ΩA/k := I/I2, d) satisfies the universal property
in the next lecture.

24. Lecture 24

24.1. Universal property of (ΩA/k, d). We need a preliminary construction. If
M ∈ A-Mod, we define a k-algebra A ∗M by setting A ∗M = A ⊕M and by
defining multiplication by

(a,m)(a′,m′) := (aa′, am′ + a′m).

Clearly A ∗M is a k-algebra with unit (1, 0). The exact sequence

0→M → A ∗M → A→ 0

splits. The inclusion of M is given by m 7→ (0,m) and the projection onto A is
(a,m) 7→ a. The latter has the obvious section a 7→ (a, 0). Note also that M2 = 0
in A ∗M .

Now given D ∈ Derk(A,M) define ϕ : A⊗k A→ A ∗M by

ϕ(x⊗ y) = (xy, xDy).

It is easy to check the following statements:

- ϕ is a k-algebra homomorphism;
-
∑
i xi ⊗ yi ∈ I =⇒ ϕ(

∑
i xi ⊗ yi) = (0,

∑
i xiDyi) ∈ M . Therefore

ϕ : I →M ⊂ A ∗M ;
- Since M2 = 0 in A ∗M , the map ϕ determines ϕ : I/I2 →M .
- We have ϕ(da) = ϕ(1 ⊗ a − a ⊗ 1) = (0, Da) (since D1 = 0), and thus
ϕ ◦ d = D;

- ϕ is A-linear: a(
∑
i xi ⊗ yi) =

∑
i axi ⊗ yi 7→ (0,

∑
i axiDyi) = aϕ(

∑
i xi ⊗

yi).

We have now proved the existence of the factoring ϕ ◦ d = D.
It remains to prove that ϕ is the unique A-linear map with the property ϕ◦d = D.

This will follow from the fact that ΩA/k is generated over A by the set {da, a ∈ A}.
Why is this true? Observe that

a⊗ a′ = (a⊗ 1)(1⊗ a− a⊗ 1) + aa′ ⊗ 1.

So ω =
∑
i xi ⊗ yi ∈ I =⇒ ω ≡

∑
i xidyi in I/I

2. This completes the proof of the
universal property of (ΩA/k, d). □

24.2. Examples.

• Let A be a k-algebra, generated as an algebra by a subset U ⊂ A. Then
ΩA/k is generated over A by da, a ∈ U . To prove this, note that an element
in A can be written in the form a = f(a1, . . . an) for some ai ∈ U and
f ∈ k[X1, . . . , Xn]. Our claim results from the following exercise.
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Exercise 24.2.1. Show that Leibniz’ rule implies

(24.2.1) da =
∑
i

∂f

∂Xi
(a1, . . . , an) dai.

• In particular, if A = k[X1, . . . , Xn], then ΩA/k = AdX1 + · · · + AdXn.
Moreover, we have ΩA/k ∼= An, i.e., the dXi’s are linearly independent over
A. To prove this, for each i let Di ∈ Derk(A,A) denote the k-derivation
Di =

∂
∂Xi

. This corresponds to the A-linear map ϕi : ΩA/k → A, such that
ϕi ◦ d = Di. Now if there is a relation, a1dX1 + · · ·+ andXn = 0, applying
ϕi gives ai = 0.

24.3. 0-smooth, 0-unramified, and 0-étale homomorphisms. Let k be a ring,
and let k → A be a k-algebra. We say A is 0-smooth (over k) if for every k-algebra
C and ideal I ⊂ C such that I2 = 0, if we are given a k-algebra map u : A→ C/I,
then there is a lift of u to a k-algebra map v : A → C. In other words, given a
commutative square below, there is a map v making the triangles commute:

A
u //

v

!!

C/I

k

OO

// C

OO

We say A is 0-unramified if given u there is at most one such map v. We say
A is 0-étale if given u there is exactly one such v. Thus, 0-étale = 0-smooth +
0-unramified,

Lemma 24.3.1. A/k is 0-unramified iff ΩA/k = 0.

Proof. (⇐): Suppose v1, v2 are two lifts of u; give the ideal I ⊂ C the structure
of an A-module by multiplication by v1(a) (or v2(a) : since v1(a) − v2(a) ∈ I and
I2 = 0, the two structures coincide). Then by Lemma 23.3.2, v1 − v2 : A → I is a
k-derivation. Since ΩA/k = 0, the only k-derivation A→ I is zero, and so v1 = v2.
This shows A/k is unramified.
(⇒): Consider the diagram

A
λi //

λi

$$

A⊗k A/I

k

OO

// A⊗k A/I2.

OO

Since the maps λi : A → A ⊗k A/I agree, by hypothesis so do the maps λi. This
means that the derivation d := λ1−λ2 : A→ ΩA/k is zero. Since ΩA/k is generated
over A by dA, we get ΩA/k = 0, as desired. □

Lemma 24.3.2. Let S ⊂ A be a multiplicative subset. Then AS := S−1A is 0-étale
over A.

Proof. Consider the diagram

AS
u //

∃!

""

C/I

A

p

OO

q // C.

OO
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We want to produce the unique morphism AS → C making the diagram commute.
But up sends S into (C/I)×, so q sends S into C× (note that c ∈ C× iff its image
c ∈ (C/I)×, since I2 = 0). Thus, q factorizes uniquely through AS , as desired. □

24.4. The First Fundamental Exact Sequence. The next result is the First
Fundamental Exact sequence.

Theorem 24.4.1. Let k
f // A

g // B be two ring homomorphisms.

(1) There is an exact sequence of B-modules

(24.4.1) ΩA/k ⊗A B
α // ΩB/k

β // ΩB/A // 0,

where α(dA/ka⊗ b) = bdB/kg(a), and β(dB/kb) = dB/Ab
(2) If B is 0-smooth over A, then

(24.4.2) 0 // ΩA/k ⊗A B
α // ΩB/k

β // ΩB/A // 0

is split exact.

Proof. (1): By a standard argument (see Atiyah-Macdonald, 2.9), N ′ → N → N ′′

is exact in B-Mod iff for every T ∈ B-Mod, HomB(N
′.T ) ← HomB(N,T ) ←

HomB(N
′′, T ) is exact. Therefore, it’s ETS: for every M ∈ B-Mod, the following

diagram is commutative with exact first row:

Derk(A,M)

=

��

Derk(B,M)

=

��

rest.oo DerA(B,M)

=

��

incl.oo 0oo

HomB(ΩA/k ⊗A B,M) HomB(ΩB/k,M)
α∗
oo HomB(ΩB/A,M)

β∗
oo 0.oo

(The exactness of the first row is easy; check the diagram commutes, where α, β
are defined as in the statement of (1)!)
(2): Suppose B is 0-smooth over A. Fix T ∈ B-Mod, andD ∈ Derk(A, T ). Consider
the diagram

B
id //

∃h

""

B

A

g

OO

ϕ // B ∗ T,

OO

where ϕ is defined by ϕ(a) := (g(a), Da). By hypothesis, the factoring h exists.
Write h(b) = (b,D′b), for a k-derivation D′ : B → T . We have D = D′ ◦ g.

We can write D′ = ϕ′ ◦ dB/k, for a unique B-linear map ϕ; : ΩB/k → T .
Now in the above diagram, take T = ΩA/k ⊗A B and D = dA/k ⊗ 1. Then

the map ϕ′ we get is a B-linear map ϕ′ : ΩB/k → ΩA/k ⊗A B, and the equality
D = D′ ◦ g implies that dA/k ⊗ 1 = ϕ′ ◦ dB/k ◦ g, and thus ϕ′ ◦ α = idΩA/k⊗AB .
Therefore the sequence splits. □

25. Lecture 25

25.1. The Second Fundamental Exact Sequence.

Theorem 25.1.1. Consider a diagram k
f // A

g // B = A/J , where g is sur-

jective and J = ker(g). Then we have:
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(1) The following sequence is exact

(25.1.1) J/J2 δ // ΩA/k ⊗A B
α // ΩB/k // 0,

where δ(x) = dA/k(x) ⊗ 1, and α is defined as in the First Fundamental
Sequence.

(2) If B is 0-smooth over k, then

(25.1.2) 0 // J/J2 // ΩA/k ⊗A B // ΩB/k // 0

is split exact.

Proof. (1): For T ∈ B-Mod, consider the diagram

HomB(J/J
2, T ) Derk(A, T )

δ∗oo Derk(B, T )
α∗
oo 0.oo

Note that δ∗ is simply the “restriction to J” map. So δ∗(D) = 0 iff D vanishes on
J iff D comes from Derk(B, T ). Hence this sequence is exact ∀T , and hence (1)
follows.
(2): Suppose B is 0-smooth over k. Then we have the factoring map s in the
diagram

B
id //

s

""

B

k

OO

// A/J2.

g

OO

Thus, s gives a splitting in k-Mod of the exact sequence

0 // J/J2 // A/J2 g // B // 0.

Now sg : A/J2 → A/J2 is a k-algebra homomorphism, trivial on J/J2, and
g(id− sg) = 0.

Hence (by Lemma 23.3.2), D := id− sg : A/J2 → J/J2 is a k-derivation.
Now fix T ∈ B-Mod as in the proof of (1). We want to show δ∗ is surjective by

constructing a section of δ∗. In fact, the map taking ψ ∈ HomB(J/J
2, T ) to the

composition D′

A // A/J2 D // J/J2 ψ // T

is such a section: if x ∈ J , and x ≡ x mod J2, then

δ∗D′(x) = ψD(x) = ψ(x− sg(x)) = ψ(x).

Taking T = J/J2 now, we see the sequence in (2) is split exact. □

Example: LetA = k[X1, . . . , Xn], andB = k[X1, . . . , Xn]/(f1, . . . , fm) = k[x1, . . . , xn].
Then

ΩB/k = (ΩA/k ⊗A B)/
∑
i

B dfi

= F/R,

where F is the free B-module with basis dX1, . . . , dXn, and R is the B-submodule
generated by dfi =

∑
j
∂fi
∂Xj

dXj .
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For instance, if k is a field with char(k) ̸= 2, then for B = k[X,Y ]/(X2 + Y 2) =
k[x, y] we have

ΩB/k = Bdx+Bdy,

where the only relation is xdx+ ydy = 0.
If char(k) = 2, then ΩB/k ∼= B2.

25.2. On tangent spaces and cotangent spaces. Next, we want to flesh out the
analogy with differential geometry. We start by defining the tangent and cotangent
spaces to a variety (or scheme) at a closed point. Then we discuss vector fields.

Let k = k be an algebraically closed field. Let X be a k-variety, or more generally
a finite-type separated scheme over k (to be more concrete, for our purposes, we will
assume X = Spec(A), where A is a f.g. k-algebra. However, we will use notation
that indicates that everything holds also in the non-affine case). We don’t need
to assume A is reduced or a domain for this discussion to be valid. By Hilbert’s
Nullstellensatz, a closed point x ∈ X corresponds to a maximal ideal mx ⊂ A. In
fact, we have

x ∈ X closed point←→ mx ∈ Spec(A)

←→ k-alg. map x : A→ k

←→ k-alg. map x : Ox → k.

In the last line, Ox denotes the stalk at x of the structure sheaf OX . Recall that
the sheaf OX on X has global sections OX(X) = A, in a canonical way. The stalk
Ox can be identified with the localization Amx

.

Now apply the second fundamental exact sequence to k // Ox
x // k . Since

the composition of these maps is the identity, we find that the second fundamental
sequence gives a canonical isomorphism

mx/m
2
x = ΩOx/k ⊗Ox k.

We call Homk(mx/m
2
x, k) the tangent space of X at the point x. We call the

dual k-vector space ΩOx/k ⊗Ox
k, the cotangent space of X at x. Note that the

tangent space is also the k-vector space Derk(Ox, k):
Homk(mx/m

2
x, k) = HomOx(ΩOx/k, k)

= Derk(Ox, k).
Note also that by using a problem in Homework 2, we can identify the cotangent

space as
ΩOx/k ⊗Ox k = ΩA/k/mxΩA/k.

Exercise 25.2.1. Assume k = k. Let Y = V (f1, . . . , ft) ⊂ Ank denote a closed
irreducible subset. Let P = (P1, . . . , Pn) denote a closed point which lies in Y ;
denote the maximal ideals corresponding to P by aP = (X1−P1, . . . , Xn−Pn), and
m = aP ⊂ A := k[X1, . . . , Xn]/(f1, . . . , ft). Show that Homk(m/m

2, k), the tangent

space Y at P , can be identified with the kernel of J(P ) =
[
∂fi
∂Xj

(P )
]
ij
, where this

t×N matrix is viewed as a k-linear map kN → kt.

Here is another important way to think about the tangent space. Recall that
in differential geometry, a tangent vector at a point x is an equivalence class of
germs of curves going through x. In algebraic geometry, the role of equivalence
class of curve is played by a map of k-schemes Spec(k[ϵ]/(ϵ2)) → X. Saying it
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“goes through x” means the following. Denote Λ := k[ϵ]/(ϵ2), and consider the
canonical k-algebra homomorphism p : Λ → k defined by ϵ 7→ 0. Then a map
f∗ : Spec(Λ) → X is given by a k-algebra homomorphism f : Ox → Λ. It turns
out that saying f∗ “goes through x” is the same as saying that pf = x, as maps
Ox → k. In fact, we have the following result making this precise.

Lemma 25.2.2. There is a canonical bijection

{k-alg. maps f : Ox → Λ | pf = x} = Homk(mx/m
2
x, k).

Proof. Consider the exact sequence

0 // mx/m2
x

// Ox/m2
x

// Ox/mx // 0.

The map x : Ox/mx →̃ k ↪→ Ox/m2
x gives a splitting of the above exact sequence,

and thus an identification (which depends on x : Ox → k) of k-algebras

Ox/m2
x = Ox/mx ∗mx/m2

x.

We also have a canonical identification

Λ = k ∗ kϵ.

Note that any k-algebra homomorphism f : Ox → Λ such that pf = x necessarily
takes mx into kϵ, hence factors through Ox/m2

x, and is uniquely determined by its
restriction to mx/m

2
x. Thus giving such a homomorphism f is the same as giving a

k-linear map mx/m
2
x → kϵ, in other words, an element of Homk(mx/m

2
x, k). □

25.3. Vector fields. We push the differential geometry analogy a little further by
defining vector fields. In differential geometry, a vector field is a rule assigning
to each point x an element in the tangent space at x. We thus want to define
“something” that gives us, for each closed point x ∈ X, a derivation in Derk(Ox, k).
We call any element D ∈ Derk(OX ,OX), a vector field. We claim it gives rise to
Dx ∈ Derk(Ox,Ox), for each x ∈ X. Indeed, D determines a family of k-derivations

D(U) : OX(U)→ OX(U),

for U ranging over the open subsets of X which contain x. Taking direct limits, we
get a k-derivation

Dx : Ox → Ox.
Now viewing x ∈ X as the k-algebra homomorphism x : Ox → k, D then

determines a k-derivation x◦Dx ∈ Derk(Ox, k), for each x. Thus, D really deserves
to be called a “vector field”.

Fix a tangent vector t ∈ Derk(Ox, k). We say D takes value t at x if x◦Dx = t.
Notation: if f ∈ Ox, its image x(f) ∈ Ox/mx = k is often denoted by f(x).

Note that if X = Spec(A) and D ∈ Derk(A,A), f ∈ A, we have the formula

x ◦Dx(f) = D(f)(x).

25.4. A vector field criterion for regularity. In the following statement, X
is any finite-type separated k-scheme. Since the statement is local around x, we
might as well assume X = Spec(A) where A is a finitely-generated k-algebra, and
x corresponds to the maximal ideal mx ⊂ A.
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Proposition 25.4.1. Suppose char(k) = 0. Let x ∈ X be a closed point. Sup-
pose that X has n = dimkmx/m

2
x vector fields which are linearly independent at x

(meaning that the values they take at x are linearly independent tangent vectors).
Then x is a regular point of X, i.e., Ox is a regular local ring.

Proof. Here we give a sketch of the proof, leaving you to fill in the details.
Let x1, . . . , xn be elements of mx whose images give a k-basis for mx/m

2
x. WLOG

there are derivations D1, . . . , Dn ∈ Derk(Ox,Ox) such that

Di(xj)(x) = δij ,

in other words,

Di(xj) ≡ δij mod mx.

For each p ≥ 1, we clearly haveDi(m
p
x) ⊂ mp−1x , and henceDi extends by continuity

to give a uniquely determined k-derivation Di ∈ Derk(Ôx, Ôx), where Ôx denotes
the mx-adic completion of Ox.

Define a k-algebra homomorphism α : k[[t1, . . . , tn]]→ Ôx by ti 7→ xi.

Define β : Ôx → k[[t1, . . . , tn]] by

β(f) =
∑

ν=(ν1,...,νn)∈Zn
≥0

(Dνf)(x)

ν!
tν ,

where by definition Dν := Dν1
1 ◦ · · · ◦Dνn

n , ν := ν1! · · · νn!, and tν := tν11 · · · tνnn .
Leibniz’ rule (or rather, the generalized form Dmfg =

∑m
k=0

(
m
k

)
Dkf Dm−kg)

and an argument by induction on n shows that β is a continuous k-algebra homo-
morphism.

Now α is surjective since its image contains the xi’s and Ôx is complete. Since
β(xi) ≡ ti mod (t1, . . . , tn)

2, the elements β(xi) generate the ideal (t1, . . . , tn), and
hence β is also surjective. For both cases, use Lemma 18.2.2.

Then the composition β ◦α is a surjective ring endomorphism of the Noetherian
ring k[[t1, . . . , tn]], hence is an automorphism. Thus α is an isomorphism, and this

shows Ôx is a regular local ring. It follows that Ox is also regular. □

26. Lecture 26

26.1. Application of vector field criterion for regularity: group schemes.
A good reference for group schemes and Hopf algebras is W.C. Waterhouse, Intro-
duction to Affine Group Schemes, Springer-Verlag, 1979.

Let k be any field, and assume A is a f.g. k-algebra. Suppose G = Spec(A) is
a k-group scheme. This is the same thing as saying that A is k-Hopf algebra.
By definition this means that there are comultiplication, counit, and coinverse
homomorphisms

∆ : A→ A⊗k A
ε : A→ k

S : A→ A

which are compatible in a certain sense with each other (you can recover the com-
patibilities – certain commutative diagrams – by writing down the commutative
diagrams encapsulating the group axioms for G, and then taking the “dual” com-
mutative diagrams with respect to the anti-equivalence of categories A↔ Spec(A)).
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The following is an important application of the vector-field criterion for regu-
larity, Proposition 25.4.1.

Theorem 26.1.1. If char(k) = 0, then any k-Hopf algebra A is a regular ring (that
is, each localization Am is regular, where m ranges over all maximal ideals m ⊂ A).
Thus, any k-group scheme is regular, and hence is reduced and non-singular as a
variety.

This is far from true when char(k) = p > 0. Indeed, the ring A = Fp[X]/(Xp)
is a Hopf-algebra over Fp whose corresponding group scheme Spec(A) is the group
subscheme αp ⊂ Ga whose R-points for a Fp-algebra R is the additive group {r ∈
R | rp = 0}. Note that the ring A is not even reduced here.

Proof. For simplicity, let us assume k = k. For any closed point x ∈ G, we want to
check that the local ring Ox is regular. By translating x back to the origin e ∈ G
using the group action, it is enough to check this for x = e. To apply Proposition
25.4.1, we need to check that there are dimk(me/m

2
e) vector fields defined near e

which give a linearly independent set of values at e. To construct these vector fields,
the key fact about Hopf algebras we use is that there is an isomorphism

ΩA/k ∼= A⊗k me/m2
e.

(See Theorem 11.3 in Waterhouse.) Using this, we see that

Derk(A,A) = HomA(ΩA/k, A)

= HomA(A⊗k me/m2
e, A)

= Homk(me/m
2
e, A).

Now composing the derivations with the homomorphism e : A→ k shows that the
derivations on the LHS take as values at e precisely the set

Homk(me/m
2
e, k),

which is what we wanted to prove. □

26.2. Separability: various notions. Let k be a field, and A a k-algebra. We
say A is separable over k if for every extension field k′ ⊃ k, the ring A′ := A⊗k k′
is reduced.
Facts (easy exercises):

- Any subalgebra of a separable algebra is separable.
- A is separable iff every f.g. k-subalgebra of A is separable.
- A⊗k k′ is reduced for every f.g. extension field k′ ⊃ k =⇒ A is separable.
- A is separable over k =⇒ A⊗k k′ is separable over k′.

We want to better understand this notion of separable, whenA is finite-dimensional.
So, assume dimk(A) <∞, and fix a k-basis ω1, . . . , ωn for A. Define the discrim-
inant

discA/k = det[tr(ωiωj)].

[For a ∈ A, recall that tr(a) is the trace of the k-linear map A → A given by
multiplication by a.] Note that d := discA/k is a well-defined element of k/(k×)2:
If ω′1, . . . , ω

′
n is another k-basis, write ω′l =

∑
i cli ωi, and note that

det[tr(ω′iω
′
j)] = det(cij)

2 det[tr(ωiωj)].

Proposition 26.2.1. A is separable over k iff d ̸= 0.
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Proof. (⇐): Let k′ ⊃ k and A′ = A ⊗k k′. Suppose N := rad(A′) ̸= 0. Let
ω1, . . . , ωn be a k′-base for A′ such that ω1, . . . , ωr is a k′-base for N . Since every
element of N is nilpotent, we see that ωiωj is nilpotent for i or j ≤ r. This implies
that tr(ωiωj) = 0 for such i, j. Hence d = det[tr(ωiωj)] = 0.
(⇒): Let K denote an algebraic closure of k. The ring A ⊗k K is reduced and
Artinian, so if p1, . . . , pn are the prime (= maximal) ideals of A⊗k K, we get

A⊗k K = A⊗k K/ ∩i pi =
∏
i

A⊗k K/pi.

Since A ⊗k K/pi is a finite field extension of K, it is ∼= K, and so A ⊗k K ∼= Kn.
Choose a basis of idempotents ei, so that eiej = δij . Then d = det[tr(eiej)] = 1 ̸=
0. □

Now change notation: assume A := K is a field extension of k. Suppose K/k is
an algebraic extension (that is, an integral extension). Recall what it means to say
α ∈ K is separable in the usual sense over k: this is the case iff the minimal
polynomial f ∈ k[X] which α satisfies has (f, f ′) = 1. If α is not separable in the
usual sense, then it is easy to see that char(k) = p > 0, and f(X) = g(Xp), for
some polynomial g ∈ k[X].

Proposition 26.2.2. Suppose K/k is an algebraic field extension. Then K/k is
separable in the usual sense ⇔ it is separable.

Proof. (⇐): If K/k is not separable in the usual sense, then ∃α ∈ K such that the
minimal polynomial f ∈ k[X] of α has (f, f ′) ̸= 1. In particular, f does not have
distinct roots in k′ = k, and the subalgebra k(α) ⊂ K has

k(α)⊗k k′ = k′[X]/(f),

a ring with non-zero nilpotents. Hence K/k is not separable.
(⇒): Assume K/k is separable in the usual sense. WLOG K is f.g. as a field
extension over k; being algebraic, this means it is f.g. as a k-algebra, hence is a
finite extension of k. Then, since K/k is separable in the usual sense and is now
also finite, K = k(θ), for some θ ∈ K. Let f ∈ k[X] be the minimal polynomial of
θ. Let k′ ⊃ k, and factor f in k′[X] as

f = f1 · · · fr,

where the fi are distinct irreducible elements of k′[X]. By the Chinese remainder
theorem,

K ⊗k k′ = k′[X]/(f) =

r∏
i=1

k′[X]/(fi).

This is a product of fields, hence is reduced. This shows that K/k is separable. □

We say a field extension K/k is separably generated if K has a transcendence
basis Γ such that K/k(Γ) is a separable algebraic extension.

Lemma 26.2.3. Any separably generated extension is separable.

Proof. Suppose Γ is the aforementioned transcendence basis. Let k′ ⊃ k be any
field extension.

The natural map k(Γ)⊗k k′ → k′(Γ) is an isomorphism (this follows easily, using
that it restricts to give the obvious isomorphism k[Γ]⊗k k′ →̃ k′[Γ]).
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Thus K⊗k k′ = K⊗k(Γ) (k(Γ)⊗k k′) = K⊗k(Γ)k′(Γ). Since K/k(Γ) is separable,
the latter is reduced, and thus so is K ⊗k k′. □

For the next proposition, assume char(k) = p > 0, and define k1/p := {x ∈
k | xp ∈ k}. Note that k1/p is an extension field of k.

Proposition 26.2.4. Suppose char(k) = p, and K is a f.g. extension field of k.
Then TFAE:

(1) K is separable over k.
(2) K ⊗k k1/p is reduced.
(3) K is separably generated over k.

Proof. The implication (1)⇒ (2) is trivial, and in the above lemma we proved the
implication (3)⇒ (1).

Let us prove (2) ⇒ (3). Write K = k(x1, . . . , xn). WLOG x1, . . . , xr comprise
a transcendence basis for K/k. Let’s assume that k(x1, . . . , xr, . . . , xq) is separable
over k(x1, . . . , xr), but y = xq+1 is not separable over k(x1, . . . , xr).

Let f(Y p) be the minimal polynomial of y over k(x1, . . . , xr). Clearing denomi-
nators, get an irreducible polynomial F (X1, . . . , Xr, Y

p) with F (x, yp) = 0.
If ∂F/∂Xi = 0 for all 1 ≤ i ≤ r, then F (X,Y p) = G(X,Y )p, for some G(X,Y ) ∈

k1/p[X,Y ]. But then k[x1, . . . , xr, y]⊗k k1/p = k[X,Y ]/(F (X,Y p))⊗k k1/p, which
is also k1/p[X,Y ]/(G(X,Y )p) ⊂ K ⊗k k1/p. So K ⊗k k1/p is not reduced.

Therefore, we can assume WLOG that ∂F/∂X1 ̸= 0. Then x1 is separable al-
gebraic over k(x2, . . . , xr, y), hence so are the elements xr+1, . . . , xq (check this!).
Thus, exchanging x1 ↔ y = xq+1, we find xr+1, . . . , xq+1 are separable algebraic
over k(x1, . . . , xr). So by induction on q, we conclude that, after possibly rearrang-
ing and relabeling the elements x1, . . . , xn repeatedly, K is separable algebraic over
k(x1, . . . , xr), as desired. □

26.3. Perfect fields. We say a field k is perfect if every algebraic extension K/k
is separable. For example, every characteristic zero field is perfect, since K/k is
clearly separable in the usual sense.

Lemma 26.3.1. If k is perfect then

(1) every extension K/k is separable;
(2) a k-algebra is separable iff it is reduced.

Proof. (1): If char(k) = 0, then K/k is separably generated (once one checks it has
a transcendence basis), and thus separable. If char(k) = p, then k = k1/p: note
that if k1/p ̸= k, then k1/p is an algebraic extension of k which is not separable in
the usual sense (check!).

From k = k1/p it follows from the preceding proposition that every f.g. subex-
tension of K/k is separable. Hence K/k is separable.
(2): We need to show that if A is a reduced k-algebra, then it is separable (the
converse being immediate). WLOG A is f.g. over k, so is Noetherian and reduced.
In that case, the exercise below asserts that the total ring of fractions of A,
namely the localization ΦA := S−1A where S is the set of all non-zero divisors in
A, is a product of fields. Write ΦA = K1 × · · · ×Kr. Each Ki/k is separable by
(1), and so ΦA is also separable. Since A ⊂ ΦA, we see A is separable as well. □

Exercise 26.3.2. Show that is A is a reduced Noetherian ring, then the total ring
of fractions ΦA is a product of fields.
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Exercise 26.3.3. Suppose k has char(k) = p and k1/p = k. Show that k is perfect.
Thus, perfect fields are precisely those satisfying one of the following two properties:

(1) char(k) = 0, or
(2) char(k) = p and k1/p = k.

Remark 26.3.4. Are non-perfect fields important? Yes, they arise very natu-
rally, especially in algebraic geometry and number theory. For example, the non-
Archimedean local field Fp((t)) is non-perfect, as is the global function field Fp(t)
(= the field of “meromorphic” functions on the curve P1 over the field Fp).

27. Lecture 27

27.1. Regularity via the structure of ΩB/k. Let K/k be a f.g. extension of
fields. In the following subsection we will prove that

(27.1.1) dimKΩK/k ≥ tr.degkK

with equality iff K/k is separably generated (we will actually prove something more
general). Let us assume this for now, and derive some consequeces.

In this subsection, we assume B is the localization at a maximal ideal m of a
f.g. k-algebra A. In the next statement, we use the symbol m also to denote the
maximal ideal of the local ring B. The proof is deferred to the next lecture.

Proposition 27.1.1. Assume k is perfect and that A/m = k (e.g. k could be
any algebraically closed field). The local ring (B,m) is regular iff ΩB/k is a free
B-module of rank dim(B).

Why is this important? Returning to our algebra A above, which we now assume
is a domain, we can now prove that Am is regular, for “generic” m. Let K :=
Frac(B) = Frac(A); this is a f.g. field extension of k.

Theorem 27.1.2 (Comp. Hartshorne, II Cor. 8.16, and Exercise 22.2.3 of these
notes.). Assume k = k. Let X be an irreducible variety over k (ie a finite-type,
separated, reduced and irreducible k-scheme). Then there is an open dense set of
X which is non-singular.

Proof. Because non-singularity is a local property, we may assume X = Spec(A),
where A is a k-algebra and a domain. We need to find a non-empty open subset
D(f) ⊂ X such that for each maximal ideal m ∈ D(f), the local ring Am is regular.
By the proposition above, this amounts to showing that for suchm’s, the Am-module
ΩAm/k = ΩA/k⊗AAm is a free Am-module of rank dim(Am) = dim(A) = tr.degk(A)
(we used Theorem 7.3.1 for these last equalities). Let us write M = ΩA/k; the
equality Mm = ΩAm/k cited above is a consequence of the general equality

ΩS−1C/A = ΩC/A ⊗C S−1C

for an A-algebra C, assigned in Homework 2.
Let K = Frac(A). Now, since k = k is perfect, the extension K/k is automat-

ically separably generated, and hence by (27.1.1) we have dimKΩK/k = dim(A).
Also, by the Homework exercise just cited above, we have ΩK/k =M ⊗A K.

Now we apply the following general argument to complete the proof that Am is
generically regular, which completes the proof of the Theorem. □
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Lemma 27.1.3. Let A be a Noetherian domain, with fraction field K and let M
be a f.g. A-module. Assume that M ⊗AK = Kn. Then there exists f ∈ A− 0 such
that Mf =M ⊗A Af ∼= Anf . Thus, for m ∈ D(f), we have Mm

∼= Anm.

Proof. We may choose aK-basis ofMK :=M⊗AK having the form x1⊗1, . . . , xn⊗
1, where all xi ∈ M . Sending ei 7→ xi defines an A-module map An → M which
becomes an isomorphism upon tensoring with K. Consider the exact sequence

0→ Ker→ An →M → Cok→ 0.

The A-modules Ker and Cok are f.g., and have KerK = CokK = 0. Hence there
exists f ∈ A − 0 which annihilates both Ker and Cok. This f has the required
properties. □

27.2. Relating ΩL/k and ΩK/k. Consider the following general set-up: L ⊃ K ⊃ k
are field extensions, and L/K is a f.g. field extension. Define r(L) = dimLΩL/k
and r(K) = dimKΩK/k. We want to find the relation between the numbers r(L)
and r(K).

By induction, we reduce to the case L = K(t), where t ∈ L. Then there are
essentially four cases to consider:

-(1) t is transcendental over K.
-(2) t is a separable algebraic element.
-(3) L = K[X]/(Xp − a), where a ∈ K and dK/ka = 0.
-(4) L as above, but dK/ka ̸= 0.

Case (1): For psychological reasons, write t = X. Then since K[X]/K is 0-smooth
(check this!), the first fundamental sequence for k → K → K[X] is split exact.
Thus,

ΩK[X]/k = (ΩK/k ⊗K K[X]) ⊕ ΩK[X]/K .

Applying −⊗K[X] L and recalling ΩK[X]/K = K[X] dX, we see

ΩL/k = (ΩK/k ⊗K L) ⊕ LdX,

and thus r(L) = r(K) + 1.

Case (2): We will prove in the lemma below that L/K is 0-étale, and hence the
first fundamental sequcence associated to k → K → L is split exact, and moreover
the third member has ΩL/K = 0 (since L/k is 0-unramified). Thus we see ΩL/k =
ΩK/k ⊗K L, and so r(L) = r(K).

Lemma 27.2.1. If L/K is a separable algebraic extension, it is 0-étale.

Proof. It is not hard to reduce to the case where L/K is a finite separable extension
(by uniqueness the tower of lifts glue to define one on L), which is all we need in
Case 2 anyway.

Write L = K(α), where α has minimal polynomial f ∈ K[X]. So L = K[X]/(f).
Consider a diagram

L

v

!!

u // C/J

K

OO

// C

OO

where J ⊂ C is an ideal such that J2 = 0, and the map u is given such that the
square commutes. We want to show that a unique v exists making the triangles
commute.
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Existence of v: It’s enough to find an element y ∈ C such that f(y) = 0 and
y mod J = u(α); then we can define v by sending the image of X in L to y ∈ C.

To find y, let y′ ∈ C be any lift of u(α). Note that f(y′) ∈ J , since the image of
f(y′) in C/J is f(u(α)) = 0. Since J2 = 0, for any η ∈ J we have

f(y′ + η) = f(y′) + f ′(y′)η.

As f ′(α) ∈ L× (since (f, f ′) = 1), we see that f ′(y′) ∈ C×. Then by taking

η := − f(y
′)

f ′(y′)
,

an element of J , we get f(y′ + η) = 0. So we can set y = y′ + η.
Uniqueness of v: If y, y + η are two lifts in C of u(α) ∈ C/J , then η ∈ J , and we
have

f(y + η) = f(y) + f ′(y)η.

If in addition we have f(y+η) = f(y) = 0, then because f ′(y) ∈ C×, we must have
η = 0. This shows that v is unique, proving the lemma. □

For the remaining two cases, we may assume L/K is a purely inseparable exten-
sion of form L = K[X]/(Xp − a), where a ∈ K. Write f(X) := Xp − a.
Claim: ΩL/k = ((ΩK/k ⊗K L) ⊕ LdX)/L δf , where δf := df(t) + f ′(t) dX.
Proof: Here, the symbol df ∈ ΩK/k⊗KK[X] is the element given by applying dK/k
to the coefficients of f(X), and df(t) is the “reduction modulo (f)” of that element,
i.e. its image in ΩK/k ⊗K L. Also, f ′(t) is the “reduction modulo (f)” of f ′(X), so
that f ′(t) dX ∈ LdX.

To prove the claim, first apply the second fundamental sequence to k → K[X] ↠
L to get the exact sequence

(27.2.1)
(f)

(f)2
→ ΩK[X]/k ⊗K[X] L→ ΩL/k → 0,

where the first map sends f 7→ dK[X]/kf ⊗ 1.
Also, since K[X]/K is 0-smooth, the first fundamental exact sequence for k →

K → K[X] gives a split exact sequence

(27.2.2) 0→ ΩK/k ⊗K K[X]→ ΩK[X]/k → ΩK[X]/K → 0

where the splitting is given by dK[X]/kg(X) 7→ dg, a left-inverse of the map ΩK/k⊗K
K[X]→ ΩK[X]/k (check it is a left-inverse!).

Now substituting (27.2.2) into (27.2.1) proves the claim.

Case (3): We have δ(Xp − a) = 0, and so the claim shows that ΩL/k = (ΩK/k ⊗K
L) ⊕ LdX, and hence r(L) = r(K) + 1.

Case (4): We have δ(Xp − a) ̸= 0, and so r(L) = r(K).

In summary, we have the following formulas:

• Case (1): r(L) = r(K) + 1;
• Case (2): r(L) = r(K);
• Case (3): r(L) = r(K) + 1;
• Case (4): r(L) = r(K).

This immediately implies the first parts of the following theorem.

Theorem 27.2.2. Suppose L ⊃ K ⊃ k are extension of fields, and suppose L/K
is a f.g. field extension. Then
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(i) dimLΩL/k ≥ dimKΩK/k + tr.degKL;
(ii) Equality holds if L/K is separably generated.
(iii) If L/k is f.g., then dimLΩL/k ≥ tr.degkL, and equality holds iff L/k is

separably generated. In particular, ΩL/k = 0⇔ L/k is a separable algebraic
exension.

Proof. (i,ii): By induction on the number of generators of the field extension L/K,
we may assume L = K(t), and then these two statements follow by a consideration
of Cases (1-4) above.
(iii): Take K = k to get the inequality ≥. Next, assume ΩL/k = 0. So r(L) = 0,
and for every field K with L ⊃ K ⊃ k we have r(K) = 0 as well. Only Case (2)
above can occur for L/K/k, and so we see that L/k is separable and algebraic.

Next, assume r(L) = tr.degkL =: r. Choose x1, . . . , xr ∈ L such that dx1, . . . , dxr
form an L-base of ΩL/k. It is easy to show that the elements x1, . . . , xr are alge-
braically independent over k.

Let k(x) := k(x1, . . . , xr) ⊂ L. We claim L/k(x) is separable and algebraic. The
first fundamental exact sequence applied to k → k(x)→ L gives an exact sequence

Ωk(x)/k ⊗k(x) L→ ΩL/k → ΩL/k(x) → 0

in which the left-most arrow is surjective (by choice of the xi). Thus ΩL/k(x) = 0,
and so by the statement proved above, L/k(x) is separable algebraic, as desired. □

28. Lecture 28

28.1. Proof of Proposition 27.1.1. Recall we have assumed k is perfect, and
B/m = k. Note that we have not assumed A (or B) is a domain for this proposition.

First suppose ΩB/k is a free B-module of rank dim(B). Then the second funda-
mental exact sequence for k → B ↠ B/m yields

m/m2 →̃ ΩB/k ⊗B B/m.

So dimk(m/m
2) = rankBΩB/k = dim(B), and so B is regular.

Conversely, assume (B,m) is regular. Recalling that B is then automatically a
domain, we setK := Frac(B). Using the argument above, we get from dimk(m/m

2) =
dim(B) that dimkΩB/k ⊗B k = dim(B) =: r. Since k is perfect, the extension K/k
is separably generated, and thus we have

dimKΩB/k ⊗B K = tr.degkK = r.

Now the B-module ΩB/k has

dimFΩB/k ⊗B F = r

for F = K and F = k. It follows from this that ΩB/k ∼= Br, and we are done. □
We used the following general lemma (see Hartshorne, II, Lemma 8.9).

Lemma 28.1.1. Suppose (A,m) is a Noetherian (this is not needed) local domain
with K := Frac(A) and k := A/m. Suppose M is a f.g. A-module such that
dimkM ⊗A K = dimkM ⊗A k = r. Then M is free of rank r.
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28.2. Formal smoothness. Here is our motivation. If (A,m,K) is a local ring
(K := A/m), then we say A has a coefficient field if there is a subfield K ′ ⊂ A
such that the composition K ′ ↪→ A ↠ K is an isomorphism. Obviously in order
for A to have a coefficient field, it must contain some field. An important question
goes in the opposite direction: supposing A contains some field, does it then have
a coefficient field?

Theorem 28.2.1 (I.S. Cohen). If (A,m,K) is a complete Noetherian local ring
and A contains a field k, then A has a coefficient field. If K/k is separable, then
there is a coefficient field containing k.

Corollary 28.2.2 (Cohen Structure Theorem). If (A,m,K) is a complete regular
local ring containing a field, then A ∼= K[[X1, . . . , Xd]], where d = dim(A).

Here is the idea behind the proof of the theorem (we’ll give the details later).
It’s ETS that there is a map u : K → A such that pu = idK , where p : A →
A/m = K is the projection. Since A = lim

←−
A/mi, it’s ETS that for each successive

lift ui : K → A/mi of u1 = idK , we can lift one step further, i.e. find ui+1 making
the following commute:

K
ui //

ui+1 ##

A/mi

A/mi+1.

OO

If possible, we lift u1 to get a compatible family of lifts u1, u2, u3, . . . , and these
determine the desired map u : K → lim

←−
A/mi = A.

Thus, what is required of the map k → K (where is k ⊂ A is the given subfield)
is that it be 0-smooth. We will study a circle of ideas related to proving that in
many cases K/k is 0-smooth. Along the way it is convenient to introduce a notion
of smoothness wherein the topology plays a role. This notion is called formal
smoothness.

To define it we need some preliminary definitions. Suppose A is a topological
ring. We say I ⊂ A is an ideal of definition if {In} is a basis of open neighbor-
hoods around 0 ∈ A. We say a topological A-moduleM is discrete if IM = (0) for
some open ideal I ⊂ A. If A is a local or semi-local ring and J ⊂ A is the Jacobson
radical of A, unless otherwise mentioned we always give A the J-adic topology.

Suppose g : k → A is a continuous map of topological rings. We say g is formally
smooth, or fs, if for every discrete ring C, and ideal N ⊂ C with N2 = 0, if we
are given continuous maps u, v making the following square commute, there is a lift
v′ : A→ C of v making the triangles commute:

A
v //

v′

!!

C/N

k

OO

u // C.

OO

Remark 28.2.3. (1) The map v′ is automatically continuous: there is an open
ideal I ⊂ A such that v(I) = 0. i.e. v′(I) ⊂ N and so v′(I2) = 0. Since I2

is an open ideal, this shows that v′ is continuous.
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(2) In the definition of fs, we can replace “N2 = 0” with “N is nilpotent”.
Indeed, suppose Nm = 0 and that we can perform lifting for ideals whose
squares are zero. Then lift A → C/N first to A → C/N2, and then to
A→ C/N3. Continuing, we eventually lift to A→ C/Nm = C.

(3) If C is a complete and Hausdorff with ideal of definition N (so that C =
lim
←−

C/N i), then we can use the above argument to show that we can lift

v : A→ C/N to A→ lim
←−

C/N i = C.

If A is fs over k for the discrete topologies on k,A, then we say A is smooth
over k. This is the same as our earlier notion of 0-smooth.

Thus, k → A smooth implies k → A is fs for any adic topologies on k,A such
that k → A is continuous.

The following lemma explains to some extent why we use the terminology “for-
mally smooth” (since completions are connected to Grothendieck’s theory of “for-
mal schemes”). It also highlights the importance of the continuity hypotheses in
the definition of formal smoothness.

Lemma 28.2.4. Let Â denote the I-adic completion of A, a Noetherian k-algebra

(where k is any ring). Then A is fs over k iff Â is fs over k.

Proof. Suppose given a continuous v : A → C/N making the following diagram
commute:

A
v // C/N

k

OO

u // C.

OO

Since v is continuous, it factors through a map v̄ : A/Im → C/N . Clearly if v̄
lifts to k-algebra map v̄′ : A/Im → C, then v lifts to a k-algebra map v′ : A →
C. Conversely, if v lifts to v′, then for some sufficiently large m, v̄ lifts to a v̄′.
Thus, k → A is fs iff given any such diagram, for a sufficiently large m, the map
v̄ : A/Im → C/N lifts to a map v̄′ : A/Im → C.

The same argument applies to Â ⊃ Î replacing A ⊃ I. Also, recall that for every

integer m, A/Im = Â/Îm. It is now clear that A is fs over k iff Â is. □

Examples

(1) A = k[. . . , Xλ, . . . ] is smooth over k, for any ring k and any family of
indeterminates Xλ.

(2) If k denotes a Noetherian ring endowed with the discrete topology, then
A = k[[X1, . . . , Xn]] is fs over k. (This follows from the lemma above, since
A is the (X1, . . . , Xn)-adic completion of the fs (even smooth) k-algebra
k[X1, . . . , Xn].

28.3. Some properties of formally smooth morphisms. The following prop-
erties are analogous to properties of smooth morphisms in the categories of varieties
or schemes.
Transitivity: If B is a fs A-algebra and A is a fs k-algebra, then B is a fs k-algebra.
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Proof. Given the morphisms u, v making the outer quadrilateral commute, we first
lift to find w (using A/k is fs), and then lift w to find v′ (using B/A is fs).

B
v //

v′

!!

C/N

A

OO

w // C

OO

k.

OO
u

<<

□

Localization: If S ⊂ A is a multiplicative set, then S−1A is smooth over A. (In
fact, we showed that S−1A is 0-étale over A, which is stronger.)

Base Change: Suppose k,A, k′ are topological rings, and k → A and k → k′ are
continuous ring homomorphisms. Let A′ = A⊗k k′ be endowed with the topology
of the tensor product. This means that if {In} ⊂ A and {Jm} ⊂ k′ are families of
ideals defining the topologies on A and k′, then we define the topology on A′ to be
the one defined by the family {InA′ + JmA

′}n,m.
If A is fs over k, then A′ is fs over k′.

Proof. Let p : A → A′ and k′ → A′ be the canonical maps; they are continuous.
Given C,N, u, v in the diagram below making the rightmost square commutative

A
p // A′

v // C/N

k

OO

// k′

OO

u // C

OO

use the fs of A/k to find the lifting w : A → C of vp : A → C/N . Then define
A′ → C by a⊗ k′ 7→ w(a)u(k′). This is a lift of v, as desired. □

28.4. Separability and smoothness for field extensions. The following fact
is fundamental, and will easily imply the theorems of Cohen.

Theorem 28.4.1. A field extension K/k is smooth iff it is separable.

We refer to this as the fundamental fact.

28.5. Proofs of Cohen’s theorems, modulo the fundamental fact. We now
prove Theorem 28.2.1 and Corollary 28.2.2, modulo Theorem 28.4.1.

Proof of Theorem 28.2.1: If K/k is separable, then by the fundamental fact, K/k
is smooth. Hence we can lift idK : K → A/m to a k-algebra homomorphism
K → lim

←−
A/mi = A. In general, let k0 ⊂ k be the prime field. Then K/k0 is

separable since k0 is perfect, hence the above argument applies to produce the
coefficient field. □

Corollary 28.5.1. Let (A,m,K) be a complete Hausdorff local ring containing a
field. Then if m is a f.g. ideal, the ring A is Noetherian.
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Proof. Suppose m = (x1, . . . , xn), and let K ′ ⊂ A be the coefficient field produced
by Theorem 28.2.1. Sending Xi 7→ xi defines a surjective K ′-algebra homomor-
phism

K ′[[X1, . . . , Xn]]→ A.

The definition makes sense since A is complete. Also, note that it is surjective on
the associated graded level (check this!), and so surjective by Lemma 18.2.2. Hence
A is Noetherian, being a quotient of a Noetherian ring. □

Proof of Corollary 28.2.2: Note that since (A,m,K) is regular of dimension d, we
have in this case m = (x1, . . . , xd). Now from the proof of the corollary above, we
have

K[[X1, . . . , Xd]]/P = A,

where P is a prime ideal (recall that A is a domain, being regular). But then di-
mension considerations show that P = 0 (otherwise the LHS would have dimension
< d = dim(A)). We are done. □

28.6. Formal smoothness implies regularity.

Proposition 28.6.1. let (A,m,K) be a Noetherian local ring containing a field k.
If A/k is fs, then A is regular.

Proof. Let k0 ⊂ k denote the prime field. Note that k/k0 is separable, hence
smooth, hence fs. Also, A is fs over k by hypothesis. Hence by transitivity, A/k0
is fs. Thus, WLOG k is perfect.

Let K ′ denote a coefficient field of the complete local ring A/m2, containing k
(use Theorem 28.2.1). Let x1, . . . , xd ∈ m be a set of elements whose reductions
determine a K ′-basis of m/m2.

There is an isomorphism of k-algebras

v1 : A/m2 →̃ K ′[X1, . . . , Xd]/J
2,

where J := (X1, . . . , Xd). (To see this, use that the obvious map from the RHS to
the LHS is an isomorphism on the associated graded level, hence is an isomorphism
since both sides are complete.)

Define v : A ↠ K ′[X]/J2 as the composition of v1 with the projection A →
A/m2. Now, using that A/k is fs, lift v to k-algebra maps v′n : A → K ′[X]/Jn+1,
for n = 2, 3, . . . .

Since the elements v(x1), . . . , v(xd) generate J/J
2 = J/J

2
(where J := J/Jn+1),

the elements v′n(x1), . . . , v
′
n(xd) generate J (by NAK).

It follows that

K ′[X]/Jn+1 = v′n(A) + J
2

= v′n(A) +
∑
i

v′n(xi)(v
′
n(A) + J

2
)

= v′n(A) + J
3

= · · ·

= v′n(A) + J
n+1

= v′n(A).
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Thus v′n : A↠ K ′[X]/Jn+1. Therefore

dim(A) = deg ℓ(A/mn+1) ≥ deg ℓ(K ′[X]/Jn+1) = d.

Since m is generated by d elements, this shows that A is regular, as desired. □

29. Lecture 29

29.1. How liftings lead to 2-cocycles. Here we give the first steps of our goal:
a homological criterion for smoothness over a field k. This will be a key ingredient
in our proof of the fundamental fact (Theorem 28.4.1).

Assume for the time being that k is a field. Consider the usual diagram

A
v // C/N

k

OO

u // C.

q

OO

From this we define a k-subalgebra E ⊂ A× C by

E := {(a, c) | v(a) = q(c)}.

This is part of an extension of A by N :

0→ N → E → A→ 0,

where N → E is n 7→ (0, n) and E → A is (a, c) 7→ a. The following result is
fundamental, but is easy and is left to the reader.

Lemma 29.1.1. The map v lifts to a k-algebra map v′ : A→ C iff 0→ N → E →
A → 0 splits in the category of k-algebras (meaning the splitting map A → E is a
k-algebra homomorphism).

Proof. Exercise. □

Now, since k is a field, and everthing in sight is a k-vector space, the extension E
always splits in the category of k-vector spaces. We may therefore write E = A⊕N ,
and then express the multiplication in terms of a symmetric 2-cocycle

f : A×A→ N.

That is, the multiplication in E can always be expressed as

(a1, n1) · (a2, n2) = (a1a2, a1n2 + a2n1 + f(a1, a2)),

where f is symmetric, bilinear and satisfies (by associativity in E) the relation

af(b, c)− f(ab, c) + f(a, bc)− f(a, b)c = 0,

for all a, b, c ∈ A.
Such extensions are called Hochschild extensions. We will define this for-

mally in the next subsection. Note that it is already clear that the splitting of the
extension in the category k-Alg is detected by whether the 2-cocycle f is “trivial”
or not. Thus, the smoothness of k → A is going to be related to the vanishing of a
certain H2 cohomology group.

In the next few subsections, we will explain this more formally.
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29.2. Extensions. Here we continue to work towards a cohomological criterion for
smoothness of k → A, where k is a field. The same discussion goes over word-for-
word when we only assume k is a ring and A is projective as a k-module.

Given a k-algebra and ideal C ⊃ N , with N2 = 0, write C ′ := C/N . Then
N is naturally a C ′-module. Conversely, suppose C ′ is a ring and let N be any
C ′-module. An extension of C ′ by N is a triple (C, ϵ, i) such that

- C is a ring;
- ϵ : C ↠ C ′, and ker(ϵ)2 = 0;
- i : N →̃ ker(ϵ) is an isomorphism of C ′-modules.

We represent the extension with an exact sequence

0 // N
i // C

ϵ // C ′ // 0.

Given a C ′-module N , we always have the trivial extension C ′ ∗N = C ′ ⊕N ,
where the multiplication is defined by

(a, x) · (b, y) := (ab, ay + bx).

An isomorphism between (C, ϵ, i) and (C1, ϵ1, i1) is a ring homomorphism f : C →
C1 such that the following commutes:

0 // N
i //

=

��

C

f

��

ϵ // C ′

=

��

// 0

0 // N
i1 // C1

ϵ1 // C ′ // 0.

Such an f is automatically an isomorphism (the snake lemma or the 5-lemma), and
is unique (check this!).

Exercise 29.2.1. Show that (C, ϵ, i) ∼= C ′ ∗N ⇔ ∃ a ring homomorphism section
s : C ′ → C for ϵ such that ϵ ◦ s = idC′ .

29.3. Hochschild extensions. We say (C, ϵ, i) is a Hochschild extension if the
exact sequence

0 // N
i // C

ϵ // C ′ // 0

splits in Z-mod: there exists an additive map s : C ′ → C such that ϵ ◦ s = idC′ .
In that case, C = C ′ ⊕ N as an abelian group, and the multiplication in C is

given by
(a, x) · (b, y) = (ab, ay + bx+ f(a, b)),

for a function f : C ′ × C ′ → N . Why? Write (a, 0) = s(a). Note that ϵ(s(a)s(b)−
s(ab)) = 0 implies that the function f is given by

f(a, b) := s(a)s(b)− s(ab) ∈ N.
Note that f is symmetric (since C is commutative), bilinear, and satisfies the

following cocycle relation (a rephrasing of “C is associative”):

(29.3.1) af(b, c)− f(ab, c) + f(a, bc)− f(a, b)c = 0,

for a, b, c ∈ C ′. Such a function f : C ′×C ′ → N is called a symmetric 2-cocycle.
Without the hypothesis of symmetry, f is called simply a 2-cocycle.

Conversely, any such f gives rise to a Hochschild extension of C ′ by N . The
extension is isomorphic to the trivial extension C ′ ∗N iff ∃ g : C ′ → N such that

(29.3.2) f(a, b) = ag(b)− g(ab) + g(a)b.
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In this case we say f is a 2-coboundary. More generally, two Hochschild extensions
determined by f1, f2 : C ′ × C ′ → N are isomorphism iff f1 − f2 is a 2-coboundary
(check this!).

The quotient of symmetric 2-cocycles modulo 2-coboundaries is denotedH2(C ′, N)sym.
We can also formulate all of the above in the category of k-modules: then an

extension is Hochschild if it splits in the category k-Mod. In this case the k-module
quotient of symmetric 2-cocycles modulo 2-coboundaries is denoted H2

k(C
′, N)sym.

We can summarize the above discussion as follows.

Lemma 29.3.1. Given a k-algebra C ′ and a C ′-module N , there is a canonical
bijection {

Hochschild extns of C ′ by N
}
/∼=⇐⇒ H2

k(C
′, N)sym.

29.4. Relation of Hochschild extensions to smoothness. Assume A is pro-
jective over the ring k (e.g. k could be a field). Let N denote an A−k A-bimodule
(i.e. a A⊗kAop-module). In the next subsection we are going to define Hochschild
(co)homology groups Hn

k (A,N) (resp. Hk
n(A,N)) for all n ≥ 0.

Here is the connection with the notion of smoothness. Consider a diagram

(29.4.1) A
v // C/N

k

OO

// C,

q

OO

where N2 = 0. This gives rise to a Hochschild extension E := {(a, c) ∈ A ×
C | v(a) = q(c)} in k-alg. (We used A is projective over k.) We represent the
extension as

(29.4.2) 0 // N
i // E

ϵ // A // 0,

where i(n) = (0, n) and ϵ(a, c) = a.
Note that in (29.4.1), v lifts to a k-algebra map v′ : A→ C iff the extension E in

(29.4.2) is trivial as a k-algebra extension: there exists a k-algebra map s : A→ E
such that ϵ ◦ s = idA.

Therefore,

A/k is smooth⇐⇒ every extension (29.4.2) splits in k-alg

⇐⇒ H2
k(A,N)sym = 0 for every N arising from (29.4.1).

In summary, we have

Proposition 29.4.1. Let A be a projective k-algebra. Then A/k is smooth iff
H2
k(A,N)sym = 0 for all A-modules N .

Proof. Any N as in (29.4.1) is a C/N -module hence (via v) is an A-module. Con-
versely, given an A-module N , let C = A∗N , which contains N as an ideal such that
N2 = 0. Thus N appears in a diagram of the form (29.4.1). Now, the proposition
follows from our discussion above. □

29.5. Hochschild (co)homology. In this subsection k denotes a ring, and A
denotes a k-algebra (not necessarily commutative!). Let M denote an A −k A-
bimodule, that is, a left Ae := A⊗kAop-module. The ring A is itself an Ae-module,
via the homomorphism ε : A⊗k A→ A given by a⊗ b 7→ ab.
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For n ≥ 0, we define the Hochschild cohomology by

Hn
k (A,M) := ExtnAe(A,M),

and the Hochschild homology by

Hk
n(A,M) := TorA

e

n (A,M).

Recall that if 0← A← P0 ← P1 ← · · · is an Ae-free resolution of A, then

ExtnAe(A,M) = Hn(HomAe(P•,M))

TorA
e

n (A,M) = Hn(P• ⊗Ae M).

This is useful, as we can construct a very simple and explicit resolution A← P•
as follows. For simplicity, at this point we assume A is k-free. Let us define

X0 = A⊗k A = Ae

X1 = A⊗k A⊗k A
· · ·

Xn = A⊗kn+2 ∼= Ae ⊗k Xn−2.

Note that Xn is an Ae-module by (a⊗ b) · (x0⊗ · · ·⊗xn+1) = ax0⊗ · · ·⊗xn+1b.
As Ae-modules we have

Xn
∼= Ae ⊗k Xn−2

given by a⊗ x⊗ b 7→ (a⊗ b)⊗ x. Therefore, since Xn−2 is k-free, we see that Xn

is Ae-free, for all n. Thus, we can define an Ae-free resolution A← P• by

0 Aoo X0
εoo X1

d1oo X2
d2oo · · ·d3oo

where dn : Xn = A⊗kn+2 → A⊗kn+1 = Xn−1 is given by

dn(x0 ⊗ · · · ⊗ xn+1) =

n∑
i=0

(−1)i x0 ⊗ · · · ⊗ xixi+1 ⊗ · · · ⊗ xn+1.

It is clear that ε and each dn is Ae-linear. Moreover, it is easy to see dn◦dn+1 = 0
for all n ≥ 0 (by convention, d0 = ε). Why is the sequence exact? This follows
from the existence of “contracting homomorphisms”

A
s−1 // X0

s0 // X1
s1 // · · ·

such that

ε s−1 = idA

d1 s0 + s−1 ε = idX0

dn+1 sn + sn−1 dn = idXn
,

the latter holding for all n ≥ 1. For each n ≥ −1, set

sn(x0 ⊗ · · · ⊗ xn+1) := 1⊗ x0 ⊗ · · · ⊗ xn+1.

Now we want to use this explicit resolution to identifyHn
k (A,M) more concretely.

As stated above, we know that

Hn
k (A,M) = Hn

[
0→ HomAe(X0,M)→ HomAe(X1,M)→ · · ·

]
.
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Now

HomAe(Xn,M) = HomAe(Xn−2 ⊗k Ae,M)

= Homk(A
⊗kn,M)

= Cn(A,M),

where Cn(A,M) denotes the additive group of all k-bilinear maps An →M .
Define δ : Cn(A,M)→ Cn+1(A,M) by setting δ f(x1, . . . , xn+1) to be

x1f(x2, . . . , xn+1)+

n∑
i=1

(−1)i f(x1, . . . , xi−1, xixi+1, xi+2, . . . , xn+1)+(−1)n+1f(x1, . . . , xn)xn+1.

The commutativity of the diagram (check it!)

HomAe(Xn,M)

∼=
��

// HomAe(Xn+1,M)

∼=
��

Cn(A,M)
δ // Cn+1(A,M)

yields

Theorem 29.5.1.

Hn
k (A,M) =

ker(δ : Cn(A,M)→ Cn+1(A,M))

im(δ : Cn−1(A,M)→ Cn(A,M))
.

Let us see explicitly what elements in H2
k(A.M) look like with the present defi-

nition. A function f : A×A→M satisifes δ(f(a, b, c) = 0 iff

af(b, c)− f(ab, c) + f(a, bc)− f(a, b)c = 0,

that is, iff f is a 2-cocycle in our earlier terminology.
Further, given a function g : A→M , we have

δg(a, b) = ag(b)− g(ab) + g(a)b.

Thus, δg is precisely a 2-coboundary in our earlier terminology. Hence, we conclude
that H2

k(A,M) as defined in this subsection agrees with the definition given in
subsection 29.3.

29.6. Proof of the fundamental fact, Theorem 28.4.1. We now prove that
K/k is smooth ⇔ is it separable.

Proof.
(⇐): We will use Proposition 29.4.1. Hence, we must prove that for a K-module
N , we have H2

k(K,N)sym = 0.
We may write K = ∪iLi, where each Li/k is a finitely generated and separable

(hence separably generated) field extension.

Lemma 29.6.1. Any separably generated field extension L/k is smooth.

Proof. Pure transcendental extensions are smooth (why?). Separable algebraic ex-
tensions are 0-étale (Lemma 27.2.1), hence smooth. The result now follows by the
transitivity property of smoothness. □
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Hence by Proposition 29.4.1, we have H2
k(Li, N)sym = 0 for all i. From this, it

follows that H2
k(K,N)sym = 0.

Let’s check this last statement in the case where K has countable transcendence
degree over k (for the general case, see [Mat1]). In this case, we can write K = ∪iLi
as a countable directed union. That is, we may assume

· · · ⊂ Li ⊂ Li+1 ⊂ · · · .

Let f be a symmetric 2-cocycle, f : K×K → N . By hypothesis, f |Li
= δgi, where

gi : Li → N , for each i. We want to “glue” the gi’s to get a function g : K → N
such that f = δg. The obvious problem is, gi+1|Li might not be gi. The idea is to
alter gi+1 so that this is true (without disturbing the property δg = f).

Note that δ(gi − gi+1|Li
) = 0, so that gi − gi+1|Li

: Li → N is a k-derivation.
Since Li+1/k is a f.g. separably generated extension, so is Li+1/Li. (Why? It’s
enough to check that Li+1⊗Li

L′ is reduced for any field L′ ⊃ Li. But this embeds
into (Li+1⊗k Li)⊗Li L

′ = Li+1⊗k L′, which is reduced since Li+1/k is separable.)
Since Li+1/Li is f.g. separably generated, hence 0-smooth, the splitting of the first
fundamental sequence for k → Li → Li+1 shows that the natural restriction map

Derk(Li+1, N)→ Derk(Li, N)

is surjective. Thus, we can extend gi − gi+1|Li
to a k-derivation ˜gi − gi+1|Li

:

Li+1 → N . Now replace gi+1 with gi+1+ ˜(gi − gi+1|Li
) : Li+1 → N . This new gi+1

has

f |Li+1
= δgi+1

gi+1|Li
= gi.

Continuing in this way, we can “glue” the gi’s together to get g : K → N such that
f = δg. Thus, H2

k(K,N)sym = 0, as desired. This completes the proof of (⇐).

(⇒): Let k′ ⊃ k be a field extension. We need to show that K ⊗k k′ is reduced. It
is enough to prove this in the case where k′/k is finite. Why? First, it is clearly
enough to consider the case where k′/k is a f.g. field extension. Then let Γ ⊂ k′ be
a transcendence basis for k′/k and note that

K ⊗k k′ = (K ⊗k k(Γ))⊗k(Γ) k′.

Now our reduction to the case “k′/k is finite” follows: K⊗k k(Γ) is a smooth k(Γ)-
algebra, and the algebraic extension k′/k(Γ) is a union of finite algebraic extensions.

Thus, we henceforth assume k′/k is finite. Then K ⊗k k′ is a finite dimensional
K-vector space, hence is an Artinian ring. By Atiyah-Macdonald Theorem 8.7,

K ⊗k k′ = A1 × · · · ×Ar,

where each Ai is an Artinian local ring, and a finite-dimensional K-algebra. Now
K⊗kk′ is smooth over k′ implies (exercise) that each Ai is smooth over k′. Therefore
by Proposition 28.6.1, each Ai is a regular local ring. But regular local rings are
domains, and thus each Ai is actually a field. But then K ⊗k k′ is reduced, as
desired. This completes the proof of (⇒). □
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29.7. Geometric regularity, and final remarks.

Theorem 29.7.1. Let (A,m,K) be a Noetherian local ring, containing a field k.

Let Â denote the m-adic completion of A. Suppose K/k is separable. Then TFAE:

(1) A is regular.

(2) Â ∼= K[[X1, . . . , Xd]] as K-algebras and as k-algebras too (where d =
dim(A)).

(3) Â is fs over k.
(4) A is fs over k.

Proof. (1)⇒ (2): Since Â is complete and regular, and contains k, (2) follows from
the Cohen Stucture theorem (Corollary 28.2.2).

(2)⇒ (3): Clear since then Â fs over K and K fs over k (since K/k separable; use
Theorem 28.4.1).
(3)⇔ (4): Lemma 28.2.4.
(4)⇒ (1): Proposition 28.6.1. □

For now on, assume (A,m) is a Noetherian local ring, and contains a field k.

Lemma 29.7.2. If B is a finite A-module, then B is semi-local.

Proof. Note that B/mB is a finite A/m-module, hence is Artin, and thus has finitely
many maximal ideals. The maximal ideals of B all lie over m (by the Going-Up
theorem), so B has only finitely many maximal ideals. Thus B is semi-local. □

In particular, for every finite extension k′ ⊃ k, the ring A′ := A⊗kk′ is semi-local.
Recall that we say such a ring is regular provided all of its localizations at maximal
ideals are regular. We say A is geometrically regular over k if A′ := A ⊗k k′ is
regular, for every finite extension k′/k.

Lemma 29.7.3. If A/m is separable over k, then

A is regular⇐⇒ A is fs over k

=⇒ A′ is fs over k′

=⇒ A′ is regular.

Proof. Only the final implication needs explanation. It does not follow immediately
from Proposition 28.6.1 because A′ is not local, but only semi-local. Nevertheless,
if n ⊂ A′ is a maximal ideal, then A′n is fs over k′ (recall A′n/A

′ is 0-étale), and then
Proposition 28.6.1 yields A′n is regular for each n. Thus A′ is regular. □

Thus, in case A/m is separable over k, we have “regular” ⇔ “geometrically
regular”. In general, we can say the following.

Proposition 29.7.4. Suppose (A,m,K) be Noetherian local, containing a field k.
Then A is fs over k iff A is geometrically regular over k.

Proof. (⇒): If A is fs over k, then A′ is fs over k′, and then the proof of the Lemma
above shows that A′ is regular. Thus A is geometrically regular over k.
(⇐): (Sketch; we consider only the case where K/k is a f.g. field extension.) Take
a radiciel extension k′ ⊃ k such that K(k′) is separable over k′. Then A′ := A⊗k k′
is regular, and has residue field K(k′). So A′ is fs over k′. We conclude that A is
fs over k by invoking the following lemma. □
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Lemma 29.7.5. Let A be a topological ring containing a field k. Let k′ ⊃ k be a
k-algebra endowed with the discrete topology. Then A is fs over k iff A′ := A⊗k k′
is fs over k′.

Proof. We assume A′ is fs over k′; we need to prove A is fs over k. Consider the
usual diagram

A
v // C/N

k

OO

// C.

OO

Tensoring the diagram with −⊗k k′ yields a diagram

A′
v′ //

w

""

C ′/N ′

k′

OO

// C ′

OO

where C ′ = C ⊗k k′, N ′ = N ⊗k k′, and v′ = v ⊗k idk′ . The lifting w exists since
A′/k′ is fs.

Now choose a k-submodule V of k′ such that k′ = k⊕V as k-vector spaces. Note
that C ′ = C ⊕ (C ⊗ V ), and C ⊗ V is a C-submodule of C ′. Write

w(a) = u(a) + r(a),

where u(a) ∈ C and r(a) ∈ C ⊗ V , for a ∈ A. Since the image of w(a) modulo
N ′ is v(a) ∈ C/N , we see that r(a) ∈ N ⊗ V , for all a ∈ A. This implies that
r(a)r(b) = 0, for a, b ∈ A. Thus u : A→ C is a k-algebra homomorphism, lifting v.
This shows that A is fs over k, as desired. □

30. Additional Topics

30.1. Serre’s Normality Criterion.

30.1.1. Statement of criterion. We give an exposition of the following theorem due
to Serre. We will follow the treatment of [Mat2, Thm. 23.8], and will explain the
relation with the very similar statement [CommAlg, 15.4.3] which holds when the
ring is known to be a domain. In this discussion, all rings are Noetherian.

Theorem 30.1.1. A Noetherian ring A is normal if and only if it satisfies R1+S2.

30.1.2. Definitions. We say A is normal if its localizations AP are all integrally
closed integral domains, for P ∈ Spec(A).

Consider the following conditions Ri and Si for i = 0, 1, ... on a Noetherian ring
A:

(Ri): AP is regular for all P ∈ Spec(A) with ht(P ) ≤ i
(Si): depthAP ≥ min(ht(P ), i) for all P ∈ Spec(A).

Note that Ri+1 ⇒ Ri and Si+1 ⇒ Si for all i ≥ 0.
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30.1.3. Preliminaries.

Lemma 30.1.2. S1 holds if and only if all the associated primes of A are minimal.

Proof. Suppose S1 holds and let P be an associated prime which is not minimal.
Then ht(P ) ≥ 1 and by S1 we see depthAP ≥ 1. So PAP has a non-zero divisor,
and therefore (since the set of zero divisors in a Noetherian ring is the union of the
associated primes, cf. [CommAlg, Lem. 12.1.1]), PAP is not an associated prime of
AP . Therefore P is not an associated prime. We used P ∈ Ass(A) ⇔ PAP ∈
Ass(AP ), cf. [CommAlg, Lem. 12.1.7].

Now suppose that S1 does not hold. Then there exists P with depthAP < 1,
and ht(P ) = 1, i.e., PAP consists of zero-divisors yet is not minimal. Therefore
by the prime avoidance theorem PAP is contained in an associated prime for AP
which is not minimal. But PAP is maximal, so PAP is itself associated. Therefore,
as above, P is associated and not minimal. □

Lemma 30.1.3. A is reduced if and only if it satisfies R0 + S1.

Proof. Suppose A is reduced. Let P1, . . . , Pr be the minimal primes, so that (0) =
P1 ∩ · · · ∩ Pr. This is a shortest primary decomposition. Also, we have a shortest
primary decomposition of (0) involving P -primary ideals for all P ∈ Ass(A) by
[CommAlg, 13.2.3]. By uniqueness of primary decompositions, the lists of prime
ideals arising as radicals of the primary ideals in these two decompositions coincide
(loc. cit.) and therefore Ass(A) = {P1, . . . , Pr}. By the previous lemma, S1 holds.

Let P be minimal. We must show that AP is regular. But AP is Noetherian
of dimension zero, hence is Artinian local, and every element in PAP is nilpotent.
But AP is also reduced, since A is (cf. [CommAlg, 6.1.1]). Therefore AP is a field,
in particular it is regular. Hence R0 holds.

Conversely, assume R0 and S1 hold. We must show that (0) = P1∩· · ·∩Pr, where
Pi are the minimal prime ideals. Consider the shortest primary decomposition
(0) = Q1 ∩ · · · ∩Qn where Qi is Pi-primary and Ass(A) = {P1, . . . , Pn}. Using S1,
we see n = r, so (0) = Q1 ∩ · · · ∩ Qr. It suffices to show that Qi = Pi for each
i = 1, . . . , r. Now by R0, APi

is regular of dimension zero, ie. a field. The inclusion
QiAPi ⊆ PiAPi is therefore an equality, that is, Qi = Pi and we are done. □

Lemma 30.1.4. For a Noetherian ring A, S2 is equivalent to S1 plus the condition
that every prime divisor of a non 0-divisor principal ideal has height 1.

Proof. First assume S2 holds for a prime P ⊇ (a) ̸= (0) which is a prime ideal
coming from Ass(A/(a)), where a is not a 0-divisor. Then PAP ⊇ (a)P ̸= (0) is a
prime ideal coming from Ass(AP /(a)P ), by [CommAlg, 12.1.7]; also by flatness of
A→ AP , aP is a non 0-divisor in AP . We know S1 holds for P . We want to prove
that ht(P ) = ht(PAP ) = 1. Since S2 is only a condition on AP and we will only
have to invoke S2 for P , we may replace (A,P ) with (AP , PAP ), that is, we may
assume (A,P ) is a Noetherian local ring.

By [CommAlg, 12.2], P = ((a) : w) := {x ∈ A |xw ∈ (a)} for some element
w ∈ A. Since a is not a zero divisor, we have ht(P ) ≥ 1. Suppose ht(P ) ≥ 2. Then
by S2 for P , we see depthA ≥ 2. Suppose x1, x2 ∈ P is a regular sequence, i.e.

A
x1→ A and A/(x1)

x2→ A/(x1) are injective.
We have a, x1 are non 0-divisors. We claim that x2 is too. Suppose y1x2 = 0.

Then y1 ∈ (x1); write y1 = y2x1. Since x1 is not a 0-divisor we have y2x2 = 0. Then
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y2 ∈ (x1), and so y1 ∈ (x21). Repeating, we see that y1 ∈ ∩n≥1(x1)n ⊆ ∩n≥1Pn = 0
(the last equality by [CommAlg, 18.1.5]). Thus x2 is not a 0-divisor.

Now we complete the proof that ht(P ) = 1 by deriving a contradiction from
ht(P ) ≥ 2. Since xi ∈ P , we may write

x1w = a1a x2w = a2a

for ai ∈ A. Since a is not a 0-divisor, this forces

a1x2 = a2x1.

Thus a1 is already in (x1), and we may write a1 = x1z. Substitute this into the
equation above. Then since x1 is not a 0-divisor we obtain zx2 = a2 and thus
x2w = zx2a, for some z ∈ A. Since x2 is also not a 0-divisor, we see w ∈ (a). This
contradicts P = ((a) : w) is a proper ideal of A. Therefore we conclude ht(P ) = 1.

Now conversely, we assume S1 and the property that every prime divisor of any
non-zero-divisor principal ideal has height 1. Suppose S2 fails for a prime ideal P .
We want to derive a contradiction. Since S2 fails, we cannot have ht(P ) = 0, so
ht(P ) ≥ 1.

Suppose ht(P ) = 1. Then depthAP < min(1, 2) means that PAP consists of
0-divisors. By the prime avoidance theorem, PAP ∈ Ass(AP ). Thus P ∈ Ass(A).
Then using S1, we deduce P is minimal, a contradiction of ht(P ) = 1.

Therefore the only option is that ht(P ) ≥ 2. Then by the failure of S2 for P ,
we have depthAP ≤ 1. We already ruled out depthAP = 0 by the argument
above, so we must have depthAP = 1. Now P contains some non 0-divisor a ∈ P
: if not, then P is contained in an element of Ass(A), which by S1 consists of
minimal primes, which would mean P is itself minimal, a contradiction of ht(P ) ≥
2. Clearly aP ∈ PAP is a non 0-divisor, and PAP ⊇ (aP ). As depthAP = 1,
PAP /(aP ) lies inside the set of 0-divisors of PAP /(aP ). By the prime avoidance
theorem PAP /(aP ) lies inside an associated prime for AP /(aP ). Since PAP /(aP )
is a maximal ideal, it is itself associated. But then P/(a) ∈ Ass(A/(a)), ie P is a
prime divisor of (a). By our assumption, ht(P ) = 1, a contradiction of ht(P ) ≥ 2.
Therefore we are done. □

30.2. End of proof. To prove Serre’s theorem, we may fix P ∈ Spec(A) and check
that R1+S2 for all prime ideals Q ⊆ P is equivalent to AP being normal. Therefore
we may replace A with AP , which means we may assume A is a local Noetherian
ring. If normal, it will be a domain by definition. If it satisfies R1 + S2 hence
R0 + S1, it will be reduced. However, it is not clear that the local Noetherian
ring A is a automatically domain. If it were a domain, then we could conclude the
proof by assuming A is a Noetherian local domain and then invoking the following
statement proved in [CommAlg, 15.4.3]:

Theorem 30.2.1. Let A be a Noetherian domain. Then A is normal if and only
if the following two statements hold:

(a) If P is a ht 1 prime ideal, then AP is a DVR.
(b) If a ̸= 0, every P ∈ Ass(A/(a)) has ht 1.

This would prove the theorem, because for a local Noetherian domain we have
seen that (a) is a restatement of R1, and (b) is a restatement of S2. However, we
do not know why R1 + S2 implies that A is a domain, so we cannot use just this
theorem, and instead we must follow the argument of [Mat2, 23.8].



MATH 603: INTRODUCTION TO COMMUTATIVE ALGEBRA 91

First assume that A is a normal Noetherian local ring; hence A is a domain.
Suppose P has ht(P ) = 1. Then AP is a normal Noetherian local ring of dimension
1; hence it is a DVR, thus regular (cf. [CommAlg, 15.1.1]).

Next we want to prove S2 holds. We need to check the conditions of Lemma
30.1.4. Since A is reduced, S1 holds. Let P ⊇ (a) where a is a non 0-divisor and
P/(a) ∈ Ass(A/(a)). We need to check that ht(P ) = 1. This follows from Theorem
30.2.1(b).

Conversely, we assume A satisfies R1 + S2. Here since we do not know a priori
that A is a domain, we follow [Mat2, 23.8] closely. Since A satisfies R0 + S1, it is
reduced. Let K be the ring of total fractions of A, and let P1, . . . , Pr be the minimal
primes, so that (0) = P1 ∩ · · · ∩Pr, which is a shortest primary decomposition. Let
S = A\ ∪i Pi (=non 0-divisors), and let Si = A\Pi; then Ki := S−1i A = APi is

regular of dimension 0 hence is a field Ki, and the natural map S−1A→
∏
i S
−1
i A

gives an isomorphism

K
∼→

∏
i

Ki.

Note that Ki = Frac(A/Pi).
First we show that A is integrally closed in K. Suppose that we have a relation

in K of the form

(a/b)n + c1(a/b)
n−1 + · · ·+ cn = 0

with a, b, ci ∈ A and b ∈ S. Using that A ↪→ K, this yields the relation in A

an +

n∑
i=1

cia
n−ibi = 0.

Let P be such that ht(P ) = 1; then by R1, AP is regular, therefore normal, so that
aP ∈ bPAP . Now b ∈ S, so that by S2 (using Lemma 30.1.4) all the prime divisors
of (b) have height 1. Thus if (b) = Q1∩· · ·∩Qm is a shortest primary decomposition
and pj =

√
Qj , then ht(pj) = 1 for all j and a ∈ bApj

∩ A = (Qj)pj
∩ A = Qj for

all j, and hence a ∈ bA, so that a/b ∈ A. We used here that (Qi)pj
= Apj

for i ̸= j.

Now the idempotents ei ∈ Ki satisfy e
2
i − ei = 0, hence ei ∈ A for each i. This

together with
∑
i ei = 1 implies that A = Ae1×· · ·×Aer. Since A is local, we must

have r = 1, which means that A is a domain, and thus by the above argument also
an integrally closed domain, i.e. A is normal. □

30.3. Cohen Macaulayness and reducedness. A Noetherian local ring (A,m)
which is CM need not be reduced (see Hochster’s notes for examples). However,
Will Sawin at Nisyros 2019 suggested that CM plus “generically reduced” should
mean that A is reduced. Let us make this precise. First “generically reduced”
should be taken to mean that AP is reduced for any minimal prime ideal P , in
other words since AP has only one prime ideal, that AP is a field, i.e. is regular.
Therefore “generically regular” is just the notion of R0. Recall that CM means
that Sn holds for all n. But then CM +R0 means S1 +R0, ie. reduced.

31. Kaplansky’s Theorem on Projective Modules

We will give an exposition of Kaplansky’s, following closely [Mat2, Thm. 2.5].

Theorem 31.0.1 (Kaplansky’s Theorem). Any projective module M over a local
ring (A,m) is free.
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31.1. Lemma on direct summands. This lemma works over any ring, but later
we shall apply it to free modules over a local ring.

Lemma 31.1.1. Let R be any ring, and let F be an R-module which is a direct sum
F =

⊕
λ∈ΛEλ, where each Eλ is countably-generated over R. Let M be any direct

summand of F . Then M is also a direct sum of countably-generated R-modules.

Proof. This proof uses transfinite induction to make the key construction. We
recommend the Wikipedia page on Transfinite Induction for a quick reference. It is
known that Transfinite Induction is a valid method of proof/recursive construction
if one accepts the ZFC axioms, as we do in this course.

31.1.1. Transfinite construction. Write F = M ⊕N . We construct a well-ordered
family of submodules {Fα} of F with the following properties:

(i) If α < β, then Fα ⊆ Fβ ,
(ii) F =

⋃
α Fα,

(iii) if α is a limiting ordinal then Fα =
⋃
β<α Fβ ,

(iv) Fα+1/Fα is countably generated,
(v) Fα =Mα ⊕Nα, where Mα =M ∩ Fα and Nα = N ∩ Fα;
(vi) each Fα is a direct sum of certain Eλ, the λ ranging over a certain subset

of Λ.

To construct the family, start by setting F0 = (0). Now for an ordinal α, we assume
Fβ has been constructed for all β < α. If α is a limiting ordinal, set Fα =

⋃
β<α Fβ .

If α = β + 1, let Q1 be an Eλ not contained in Fβ (we stop at β if F = Fβ).
Write down a generating set x11, x12, x13, . . . for Q1. For x11, let Q2 be the direct
sum of the finitely many Eλ needed to express both the M - and the N -factors of
x11 in the direct sum of those Eλ. Write down a generating set x21, x22, x23, . . . for
Q2. Then repeat the process for x12: let Q3 be the direct sum of the finitely many
Eλ needed to express the M - and N -factors of x12 in the direct sum of those Eλ;
then choose a generating set x31, x32, x33, . . . for Q3. Next apply the proceedure
to x21 to get Q4 and its generating set x41, x42, . . . . We build a matrix of elements
xij , by applying the procedure in the order x11, x12, x21, x13, x22, x31, x14, x23, . . . .
Now we let Fα be the module generated by Fβ and all the xij just constructed.

Exercise 31.1.2. Check that the {Fα} satisfies all the requirements (i-vi).

Hint: To prove (ii) one needs to use the strength of transfinite induction: by the
Axiom of Choice we can choose a well-ordering on Λ, and then we use the fact that
every well-ordered set is order-isomorphic to exactly one ordinal.

31.1.2. How M inherits properties. Using F =
⋃
α Fα and Fα = Mα ⊕ Nα, we

formally deduce M =
⋃
αMα. Also Mα+1 ⊇ Mα and as Mα is a direct summand

of F (check this!), it is also automatically a direct summand of Mα+1. Further, as

Fα+1/Fα =Mα+1/Mα ⊕Nα+1/Nα.

we see that Mα+1/Mα is countably-generated. Thus we can write

Mα+1 =Mα ⊕M ′α
where M ′α is countably generated. If α is a limiting ordinal, we have Mα =⋃
β<αMβ (check this!), so we set M ′α = 0. Now it follows that

M =
⊕
α

M ′α
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and this completes the proof of the lemma. □

31.2. Lemma on sufficiency of free direct summands. At this point we as-
sume we work over a local ring (A,m). The following does not involve countability
at all.

Lemma 31.2.1. Let M be a projective module over A, and let x ∈ M . Then x is
contained in a finite free direct summand of M .

Proof. Write F = M ⊕N where F is free. Let {ui}i∈I be a basis for F such that
x has the minimum possible non-zero coordinates when expressed in terms of this
basis. Write (after renumbering) x = a1u1 + · · ·+ anun where all ai ̸= 0. For each
i we have

ai /∈
∑
j ̸=i

Aaj

since, if say an =
∑n−1

1 biai, then x =
∑n−1

1 ai(ui+ biun), which would violate the
choice of the basis {ui}.

Now for each i write ui = yi + zi with yi ∈M and zi ∈ N . Then

x =
∑

aiui =
∑

aiyi.

Writing yi =
∑n
j=1 cijuj + tj , with tj not involving u1, . . . , un, we get ai =∑m

j=1 ajcji. From the above remark, this means

1− cii ∈ m cij ∈ m, ∀j ̸= i.

It follows that the matrix (cij) has determinant not in m, hence is invertible in
Mn(A). Thus replacing u1, . . . , un by y1, . . . , yn in our original basis {ui}, we still
have a basis of F . And now

∑
iAyi is the desired finite free direct summand of F ,

hence also of M , containing x. □

31.3. Reduction to M countably generated. Recall M is an arbitrary projec-
tive A-module. To show it is free, we apply Lemma 31.1.1 to a free module F
which hasM as a direct summand. Obviously F satisfies the hypotheses of Lemma
31.1.1, so we see that M is a direct sum of countably generated modules Mα, and
these are all projective as well. Thus we may as well assume that M is countably
generated.

31.4. End of the proof. Since M is countably generated, choose a generating
set m1,m2, . . . , for M . By Lemma 31.2.1, we can find a free module F1 such
that m1 ∈ F1 and M = F1 ⊕M1; note M1 is a projective module. Let m′2 be
the M1-component of m2 with respect to this decomposition, and choose a free
module F2 containing m′2 with M1 = F2 ⊕M2. So M = F1 ⊕ F2 ⊕M2. Let m′3
be the M2-component in the corresponding decomposition of m3, and choose a free
direct summand F3 ⊂ M2 containing m′3. Continuing in this way, we see that
M = F1 ⊕ F2 ⊕ F3 ⊕ · · · , and hence M is free. □
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