NORMALITY AND COHEN-MACAULAYNESS
OF PARAHORIC LOCAL MODELS

BY THOMAS J. HAINES AND TIMO RICHARZ

ABSTRACT. We study the singularities of integral models of Shimura varieties and moduli stacks
of shtukas with parahoric level structure. More generally our results apply to the Pappas-Zhu and
Levin mixed characteristic parahoric local models, and to their equal characteristic analogues. For
any such local model we prove under minimal assumptions that the entire local model is normal
with reduced special fiber and, if p > 2, it is also Cohen-Macaulay. This proves a conjecture of
Pappas and Zhu, and shows that the integral models of Shimura varieties constructed by Kisin
and Pappas are Cohen-Macaulay as well.
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1. INTRODUCTION

Parahoric local models are flat projective schemes over a discrete valuation ring which are designed
to model the étale local structure in the bad reduction of Shimura varieties [KP18] or moduli stacks
of shtukas [AH19] with parahoric level structure. Thus, local models provide a tool to study the
singularities appearing in the reduction of these spaces. The subject dates back to early 1990’s,
starting with the work Deligne-Pappas [DP94], Chai-Norman [CN90, CN92| and de Jong [dJ93],
and was formalized in the book of Rapoport-Zink [RZ96]. For further details and references, we
refer to the survey of Pappas, Rapoport and Smithling [PRS13].

The simplest example is the case of the classical modular curve Xo(p) with T'g(p)-level structure.
In this case, the local model is a ]P’%p blown up in the origin of the special fiber ]P’%Fp. This models the
reduction modulo p of X(p), which is visualized as the famous picture of two irreducible components
crossing transversally at the supersingular points.

In a breakthrough, a group theoretic construction for parahoric local models in mixed character-
istic was given by Pappas-Zhu [PZ13]: fix a local model triple (G, {u}, K) where G is a reductive
group over Q,, K C G(Q,) is a parahoric subgroup and {u} is a (not necessarily minuscule) geo-
metric conjugacy class of one-parameter subgroups in G. Under a tamely ramified hypothesis on G
which was further relaxed by Levin [Lev16], Pappas and Zhu construct a flat projective Z,-scheme
M,y = MG, {u},K) called the (parahoric) local model. Assume now that p does not divide the order
of m1(Gder), .., the case G = PGL,, and p|n is excluded. Then it is shown in [PZ13] (cf. also
[Lev16]) that My, is normal with reduced special fiber. Further, they conjecture that M,y is
Cohen-Macaulay, cf. [PZ13, Rmk. 9.5 (b)]. This conjecture was proven in [PZ13, Cor. 9.4] when K
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is very special (in which case the special fiber of My, is irreducible), and by He [Hel3] when the
group G is unramified, K is an Iwahori subgroup and {u} is minuscule. Also some explicit special
cases were treated earlier by Gortz (unpublished) following the method outlined in [Go01, 4.5.1].

The purpose of this article is to show, for a general local model triple (G,{u}, K) as above
under minimal assumptions (cf. Remark 2.4 below), that the local model My} itself is normal with
reduced special fiber, and, if p > 2, also that M, is Cohen-Macaulay, cf. Theorem 2.1 below.
This recovers and extends the results on the geometry of local models obtained in [PZ13] and
[Lev16]. In particular, under these assumptions we obtain the Cohen-Macaulayness of My, for all
not necessarily minuscule {u}; this answers a question of He, and seems to be new even in the case
of G = GLy (where the assumption p > 2 alone is sufficient). Theorem 2.1 also seems to be the first
Cohen-Macaulayness result which applies to ramified groups and Iwahori level structure.

Our proof of normality follows the original argument of [PZ13] relying on the Coherence Con-
jecture proven by Zhu [Zhul4]. The assumption on the normality of Schubert varieties inside the
p-admissible locus is satisfied whenever p 1 |71 (Gqer)| by Pappas-Rapoport [PR08], but also in other
cases of interest, e.g., whenever K is an Iwahori subgroup and i € X,(T); is minuscule for the
échelonnage root system (e.g. G is unramified and p is minuscule for the absolute roots), cf. [HLR].
The proof of the Cohen-Macaulayness of My, is very different from the approaches in [Go01, 4.5.1]
and [Hel3]. Here we reduce the problem first to equal characteristic where we can use the result
[Zhul4, Thm. 6.5] (which assumes p > 2) to apply the powerful method of Frobenius splittings on the
whole local model. This reduces us to the situation of a scheme over a finite field whose complement
along some divisor D is Cohen-Macaulay, and which is Frobenius split relative to D. Surprisingly
(at least for the authors), the Cohen-Macaulayness at points lying on D then follows from a very
nice homological algebra lemma which we found in the work of Blickle-Schwede [BS13, Ex. 5.4]
(cf. Proposition 5.5 below). Let us note that Cass [Ca] pursues a similar strategy to show that the
equicharacteristic local models for absolutely almost simple groups are even strongly F-regular.

2. MAIN RESULT

Let p € Z~ be a prime number. Let F' be a non-archimedean local field with ring of integers O
and finite residue field k = kp of characteristic p, i.e. either F//Q, is a finite extension or F' =~ k((t))
is a local function field. We fix a separable closure F/F.

We fix a triple (G, {u}, Ge) where G is a connected reductive F-group, {u} a (not necessarily
minuscule) conjugacy class of geometric cocharacters defined over a finite separable extension E/F
and Gy is a parahoric Op-group scheme associated with some facet f C B(G, F).

We put the following assumption on G. If F/Q,, we assume that G ~ Resg,r(G1) where
K/F is a finite extension, and G is a connected reductive K-group which splits over a tamely
ramified extension. If F' ~ k((t)), we assume that in the simply connected cover of the derived group
Gy >~ Hje s Resp, #(G;) each absolutely almost simple factor G, splits over a tamely ramified
extension of Fj. Here J is a finite index set, and each F/F is a finite separable field extension.

Attached to the triple (G, {u}, Gs) is the flat projective Og-scheme

My = MG {u},6¢)

called the (flat) local model. It is defined in [PZ13, Lev16] (cf. also [HRb, §4]) if F/Q,, and in

[Zhul4, Ril6] if F' ~ k((t)). The generic fiber is the Schubert variety Gré{“} — Spec(F) in the affine
Grassmannian of G ®p E associated with the class {u}. The special fiber is equidimensional, but
not irreducible in general, and is equipped with a closed embedding

(2.1) M{H} = My Qop kg — Heo g Ok ki,

where kg is the residue field of E. Further, if F ~ k((t)), we have (G, f") = (G, f). If F/Q,, the
pair (G®,£") is an equal characteristic analogue over a local function field k((u)) of the pair (G, f;)
where f; is the facet corresponding to f under Z(G, F) ~ B(G1, K), cf. §4.1.1 for details. By [HRb,
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Thm. 5.14], with no restriction on p, we have for the reduced geometric special fiber

(M{#} Qkp %)red = A(G, {,u}),

where A(G, {u}) C Fle» ¢» @y, k denotes the union of the (£, £”)-Schubert varieties indexed by the
{p}-admissible set of Kottwitz-Rapoport.

The following theorem proves results on the geometry of local models under weaker hypotheses
than the hypothesis p 1 |71 (Gger)| in [PZ13, Thm. 9.3] and [Lev16, Thm. 4.3.2]. We recover as very
special cases the results of [PZ13] in this direction and those of [Hel3], which treats unramified
groups, Iwahori level, and minuscule {z}".

Theorem 2.1. Let (G, {u}, Gr) be as above, and assume that Gré{g} is normal and that all maximal

(£°, £°)-Schubert varieties inside A(G,{u}) are normal (see Remark 2.2 i) below for situations when
this is satisfied).
i) The special fiber M{#} is geometrically reduced. More precisely, as closed subschemes of
Fleo o Qr k, one has
My ®kp b = A(G, {n}).
Further, each irreducible component of M{u} ® k is normal, Cohen-Macaulay, with only
rational singularities, and Frobenius split.
ii) The local model M = My, is normal and, if p > 2, also Cohen-Macaulay with dualizing
sheaf given by the double dual of the top differentials

wr = (g0,)""
where d = dim(MEg) is the dimension of the generic fiber.

Remark 2.2. i) In view of the results in [KP18] (resp. [AH19, §3]) the corresponding integral models
of Shimura varieties (resp. moduli stacks of shtukas) with parahoric level structure are normal and
Cohen-Macaulay as well.

ii) The Schubert variety Gré{g} and all Schubert varieties inside A(G, {p}) are known to be normal

o if p { |11(Gaer)| and G ~ Resg,p(G1) with G1 tamely ramified as above (without any
restrictions on {p}), cf. [PR0O8, Thm. 8.4]; [HRb, Thm. 5.14]; end of §3.5);

o if i € X, (T); is minuscule for the échelonnage root system, and the facet f contains a special
vertex, e.g., G is unramified, G¢(Op) an Iwahori subgroup and g is minuscule (without any
restrictions on p), cf. [HLR]. In general, i being minuscule for the échelonnage roots implies
that p is minuscule for the absolute roots, by [Hail8, §4.3] (but not conversely).

We also remark that when char(F) = 0, Gré{g } is known to be normal. However, when p | 171(Ger)|s

there are non-normal Schubert varieties in Flgs g, even for G* = PGLy over Fa, cf. [HLR].

Thus, Theorem 2.11) gives new cases of normal local models with reduced special fiber. The
proof follows the original argument of Pappas-Zhu, using as a key input the Coherence Conjecture
proved by Zhu [Zhul4] (cf. also [PZ13, §9.2.2, (9.19)]). The application of the Coherence Conjecture
is justified by our assumption on the normality of Schubert varieties inside A(G, {u}).

For ii), the normality of Mjy,, is an immediate consequence of i) by [PZ13, Prop. 9.2]. As
mentioned above, the Cohen-Macaulayness of M,, can be deduced from Proposition 5.5 below
combined with the well-known theorem of Zhu [Zhul4, Thm. 6.5] which is also the key to the
Coherence Conjecture. In particular, our method avoids using any finer geometric structure of the
admissible locus A(G, {¢}) as for example in [Go01, §4.5.1] or [Hel3].

Corollary 2.3. Let (G',{p'}, Ge') — (G, {1}, Ge) a map of local model triples as above which induces
G4 ~ Gaq on adjoint groups. Then the induced map on local models

M (wy,6e) = Mcquy,gr) ®0p O,

1But we note that [Hel3] does not require the assumption p > 2.
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is a finite, birational universal homeomorphism where E'/F denotes the reflex field of {i'}, natu-
rally an overfield of E. In particular, if M(G .},g¢) is normal (see Theorem 2.1), this map is an
isomorphism.

Remark 2.4. The assumption that Mg ,},6,) is normal is equivalent to the assumption that
normal. One implication is given by Theorem 2.1 ii). For the other implication, apply Corollary 2.3
to a z-extension G’ of G with G}, = G._ and invoke Remark 2.2 ii) for G’. Thus the assumption on
the normality of Schubert varieties appearing in the special fiber is optimal in the following sense: if
one of the maximal (f°, f)-Schubert varieties inside A(G, {u}) is not normal, then the whole local
model MG {,},6¢) is not normal.

its generic fiber Gr is normal and all maximal (f°, f)-Schubert varieties inside A(G, {u}) are

The proof of Corollary 2.3 is given in §4.3 below. This relates to the modified local models
Mg°(G,{p}) of [HPR, §2.6]. For an appropriate choice of z-extension (G, /i) — (Gad, ftad) With

Gger = Gy and parahoric group G corresponding to G, [HPR, §2.6] defines

Mg*(G,{1})

The raison d’étre for Mg°(G, {u}) is that it should possess the geometric properties which can fail
to hold for M(¢ ¢,1,6) when p | |71 (Gqer)|- This is indeed the case.

def
= M6 ®osp,, Op-

Corollary 2.5. The modified local model M§“(G, {u}) is normal with reduced special fiber, and is
also Cohen-Macaulay if p > 2.

As |71 (Gaer)| = 1, Corollary 2.5 is immediate from Theorem 2.1 and Remark 2.2. Only the
Cohen-Macaulayness is new: the other statements were observed in [HPR, Rmk. 2.9]. Corollaries
2.3 and 2.5 imply that the modified local model Mi§°(G, {}) always identifies with the normalization
of M(a ¢u},6)- The Kisin-Pappas integral models Sk (G, X) of Shimura varieties in [KP18] can be
defined when p > 2 (even when p | |71(G4er)|), and are always “locally modeled” by associated
modified local models Mg®(G, {u}) (cf. [HPR, Thm. 3.1]). Therefore, Corollary 2.5 implies that all
Kisin-Pappas integral models are Cohen-Macaulay.
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Maryland for financial and logistical support. Also we heartily thank Karl Schwede for explaining
[BS13, Ex. 5.4] to us, Ulrich Gortz for interesting email exchanges, and Ofer Gabber and the referee
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3. PRELIMINARIES ON SCHUBERT VARIETIES

We introduce temporary notation for use within §3. Let k be an algebraically closed field, and
let I = k(t) denote the Laurent series field. Let G be a connected reductive F-group. Let
f,f' C B(G, F) be facets of the Bruhat-Tits building. Let G¢ (resp. Gg/) be the associated parahoric
Op-group scheme. The loop group LG (resp. LTGe) is the functor on the category of k-algebras
R defined by LG(R) = G(R(t)) (resp. LTGe(R) = Ge(R[t])). Then L*Ge C LG is a subgroup
functor, and the twisted affine flag variety is the étale quotient

Far ¥ LG/L G,

which is representable by an ind-projective k-ind-scheme. Associated with an element w € LG(k),
we define the (f’,f)-Schubert variety S, = Sy, (f’,f) C g ¢ as the reduced LT Gg-orbit closure of
w - e where e € Flg ¢ denotes the base point.

Let Gsc — Gger C G denote the simply connected cover of the derived group. Then Gy, ~
HjeJ Resp,/p(Gj) where J is a finite index set, each Fj/F is a finite separable field extension,
and each G is an absolutely almost simple, simply connected, reductive Fj-group that splits over
a tamely ramified extension. Under the induced map on buildings #(Gsc, F) — B(G, F) the



NORMALITY AND COHEN-MACAULAYNESS 5

facets correspond bijectively to each other, and we denote by f; C #(G;, F;) = #(Resy, ) r(G;), F)
(cf. [HRb, Prop. 4.6]) the factor corresponding to j € J of the facet f C Z(G, F).

Proposition 3.1. Let S, = Sy, (f', ) be any Schubert variety.

i) The normalization S — Sy is a finite birational universal homeomorphism. Further, S,,
is also Cohen-Macaulay, with only rational singularities, and Frobenius split if char(k) > 0.

ii) For each j € J, there exists an alcove a; C HB(G;, F;) containing f; in its closure and an
element w; € LG (k) together with an isomorphism of k-schemes

Sw = ngja

JjeJ
where each Swj is the normalization of a (aj,f;)-Schubert variety S,, = Syu,(a;,f;) C
Ha, ;- Further, if Sy = Sy is normal, then each Sw], = Sw, 18 normal as well.

Part (i) implies that S, always is geometrically unibranch, and that the normalization Sy — S
induces an equivalence of categories of (pro-)étale sheaves, cf. [StaPro, 04DY, 09AB]. Part (ii)
expresses the normalization S, in terms of Schubert varieties for the simply connected absolutely
almost simple factors G;. It is ultimately used to reduce the proof of Theorem 2.1 to such groups.
In view of [HLR] passing to the normalizations is strictly necessary in order to have the isomorphism
in (ii) in general.

We first reduce the proof of Proposition 3.1 to the case where f’ = a is an alcove, and where
Sw = Sw(a, f) is contained in the neutral component F¢ ¢ C Flg s, cf. §3.1. The proof of part i) is
given in §3.3, and of part ii) in §3.6 below.

3.1. Alcove reduction. By [BT72, Thm 7.4.18 (i)], there exists a maximal F-split torus S C G
such that f,f are both contained in the apartment (G, S, F). The centralizer T = Cg(S) is a
maximal torus (because G is quasi-split over F' by Steinberg’s theorem), and we denote by N =
N¢(S) the normalizer. Let W = N(F)/T(O) be the Iwahori-Weyl group (or extended affine
Weyl group) where T denotes the neutral component of the 1ft Néron model of T. We also denote
We = (LT Ge(k) N N(F))/T(OF), and likewise Wg.

3.1.1. Step 1. As W acts transitively on the set of alcoves in <7 (G, S, F), there exists an n € N(F)
such that n - f and f are contained in the closure of the same alcove. Further, left multiplication
by n on Fg ¢ induces an isomorphism

Sw(f' ) = Spw(n- ),

where we use that Sy,.,(n - f’,f) denotes the reduced orbit closure of n-w € LG (k) under the group
LtG,.¢ = nLtGpn~!. Hence, we may assume the facets f,f’ are in the closure of a single alcove

aCc #(G,S,F).
3.1.2. Step 2. By [HRO8, Prop 8], there exists an element wy € W such that
LY Ge (k) - w- LY Ge(k) = LY Ger (k) - 1o - LT Ge (),

where 1wy € N(F) denotes any representative of wy. This implies the equality S, (f',f) = S
of Schubert varieties. Hence, we reduce to the case where w =g € N(F).

(', 1)

0

3.1.3. Step 3. Corresponding to the choice of a, we have the decomposition W = Wy x Q where
Wat = Waf(i) is the affine Weyl group for the échelonnage root system ¥, and Q = Q, denotes the
stabilizer of a in W, cf. [HRO8, Prop 12 ff.]. Thus W has the structure of a quasi-Coxeter group.
Let wg € Weg - w - Wg be the unique left f’-maximal element among all right f-minimal elements,
cf. [Ril3, Lem 1.6 ii)]. This element gives rise to the unique open Iwahori orbit in S,,(f’,f). More
precisely, for any representative wg € N(F') of wg, we have Sy, (f',f) = Sy, (a,f), cf. [Ril3, Proof of
Prop 2.8]. Hence, we reduce further to the case where f' = a.
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3.1.4. Step 4. The class of w in W can be written uniquely in the form 7 - war with way € Wy,
7 € Q. Left multiplication by any lift 7 € N(F) induces an isomorphism of Schubert varieties
S (a, ) = Sy(a, f). Hence, we reduce to the case where 7 = 1, i.e., w = w,s € Wys. This means
that S, (a,f) is contained in the neutral component F¢ ¢ C g ¢ (see [PROS, §5]).

Corollary 3.2. If the statement of Proposition 3.1 holds for the Schubert varieties S, (a,f) for all
mazimal split F-tori S C G, one choice of alcove a C &/ (G, S, F) containing £ in its closure and all
w € Wat, then Proposition 3.1 holds for the Schubert varieties Sy, (f',£) for all facets £,£ C B(G, F)
and all w € LG(k).

Proof. The corollary is immediate from Steps 1-4 above. Note that it is enough to show Proposition
3.1 ii) for a single alcove f’ = a C & (G, S, F) because Wyt acts (simply) transitively on these
alcoves. (]

3.2. A lemma on orbits. The following lemma helps to control orbits in partial affine flag varieties.

Lemma 3.3. Let w € W be right f-minimal. Then the natural map
(3.1) LTGa-w-LVYGa/L1YGa — LTGa-w- LGy /LT G
is an isomorphism.

Proof. In the split case, this was proved in [HRa, Lem. 4.2] using negative loop groups. In the
general case the required properties of negative loop groups are not yet available, so we give a
different approach. Denote B = LtG, and P = LTG¢. Recall that (LG/P)(k) = LG(k)/P(k),
cf.e.g. [PRO8, Thm. 1.4]. The map ¢: BwB/B — BwP/P is clearly surjective on k-points. To see
that it is injective on k-points one uses the decomposition P/B = ][, cy, Bw'B/B (cf. [Ril3,
Rem 2.9]) together with the fact [(w - w') = l(w) + I(w’) for all w’ € W¢ which holds by the right
f-minimality. Hence, the map is bijective on k-points, and, using Zariski’s Main Theorem, one can
show it is enough to prove that ¢ is smooth. Let wg € Wg be the longest element. Consider the
commutative diagram of k-schemes

BwB xB BuwyB/B - BwP/B
Prll lpr
BwB/B —*— BwP/P.

The inclusion BwoB/B C P/B is an open immersion. As w is assumed to be right f-minimal, we
have I(w - wg) = l(w) + I(wp), and standard properties of partial Demazure resolutions show that
7 is an open immersion. We claim that both projections pr; and pr are smooth and surjective;
in that case [StaPro, 02K5] shows that the morphism BwB/B — BwP/P is smooth as well. The
assertion for both pr and pr; results from the following general lemma applied with P = “smooth”
(using étale descent [StaPro, 02VL]). We note that working with étale sheaves is justified by [PROS,
Thm. 1.4] (cf. also [RS19, Prop. A.4.9] and [HRa, pf. of Lem. 4.9]). O

Lemma 3.4. Let S be a scheme. Let X, Y be étale sheaves on AffSch/S (affine schemes equipped
with a map to S), and let G be an étale sheaf of groups over S. Suppose X (resp.Y) carries a
right (resp. left) G-action such that G acts freely on X. Let P be a property of maps of algebraic
spaces which is stable under base change, and which is étale local on the target. If Y — S is an
algebraic space (resp. and has property P), then the canonical projection pry : X x¢Y — X/G is
representable (resp. and has property P).

Proof. We claim that there is a Cartesian diagram of étale sheaves

XxY —XxCY

| Jom

X X/G,
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where X — X/G and X xY — X are the canonical projections. The claim implies the repre-
sentability of pr; by [LMBO0O0, Cor. (1.6.3)] applied to the epimorphism X — X/G using that it is
obvious for X x Y — X (cf. [LMBO00, Rem. (1.5.1)]). Also this shows that if Y — S has property
‘P, then pr; has property P. To prove the claim we note that the map

X XY — X Xx/G.pr, (X xCY), (z,9) — (x, [z,9])

is an isomorphism of étale sheaves. This is elementary to check using the freeness of the G-action
on X. O

3.3. Proof of Proposition 3.1 i). Consider a general Schubert variety S, (f’,f) for some f',f C
HB(G,F), w € LG(k). By Corollary 3.2, there exist a maximal F-split torus S C G, an alcove
fcac #(G,S, F), and an element was € Wye such that Sy, (f',f) ~ S, ,(a, f) as k-schemes. Thus,
we may and do assume that f’ = a and that w = w,s € Wy is right f-minimal by Lemma 3.3.
Further, if f = a, then Proposition 3.1 i) is proven in [PR0O8, Prop. 9.7] for tamely ramified groups,
and we explain how to extend the arguments to the general case. Let m: Flga — Flc ¢ be the
canonical projection. Denote by wg € w - W the maximal length representative inside the coset.

Then 7r~_1(5w(~a7 f)) = Su,(a,a). Consider the normalization Sy, := Sy(a,f) — Sy,(a,f) = Sy,
(resp. Sy = Suw,(a,a) = Sy, (a,a) =: Sy,) which sits in a commutative diagram

Swo — Swg
p

|

Sy — S

The right vertical map is an étale locally trivial fibration with typical fiber the homogenous space
Y := LtGe/LT G, (cf. [HRa, Lem.4.9]), and thus the diagram is Cartesian because the property
of being normal is local in the smooth topology [StaPro, 0347]. By [PRO8, Prop. 9.7 a)], the top
horizontal map is a finite birational universal homeomorphism, and so is the bottom horizontal map
because all properties are fpqc local on the target [StaPro, 02LA, 02L4, 0CEX]. Further, S’wo is
Cohen-Macaulay by [PROS, Prop. 9.7 d)], and hence so is S, by smoothness of p. For the property
“Frobenius split if char(k) > 0”7 (resp. “has rational singularities”), we note first that the counit of
the adjunction

(3.2) Oz, — p(P"03,) = p(Og, )

wo
is an isomorphism. Indeed, by étale descent for coherent sheaves we may argue locally in the
étale topology. Using flat base change [StaPro, 02KH], it remains to prove (3.2) for maps of type
pr: Y x X — X for some k-variety X. As the push forward of Oy along the structure map
Y — Spec(k) is Oy (cf. [StaPro, 0AYS]), the assertion is immediate by flat base change. Further,
it is clear that RIp.(Oy) = 0 when ¢ > 0, for example by a very special case of the Borel-Bott-
Weil theorem (Y is isomorphic to a classical flag variety over k, cf. [HRa, §4.2.2]). If k is a field of
characteristic p > 0, then gwo is Frobenius split by [PR08, Prop. 9.7 c)|, and the push forward of a
splitting defines a splitting of S,, by using (3.2).

It remains to construct a rational resolution onto S,. Recall that by [PROS, Prop. 9.7 b)] the
natural closed immersion Sy, (a,a) C Sy, (a,a) = Sy, lifts to a closed immersion $2 := S, (a,a) C
§w0~ Let py = plga: S;'j‘) — SYLU(a7 f) = S, be the restriction. Fix a reduced decomposition
w=81"... S, into éuimple reflections. The Demazure resolution D(w) — 52 factors through the
normalization, and we claim that the composition

f:D(w) =% 82 24 G,
is a rational resolution, i.e., Rf+Op() is quasi-isomorphic to Og (in which case we call f (co-
homologically) trivial), and R%wp,) = 0 for all ¢ > 0, where wp(,) = Q%(w)/k, n = l(w). It is

enough to show that f is trivial. Indeed, if char(k) = 0, Riwp(,) = 0 for ¢ > 0 would follow from
the Grauert-Riemenschneider vanishing theorem; if char(k) = p > 0, as D(w) is Frobenius split
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(cf. [GoO01, Prop 3.20]) the vanishing would follow from the Grauert-Riemenschneider vanishing for
Frobenius split varieties, cf. [MvdK92, Thm. 1.2]. Further note that both morphisms f = p,, o m,
are surjective and birational; for p,, birational, use Lemma 3.3 and recall that w is chosen to be
right f-minimal. Therefore f is a resolution of singularities. Since S,, is normal and integral, the
Stein factorization of f yields f.Op.) = (’)sw. It remains to prove that R?f.(Op()) = 0 for ¢ > 0.

Extend the reduced decomposition of w to a reduced decomposition of wy, and consider the
following diagram

pr’lu

G — P G
Here the square is Cartesian, pr,, is the natural projection (onto the first i(w) factors), and the
dotted arrow h exists because f o pr,, = p o my,. Since m,, and g are both birational, so is h. We
claim that g is trivial. By the Leray spectral sequence it suffices to prove that m,,, and h are trivial.
The triviality of 7, is proven in [PR08, Prop.9.7(d)]. For h, note that D = D,, XY is the twisted
product, and likewise D(wo) = D(w)xD(v) for the decomposition wg = w - v with v € W¢. Under
these identifications the map h decomposes as h = idxhg where id: D(w) — D(w) is the identity,
and ho: D(v) — Y is the Demazure resolution. Locally in the smooth topology on D(w)", the
map h is isomorphic to the direct product id x hg. Using the vanishing of R%h¢ .(Op(,)) for ¢ >0
(loc. cit. applied to hg) and flat base change, we get the vanishing of R, (Op(w,)) for ¢ > 0. Also,
hi(Op(we)) = Opo(w) by the Stein factorization of h, as D”(w) is smooth and integral and h is
birational. This shows that &, hence g, is trivial. Now the required vanishing of R?f,(Op(.,)) for
q > 0 follows from flat base change applied to the Cartesian square. This finishes the proof.

3.4. Central extensions. Let ¢: G’ — G be a map of (connected) reductive F-groups which
induces an isomorphism on adjoint groups G.4 =~ Gaq (or equivalently on simply connected groups
G.. ~ Gg). Then S’ := ¢~ 1(S)° C ¢~ Y(T)° =: T’ is a maximal F-split torus contained in a
maximal torus. This induces a map on apartments «7(G’,S’, F) — &/(G, S, F) under which the
facets correspond bijectively to each other. We denote the image of f by the same letter. The map
G’ — G extends to a map on parahoric group schemes G’ := G; — G =: G, and hence to a map on
twisted partial affine flag varieties Flg/ ¢ — Flg¢. We are interested in comparing their Schubert
varieties.
There is a natural map on Iwahori-Weyl groups

W' =w(G, S, F)— W(G,S,F) =W,

which is compatible with the action on the apartments «7(G’,S’, F) — «/(G, S, F). For w' € W’
denote by w € W its image. As the map Flg/ ¢ — Flg ¢ is equivariant compatibly with the map
LTG" — LG, we get a map of projective k-varieties

(33) Sw’ = Sw’ (a7 f) — Sw(a7 f) = Sw'

Proposition 3.5. For each w' € W', the map (3.3) is a finite birational universal homeomorphism,
and induces an isomorphism on the normalizations.

We need some preparation. The Iwahori-Weyl groups are equipped with a Bruhat order < and
a length function [ according to the choice of a.

Lemma 3.6. The map W' — W induces an isomorphism of affine Weyl groups compatible with the
simple reflections, and thus compatible with < and .
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Proof. Let Wy, be the Iwahori-Weyl group associated to the simply connected cover ¢ : Gsc — Gder
and the torus Ss. := ¥ 71(S N Gyer)?. By [BT84, 5.2.10], Wy, can be identified with the affine Weyl
group for (G, S,a) as well as (G', 5, a), cf. also [HRO8, Prop. 13]. O

We denote the affine Weyl Was of W, resp. W’ by the same symbol.
Corollary 3.7. For each w' € W', the map W' — W induces a bijection
WeW |v<uw}={veW|v<w}
under which the right £-minimal elements correspond to each other.

Proof. Write w' = 7' - w) according to W’ = Q' x Wy After left translation by (/)" for any
representative 7/ € Normg/ (S’)(F) of 7/, we may assume 7/ = 1. Lemma 3.6 implies the corollary.
O

Lemma 3.8. For each w' € W', the map
LYG, -w' - LYG' /LG — LVGa-w-LTG/LTG
s an isomorphism.

Proof. By the proof of Corollary 3.7, we may assume that w’ € Wy, and that w’ is right f-minimal.
By Lemma 3.3, we may further assume that f = a is the alcove. Let w’ = s} ... s/, be a reduced
decomposition into simple reflections. By Lemma 3.6, the decomposition w = sy -...-s, is a reduced
decomposition of w. Let m, : D(w') — Sy (resp. my: D(w) — S,,) be the Demazure resolution
associated with the reduced decomposition, cf. [PR08, Prop 8.8]. There is a commutative diagram
of k-schemes

D(w') —— D(w)

T’ l l T

Sy —— Su,

where the vertical maps are birational and isomorphisms onto the open cells. Hence, it is enough
to show that D(w’) — D(w) is an isomorphism. By induction on I(w’) = n, we reduce to the case
w’ = ¢’ (and hence w = s) is a simple reflection. In this case, m, and 7, are isomorphisms, and
we have to show that P} ~ S, — S, ~ P} is an isomorphism. The crucial observation is now that
the map G’ — G on Bruhat-Tits groups schemes is the identity on the Op-extension of the root
subgroups (cf. [BT84, 4.6.3, 4.6.7]). Hence, the map S, — S,, restricted to the open cells A} C P}
is the identity. The lemma follows. O

Proof of Proposition 3.5. The LG/ -orbits (resp. Lt Ga-orbits) in S, (resp. S,,) correspond under
the map S, — S, bijectively to each other, cf. Corollary 3.7. Hence, Lemma 3.8 implies that the
map S, — S, is birational and bijective on k-points. As being quasi-finite and proper implies
finite, the map in question must be finite. To see that the map is a universal homeomorphism
consider the commutative diagram of k-schemes

Su)’ — Su)

L

Sw’ — Sun

where the vertical maps are the normalization morphisms. By Proposition 3.1 i), the vertical maps
are finite birational universal homeomorphisms. In particular, the map S,y — S, is a birational
bijective proper, hence finite, morphism of normal varieties, and therefore it is an isomorphism.
This shows that the map S,,» — S is a universal homeomorphism, and the proposition follows. [
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3.5. Simple reduction. There is a finite index set J, and an isomorphism of F-groups

Gse = H ReSFj/F(Gj)a

JeJ

where each F;/F is a finite separable extension, and each G is an absolutely almost simple, simply
connected Fj-group. Under the identification of buildings #(Gsc, F) = [[;c; #(Gj, F;) the facet f
corresponds to facets f; C #(G;, F;) for each j € J.

Lemma 3.9. There is an isomorphism of k-ind-schemes

‘FeGscaf = H‘FZGJij
JjeJ

under which the Schubert varieties correspond isomorphically to each other.

Proof. Tt is enough to treat the following two cases separatedly.

Products. If G = G x G is a direct product of two F-groups, then we have a direct product of
affine Weyl groups Was = War1 X Wag 2. Now, for each w = (w1, ws) € Wy, there is an equality on
Schubert varieties S,, = Sy, X Sy, which is easy to prove. In particular, if both S,,, and S, are
normal, then S, is normal by [StaPro, 06DG]J.

Restriction of scalars. Let G = Resp//p(G") where F'/F is a finite separable extension, and G’
is an F’-group. By [HRb, Prop 4.7], we have G¢ = Reso,, /0, (G¢) where we use the identification
B(G,F) = B(G', F"). Now choose? a uniformizer u € Q. Since k is algebraically closed, we have
Op» = ku] resp. F' = k((u)). For any k-algebra R, we have R[t]®0, O = R[u] resp. R(t)@pF' =
R((u)). This gives an equality on loop groups LTGs = L*G resp. LG = LG’'. Hence, there is an
equality on twisted affine flag varieties F¢¢ ¢ = F{gs ¢ under which the Schubert varieties correspond
to each other. (]

3.6. Proof of Proposition 3.1 ii). Consider a general Schubert variety S, (', f) for some ', f C
HB(G,F), w € LG(k). By Corollary 3.2, there exist a maximal F-split torus S C G, an alcove
f cac (G,S F), and an element wys € Wyr such that S, (f',f) ~ S, . (a,f) as k-schemes.
Proposition 3.5 applied to Gsc — G shows that the normalization S'waf(a, f) is isomorphic to the
normalization of a Schubert variety inside

Ha,,. £ =~ H}—fcj,fj,
JjEJ
cf. Lemma 3.9. Thus, S,,,(a,f) ~ [es S, (a;,f;) for some w; € LG;(k). Now assume that
Sw =~ Sw,(a,f) =: Sy, is normal. It remains to prove that each variety S,, := Su,(a;,f;) is
normal as well. First note that the canonical map [[;c; Sw; — Sw,, must be an isomorphism by
Proposition 3.5, so that the product of the varieties S,,; is normal. Fix some jo € J, and consider

Susy X T Sws = Suwsy ¥ [1 Suss
J#jo J#jo
where S'wjo — Swjo denotes the normalization. By Proposition 3.1 i), this map is finite and bi-

rational. As the target is normal, it must be an isomorphism, so that Swio — Swj0 must be an
isomorphism (because being an isomorphism is fpqc local on the target). This proves Proposition
3.1 ii). O

2The result is independent of the choice of the uniformizers u, resp. ¢t because loop groups can be defined without
a reference to them, cf. [BL94, §(1.3) footnote 2] (or [Ril3, §2]).
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4. REDUCEDNESS OF SPECIAL FIBERS OF LOCAL MODELS

In this section we start with the proofs of our main results stated in §2. It is worth to note that
the mixed characteristic case will ultimately be reduced to the equal characteristic case which is
easier to handle due to to the presence of Frobenius splittings. Also, recall the slightly different
assumptions on the reductive group G in mixed and equal characteristic given in §2.

4.1. Weil restricted local models in mixed characteristic. We now switch back to the notation
of §2. We first treat the case where F//Q, is a mixed characteristic local field. Recall that in this
case we are assuming G = Resg/p(G1) where K/F is a finite extension with residue field & of
characteristic p > 0, and G; is a tamely ramified connected reductive K-group. To simplify the
discussion and notation we first assume that K/F is totally ramified. The extension to the more
general case is easy and is explained in Remark 4.2 below. We fix a uniformizer w € K, and let
Q@ € Op[u] be its minimal polynomial (an Eisenstein polynomial). The reader who is only concerned
with Pappus-Zhu local models may take K = F' and G; = G throughout this discussion.

Under the identification B(G, F) = B(G1, K) (cf. [HRb, Prop. 4.6]), the facet f corresponds to
a facet denoted f;. We denote by G = Gf, the parahoric Og-group scheme of GG; associated with
fi. Then G := Reso, /0, (G1) is the parahoric Op-group scheme of G associated with f, cf. [HRb,
Cor. 4.8]. We let A; C G; be a maximal K-split torus whose apartment «7(G1, A1, K) contains f.

4.1.1. Recollections. Following the method of [PZ13, §3], a connected reductive O [u*]-group scheme
@G, is constructed in [Lev16, §3.1, Prop. 3.3] (cf. also [HRb, Prop. 4.10 i)]) together with an isomor-
phism

(41) Ql ®Op[ui],w—>w K ~ Gl-

We let A; C G, be the split Op[u*]-torus extending A; C G;. By [PZ13, §4.1.3], the isomorphism
(4.1) induces identifications of apartments

(4'2) %(le Ala K) = %(Ql,n((u))vél,n((u))v ’i((u)))v

for k = k, F. We denote by f} () the facet corresponding to f;. By [PZ13, Thm. 4.1] (cf. also
[Lev16, Thm. 3.3.3]), there exists a unique Op[u]-group scheme G, with the following three prop-
erties: a) the restriction of G, to Op[u®] is G;; b) the base change G, ®o . (u),usw Ok is G1; ) the
base change G, ®o,.[4 #(u)) is the parahoric x[u]-group scheme associated with the facet fi ,(y)
under (4.2) for k = k, F'. Note that the group scheme G, is already uniquely determined by property
a) and property c¢) with x = F by [PZ13, 4.2.1].

Following [Lev16, Def 4.1.1] (see also [HRD, §4.4] for how this fits into the general picture of
Beilinson-Drinfeld Grassmannians), we define the symbol Grg to be the functor on the category of
Op-algebras R given by the isomorphism classes of tuples (F, ) with

{]-' a G,-torsor on Spec(R[u]);

(4.3) . 0 o
a: Flspec(Rul[/a]) = F'lspec(Rlu][1/q]) & trivialization,

where FO denotes the trivial torsor. If Q = u — @, i.e., K = F, then Grg is the BD-Grassmannian
defined in [PZ13, 6.2.3; (6.11)]. Informally, we think about Grg as being the Beilinson-Drinfeld
Grassmannian associated with the parahoric Op-group scheme G.

By [Lev16, Thm. 4.2.11] (cf. also [HRb, Thm. 4.16]), the functor Grg is representable by an ind-
projective ind-scheme over Op. Its generic fiber is equivariantly (for the left action of the loop group)
isomorphic to the usual affine Grassmannian Grg formed using the parameter z := u — w € K|u].
Its special fiber is canonically isomorphic to the twisted affine flag variety ¢ ¢ where we denote

(44) Gb = Ql ®OF[7Li] k((u))’ fb = fl»k((“))'

Informally, we think about the k((u)-group G” as being a connected reductive group of the “same
type” as the K-group GG;. By the discussion above, it is equipped with an identification of apartments
A (G°, A k() = o (G, Ay, K) where A” := A, @ k((u)).
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Recall we fixed a conjugacy class {u} of geometric cocharacters in G with reflex field E/F.
This defines a closed subscheme Gré{“ b e Grg ®p E inside the affine Grassmannian which is a
(geometrically irreducible) projective E-variety. Following [PZ13, Def 7.1] and [Lev16, Def 4.2.1]
(cf.also [Levl6, Prop 4.2.4]), the local model My, = M(G,,Ge, {u}, ™) is the scheme theoretic

closure of the locally closed subscheme
Gré{“} — Grg ®r E — Grg ®o, Of.

By definition, the local model is a reduced flat projective Og-scheme, and equipped with an em-
bedding of its special fiber

M{#} = M{#} Rog kg — ]:ng’fb Qr kE.

We now define the admissible locus A(G, {u}) C Fgs p» @y k. Recall from [HRb, §5.4] that there
are identifications of Iwahori-Weyl groups

W =W(G,A F)=W(Gy, A, K) = W(G, A k(u)).

Then the admissible locus A(G, {u}) is defined as the union of the (f*, f*)-Schubert varieties S,, C
Fleo g Qk k where w runs through the elements of the admissible set Adme ur C© We\W/Wg. Un-

der the assumption that all Schubert varieties inside A(G, {1}) are normal, we show in the next
subsection that M, @ k = A(G, {u}).

4.1.2. Proof of Theorem 2.1 i) in mized characteristic. The proof uses the Coherence Conjecture
[Zhul4], and then follows easily from the method in [PZ13, §9.2.2] using [Lev16, Thm. 4.3.2] and
Proposition 3.1.

Note that the inclusion A(G,{u}) € My} ®x, k is proven as part of [HRb, Thm. 5.14]. Let
V1 = LieG, denote the Lie algebra, which is a free Op[u]-module of rank dimg(G1). The adjoint
representation G; — GL(V1) induces by functoriality a morphism of ind-projective Op-ind-schemes

ad: Grg — GrGL(Vl)a

where the target is defined as in (4.3) using the Op[u]-group scheme GL(V;).

Let Lget be the determinant line bundle on the target, and denote by £ := ad™(Lqet) its pullback.
Let L (resp. L) denote the restriction of £ to the geometric generic (resp. geometric special) fiber
Grg p = Grg p (vesp. Grgj = Flgr g @ k).

Lemma 4.1. The pullback of the line bundle L to My, is relatively ample over O, and for all
n > 1 one has

(4.5) dimpD(My,y 5, £57) = dim; T(A(G, {p})r, LE").

Proof. This lemma is a direct consequence of the Coherence Conjecture [Zhul4] invoking Proposition
3.1 ii) and the assumption on the normality of Schubert varieties, see also [PZ13, §9] (resp. [Lev16,
Thm. 4.3.2]) for similar arguments. We recall the argument for convenience.

First note that since My,; — Spec(Og) is proper, the line bundle £ is relatively ample on M,
if and only if its fibers L, £; are ample [EGAIV3, Cor. 9.6.4] if and only if its geometric fibers
Lz, Lj, are ample [StaPro, 01VR (4)]. Hence, the statement of the lemma only depends on the
geometric fibers.

By Proposition 3.1 ii), using the normality assumption on M ;3 7 (resp. the maximal (£, £°)-
Schubert varieties inside A(G, {u})), there is an isomorphism

(4.6) Mg gy 5= Mg 5 (resp. A(G,{u}) = A(G, {u})° )

where, in a change of notation, the superscript o denotes as in [Zhul4, §2.2] (see also [PZ13, (9.18) {f.])
the translated to the neutral component (Iwahori-) Schubert variety inside the affine Grassmannian
(resp. twisted affine flag variety) for the simply connected group. Here, we really need the normality
hypothesis in order to lift everything to the simply connected group (recall that M?, - is normal).

GAu},F
Further, note that Mg_{#} 7 (resp. A(G,{u})°) only depends on the adjoint group Ga.q and the
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image of {u} under G — G,q: the simply connected groups of G and G,.q are the same, and
the translated to the affine Weyl group admissible set depends only on the image of {u} under
G — Gaq, cf. Corollary 3.7. This procedure is also compatible with the formation of £ because
the morphism ad factors through the adjoint group. We now study the decomposition of M/, () F
(resp. A(G,{u})°) in terms of the simple factors of Gaq.

Let Gug = HjeJRest/p(Gjyad) where J is a finite index set, F;/F are finite field extensions
containing K and G ,q are absolutely simple, tamely ramified Fj-groups. The geometric generic
fiber becomes

<{uf”},
(47) G {u}, e H H Gjnas Ia C GrGQC,F
jeJi=1

where n; := [Fj : F| and ({ugj)})izlw’nj is the j-factor of {u} under G — G,q . Note that (4.7)
comes from the analogous decomposition for Grg_ . For j € J, consider the maximal unramified
subextension Fj/F}"/F, and write n; = m; - l; with m; := [F; : F}*] and l; := [} : F]. Also for
each j € J we reorder

(" Dim1,my = (k=1 LD k=1, )iy

according to Resp,/r(Gjaa) = Resg, por(Respor/py (Gjaa)). As Fj/Fj" is totally ramified, we

.7lj
obtain in the geometric special fiber®

(4.8) A(G {p})° HHA Gjaa: {n} + .. {n), 1)

jeJi=1

Again (4.8) comes from the analogous decomposition for g, ¢ where fg, °. C B(G

sc?

k(u)) denotes
the facet corresponding to f”. Here one has to remember G = Res K/ F(G1) and that the composite
field K - F is a subfield of F;/F}".

Also Lz (resp. L) decomposes according to (4.7) (resp. (4.8)), so that its ampleness on Mg .y 7
(resp. on A(G, {u})) now follows from the explicit formula given in [Zhu, Lem. 4.2] (see also [Lev16,
Prop. 4.3.6]). Note that we are using here that a line bundle is ample if and only if its restriction
to the reduced locus is ample, cf. [EGA II, Prop 4.5.13]. For each j € J, the remaining claim (4.5)
now reads

Do n 2 . o n
(4.9) HdunF (Grg 2o, cem) = T dimg T(AG a0 {60} + . An) 1), £27).

By [Lev16, Prop. 4.3.8] (and the references cited there), we have the product formula

) [€)
_{#1 o e . i uiln o o
||d1mF Gy o F Lr ) = dlmFF(GrijamF L5 )

Thus (4.9) follows from the equality

<t {1 Yoo
(4.10)  dimg D(A(Gjaa, {ni)} + .. {ul), })O,zlg@”):dimpr((;ra{’_‘d; Wi pany

which follows from the main theorem of [Zhul4]. O

Lemma 4.1 is enough to conclude the proof of Theorem 2.1 in this case, as follows. As in [PZ13,
§9], by the local constancy of the Euler characteristic [EGA IIIy, Thm. 7.9.4] and Serre’s cohomology
vanishing theorem [EGA III;, Thm. 2.2.1], we have for n >> 0,

dimp F(M{u},FH ﬁ%n) = dlmE F(M{,u}jm ﬁ%n) 2 dlmE F('A(G7 {:u})fw ‘C%n)7

3Note that it is clear how to add conjugacy classes of 1-parameter subgroups, by choosing dominant representatives
(for any notion of dominant) and taking the conjugacy class of the sum. This is independent of all choices.
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and thus equality. As Lj is ample, this implies M{#}’,; = A(G,{u}), and finishes the proof of
Theorem 2.1 i) in this case.

Remark 4.2. Let K/F be any finite field extension, not necessarily totally ramified. We explain
how the preceding discussion extends to this more general case. Denote by Ky/F the maximal
unramified subextension of K/F with residue field ko/k. We now have @ € Ok, [u] for the Eisenstein
polynomial of w. We have the parahoric Og-group scheme G; = G¢, as above, and we define now the
parahoric Op-group scheme G := Resp, /0, (G1) and its associated positive loop group LS“Q(U)Ql
over Ok,. As in [HRb, §4.3], the group scheme G, in (4.1) (resp. G,) is now defined over O, [u™]
(resp. Ok, [u]). Hence, the Beilinson-Drinfeld Grassmannian in (4.3) is defined over Ok, as well.
This ind-projective ind-scheme is denoted by Grg o — Spec(Ok,). As in [Lev16, §4.1] we define the
Op-ind-scheme
GI‘g d:Ef R’eSOKO/OF (GI‘g70),

which is ind-projective as well, and carries a natural left action of the positive loop group
L-hQ(u)gl = ReSOKO/OFL3_7Q(u)Ql'

Again its generic fiber is isomorphic to the usual affine Grassmannian Grg, equivariantly for the
action of (L*)QW)Ql)77 = L¥G, where z = u — w. Its special fiber is isomorphic to Flg» ¢» where
now

G = Resiy (u) /() (Gr 05, 2] ko),

and f* € B(G", k(u)) corresponds to f; under B(G?, k(v) = B(G,, ko(u)) = B(G1, K).
For a geometric conjugacy class {u} in G, the local model My, = M(G,,Gs,{p}, @) is the

scheme theoretic closure of Gré{“ Y e Grg ®o, Og. Let Ey denote the compositum of Ky with the
reflex field E/F of {u}. Then according to G = Resg,,r(Resk/x,(G1)) the conjugacy class {u}
decomposes as a tuple of Resgk, (G1)-conjugacy classes {y;}, 1 < j < [Ko : F] each having reflex
field FEy/Ky. Since Ok, /OF is étale, we have as Og,-ind-schemes

Grg ®o, Ok, =~ H Grg o,

1<j<[Ko:F]

so that My} ®o, Og, = [[; My,,; where each My, ; is a local model for Resg/r,(G1). Further,
on each Grg o we have the line bundle £y constructed as in (4.1.2) which induces a line bundle £
on Grg by étale descent. Now the analogue of Lemma 4.1 for the pair (M, £) is immediate from
the product decomposition My, ®o, O, ~ [] ; My,,;y and the validity of Lemma 4.1 for each pair

(M3, Lo)-

4.2. Equal characteristic local models. We now treat the case where F' ~ k((t)) is of equal char-
acteristic. In this situation, we assume that in the simply connected group Gy, =~ Hj csResg/p (Gy)
each absolutely almost simple factor G; splits over a tamely ramified extension of F;. We also fix a
uniformizer ¢t € Op so that Op = k[t] . Let G = G¢ denote the parahoric k[[t]-group scheme.

4.2.1. Recollections. Similarly to (4.3) the Beilinson-Drinfeld affine Grassmannian Grg is the functor
on the category of k[t]-algebras R given by the isomorphism classes of tuples (F, «) with

{]—" a G @y Rz — t]-torsor on Spec(R[z — t]);

(4'11) . 0 e . .
a: Flspec(R(z—t)) = F " |spec(R(2—t)) @ trivialization,

where FO denotes the trivial torsor. Here z is an additional formal variable, and the map k[t] —
R[z — t] is the unique k-algebra map with the property ¢t — z. By [Ril9, §0.3] the functor Grg agrees
with [Ril6, Def. 3.3] defined using a spreading of G over some curve, and therefore is representable by
an ind-projective ind-scheme over k[t] by [Ril6, Thm. 2.19]. The generic fiber Grg, r is canonically
the affine Grassmannian associated with the reductive group scheme G ®y[y,1. Flz —t] ~ G ®F
F[z —t] (cf. [Ri19, Lem. 0.2]), and thus is equivariantly (for the left action of the positive loop group)
isomorphic to the usual affine Grassmannian Grg over F formed using the parameter z—t € F[[z — t].



NORMALITY AND COHEN-MACAULAYNESS 15

Its special fiber is canonically the twisted affine flag variety Fq ¢ for G = G¢ over Op = k[t] in the
sense of [PROS].
Recall we fixed a conjugacy class {u} of geometric cocharacters in G with reflex field E/F.

This defines a closed subscheme Gré{“ Yoo Grg ®F E inside the affine Grassmannian which is
a (geometrically irreducible) projective E-variety. As in mixed characteristic above (see [Zhul4,
Ri16]), the local model (or global Schubert variety) M,y = M(G,Gg,{u},t) is the scheme theoretic
closure of the locally closed subscheme

Gré{”} — Grg ®p E — Grg ®o, Og.

By definition, the local model is a reduced flat projective Opg-scheme, and equipped with an em-
bedding of its special fiber

M{M} = M{H} Koy kg — ]:fcf Rk kE.

Likewise, the admissible locus A(G,{u}) is defined as the union of the (f,f)-Schubert varieties
Sw C gt Ok k where w runs through the elements of the admissible set Admg u C We\W/Wg
inside the double classes in the Iwahori-Weyl group.

4.2.2. Proof of Theorem 2.1 1) in equal characteristic. As in the mixed characteristic situation, the
inclusion A(G, {u}) € M} ®, k is proven as part of [HRb, Thm. 5.14]. Let V = LieG denote the
Lie algebra which is a free Op-module of rank dimp(G). The adjoint representation G — GL(V)
induces by functoriality a morphism of ind-projective O g-ind-schemes

ad: Grg — GrGL(V)v

where the target is defined as in (4.11) using the Op-group scheme GL(V). Also we let Lge be the
determinant line bundle on the target, and denote by £ := ad”(Lqet) its pullback. Let Lz (resp. Lf)
denote the restriction of £ to the geometric generic (resp. geometric special) fiber Grg p = Grg p
(resp. Grg g = Fla g @ k). The rest of the argument is the same as in mixed characteristic above
using the following lemma.

Lemma 4.3. The pullback of the line bundle L to My, is relatively ample over Og, and for all
n > 1 one has

dimz F(M{H}7F’ E%n) = dimy, F(A(G7 {n}), ‘C%n)

Proof. The proof relies on Proposition 3.1 and the Coherence Conjecture [Zhul4], and proceeds
in the same steps as in Lemma 4.1. The restriction on the group G is a little milder in equal
characteristic due the existence of local models for any, possibly wildly ramified, reductive group. [

4.3. Proof of Corollary 2.3. We treat mixed and equal characteristic by the same argument,
so that now the local field F is either a finite extension of Q, or isomorphic to kp((t). Let
(G {u'},Ge) — (G,{u},Gr) be as in Corollary 2.3 where the reductive groups G' — G are de-
fined over F' and induce an isomorphism G >~ Ga.q on adjoint groups. As in [KP18, Prop. 2.2.2],
the map G’ — G induces a map of Og:-schemes on local models

(4.12) M (wy,6e) — MG (u}.0) @0 Ok,

where E’/F (resp. E/F) denotes the reflex field of {y'} (resp. {u}). Note that E C E’ is naturally
a subfield. ,

Now on geometric generic fibers (4.12) is the canonical map Gré,{%} — Gré{g} on Schubert
varieties which is finite and birational by Proposition 3.5. In particular, (4.12) is birational. To
show that (4.12) is finite, we observe that this map is proper (because source and target are proper),
and hence it is enough, by [StaPro, 0A4X], to show that (4.12) is quasi-finite. As we already know
that (4.12) is (quasi-)finite in generic fibers, it remains to show that it is quasi-finite on (reduced
geometric) special fibers. By [HRb, Thm. 5.14], the map (4.12) identifies on reduced geometric
special fibers with the canonical map A(G’, {¢'}) — A(G, {u}). Applying Proposition 3.5 again, we
see that the latter map is finite. This shows that (4.12) is birational and finite.
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For universal homeomorphism, we have to show that map (4.12) is integral, universally injective
and surjective, cf. [StaPro, 04DC]. Being finite this map is integral. Universally injective and
surjective can be checked on geometric points over the fibers of Spec(Og/) where it again follows
from Proposition 3.5.

Now assume the normality of Gréfg } and all maximal (£°, £*)-Schubert varieties inside A(G, {11}).
Then Theorem 2.1 i) applies to show that the special M (4}.6¢).k, 15 Teduced (because it is
geometrically reduced). Since its generic fiber is normal, we can apply [PZ13, Prop. 9.2] to prove
the normality of Mg (,}.6;) ®or Orr. As the map (4.12) is finite and birational, it must be an
isomorphism.

5. COHEN-MACAULAYNESS OF LOCAL MODELS

5.1. Recollections on Frobenius splittings. Let X be a scheme in characteristic p > 0, and
denote by F' = Fx: X — X its absolute p-th power Frobenius. The scheme X is called Frobenius
splitif the map Ox — F,Ox splits as a map of O x-modules. In this case a splitting map ¢: F,.Ox —
Ox is called a Frobenius splitting. Also recall the following notions.

Definition 5.1. Let X be Frobenius split.

i) We say X splits compatibly with some closed subscheme Z = V(I) C X if there exists a
splitting ¢: F,.Ox — Ox such that (F.I) C I.

il) We say X splits relative to some effective Cartier divisor D C X if the composition Ox —
F.Ox — F.Ox(D) splits as a map of Ox-modules.

Lemma 5.2. Let X be Frobenius split, and let D C X be an effective Cartier divisor. If X splits
compatibly with D, then X splits relative to (p — 1) - D. In this case, X splits relative to D.

Proof. Let p: F,Ox — Ox be a splitting compatible with D = V(Ox(—D)), i.e., @ restricts to a
splitting F,.Ox(—D) — Ox(—D). By tensoring with Ox (D) we obtain a splitting

F*Ox((p — 1) . D) = F, (Ox(—D) Rox F*Ox(D)) = F*Ox(—D) Koy Ox(D) — Ox,

i.e.,, X splits relative to (p — 1) - D. The last assertion is immediate from the factorization Ox —
F.Ox (D) — F.Ox((p—1)-D). O

Remark 5.3. If X is a smooth variety over an algebraically closed field, then the converse to
Lemma 5.2 holds. Namely, X splits compatibly with D if and only if X splits relative to (p—1) - D.
This is stated in [BK05, Thm. 1.4.10], but we do not need this sharper result.

Lemma 5.4. Let X be Frobenius split compatibly with closed subschemes Z1,Zy C X. Then each
Z;, 1 =1,2 is Frobenius split compatibly with Z1 N Zs.

Proof. For i = 1,2, let Z; = V(I;) and let ¢ be a splitting with ¢(F,I;) C I;. This automatically
induces splittings on each Z;, and it is elementary to see that o(F.(I1 + I3)) C Iy + I5. Since
V(11 + I2) = Z1 N Zy, the lemma follows. O

Proposition 5.5. Let X be Frobenius split and locally of finite type over a field (or a Dedekind
domain), and let D C X be an effective Cartier divisor. Assume that all local rings of X are
equidimensional (e.g., X integral). If X splits relative to D and X\D is Cohen-Macaulay, then X
is Cohen-Macaulay.

Proof. This is [BS13, Ex. 5.4], and the following proof was communicated to us by K. Schwede*. We
have to show that all local rings Ox , for z € D are Cohen-Macaulay. Without loss of generality
we may assume that X = Spec(R) where (R, m) is a Noetherian local equidimensional ring and
D = V(f) for some non-zero divisor f € m. By [StaPro, 0AVZ], we have to show that the local
cohomology H (R) vanishes for i = 0,...,d — 1, d := dim(R). Our finiteness assumptions on X
imply that R admits a dualizing complex (cf. [StaPro, 0BFR]) so that Lemma 5.6 below applies.

40f course, any insufficiencies in the presentation are entirely due to the authors.
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Hence, there exists an N >> 0 with fV - Hi (R) =0 for all i =0,...,d — 1. By [BS13, Lem. 5.2.3],
there exists for any e € Z>; a splitting of the composition

(5.1) R — F°R LY FeR,

where q. := 1 +p+... +p° 1, ie., Spec(R) is F¢-split relative to ¢. - V(f). Now choose e >> 0
such that g. > N, i.e., fi Kkills the local cohomologies as above. Finally, consider the sequence of
R-modules -

Hi(R) — Hi(FeR) =55 Hi(FeR).

Using H: (F¢R) = F¢H! (R) (F, is exact) we see that F¢f% induces the zero map on H{ (F¢R)
for all i = 0,...,d — 1. By virtue of the splitting (5.1) this means that the identity map on H{ (R)
factors through 0, or equivalently H{ (R) = 0. The lemma follows. O

Lemma 5.6. Let (R, m, k) be a Noetherian local ring of equidimension d which admits a dualizing
complex in the sense of [StaPro, 0ATB]. Let f € R be a non-zero divisor such that the localization Ry
is Cohen-Macaulay. For any finite R-module M whose localization My is a projective Ry-module,
there exists an integer N >> 0 such that the local cohomology vanishes

fYHG(M) =0
foralli=0,...,d—1.
Proof. By the local duality theorem [StaPro, 0AAK], we have
Exty'(M,w})" = Homp(H, (M), E) = Homp(HL (M), E),

where (-)" denotes the m-adic completion, w¥, the normalized dualizing complex (cf. [StaPro, 0A7B])
and E the injective hull of k. As R is Cohen-Macaulay and equidimensional, the localized complex
(wk)s = wr,[d] is concentrated in degree d (cf. [StaPro, 0A86, 0AWS]), so that

Exty' (M, wh); = Extf'(My,wr,) = 0

for i =0,...,d — 1 where we have used that My is projective over R for the last equation. Recall
that wy is a cohomologically bounded complex whose cohomology groups are finite R-modules
(cf. [Ha66, p.257] or [StaPro, 0A7B]). Since M is finite, each R-module Exty’(M,w$) is finite as
well, and hence there exists a uniform N >> 0 such that f kills each module Extl_%i(M ,wWh) ®r R=
Ext;'(M,w$)". We conclude that fV kills each HZ (M) by Matlis duality, cf. [StaPro, 08Z9),
bearing in mind that H (M) satisfies the DCC because M is finite and (R, m) is Noetherian local,
cf. [BrHe, Prop. 3.5.4]. O

5.2. Proof of Theorem 2.1 ii). We begin with a general lemma.

Lemma 5.7. Let X be a flat scheme of finite type over a discrete valuation ring.

i) Assume that the generic fiber X, is normal and the special fiber X, is reduced. Then X is
normal.

ii) Assume that the generic fiber X, is Cohen-Macaulay. Then X is Cohen-Macaulay if and
only if its special fiber X is Cohen-Macaulay if and only if its geometric special fiber Xz is
Cohen-Macaulay.

Proof. Part i) is [PZ13, Prop. 9.2], and ii) is immediate from [StaPro, 0C6G, 045P]. O

Now let F' be a non-archimedean local field (either of mixed or equal characteristic), and fix a
triple (G, {u}, G) as in §2 where G is defined over F. Let M := Mg 1,},g,) be the associated local
model over O, where E is the reflex field. As the geometric generic fiber My is, by definition, a
Schubert variety inside an affine Grassmannian which we assume to be normal, it is Cohen-Macaulay
by Proposition 3.1 i). By [StaPro, 0380, 045V] the generic fiber Mg is normal and Cohen-Macaulay
as well. In view of Theorem 2.1 i) and Lemma 5.7 this implies that M is normal. Here we are
assuming that each maximal Schubert variety inside the admissible locus A(G, {u}) is normal. Tt
remains to show that if p > 2 then M is also Cohen-Macaulay. By Lemma 5.7 ii) this is equivalent
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to the Cohen-Macaulayness of the geometric special fiber My = A(G, {u}), cf. Theorem 2.1 i). As
the combinatorics of Iwahori-Weyl groups are the same in mixed and equal characteristic (cf. [HRD,
Lem. 4.11] for a precise statement), we may and do assume that F ~ k((t)) is of equal characteristic,
i.e., M is a scheme in characteristic p > 0. For this, we must remark that the group G” in (4.4)
arising from the mixed characteristic situation is tamely ramified so that the tame ramification
hypotheses on G2, used in Theorem 2.1 is satisfied; this holds by the description of the maximal
torus T; C G, given in [HRb, Ex.4.14]. Also we may and do assume that k = k is algebraically
closed because the formation of local models commutes with unramified base change. Further, by
(4.8) the admissible locus takes the form

(5.2 My~ AG, (1)) ~ AG, (1) =~ T] [TAGs )+ 4%, 1,

jeJi=1

where Gaa = [[;c; Resr,/r(G;) for absolutely simple Fj-groups G; and m; = [F; : F}"], I; =
[F* @ F] for the maximal unramified subextension Fj/F}"/F. As products of locally Noetherian
flat Cohen-Macaulay schemes are Cohen-Macaulay (cf. [StaPro, 0COW, 045]]), we see that it is
enough to proof the Cohen-Macaulayness of each A(G}, {ugjl)} +... {ME’%J_})% i.e., we may and do
assume that G is absolutely almost simple. Also note that under (5.2) the Schubert varieties in
each factor are still normal by Proposition 3.1 ii) so that our normality assumption still holds for
the Schubert varieties in each absolutely almost simple factor.

Summarizing the discussion, we have an equal characteristic local model M attached with some
absolutely almost simple group (so that Lemma 5.8 below is available) which satisfies the normality
assumptions of Theorem 2.1. We know that M is a flat projective scheme over O = Op which is
normal. Its generic fiber Mg is Cohen-Macaulay, and its special fiber M}, (=the admissible locus)
is an effective Cartier divisor on M. We aim to show that M is, as a whole, Cohen-Macaulay.

The key to the proof is now the following lemma which is a direct consequence of [Zhul4, Thm. 6.5]
(also this is the key step in the proof of the Coherence Conjecture).

Lemma 5.8. Let p > 2. Then the local model M 1is Frobenius split compatibly with its special fiber
My C M viewed as a closed subscheme.

Proof. In [Zhul4, Thm. 6.5], a O-scheme X together with a closed immersion M C X is constructed
such that X is Frobenius split compatibly with both M and its special fiber X},. Hence, Lemma 5.4
implies that M is Frobenius split compatibly with M N X, = M;,. O

Corollary 5.9. For p > 2, the local model M splits relative to its special fiber My, C M viewed as
an effective Cartier divisor.

Proof. This is follows from Lemmas 5.8 and 5.2.
O

As we already know that M\ My = Mg is Cohen-Macaulay, we can now apply Proposition 5.5
to conclude that M (and hence My = A(G,{u})) is Cohen-Macaulay. It remains to identify the
dualizing sheaf on the local model.

Lemma 5.10. Let M = Mg 1,3,6) be a local model in either mized or equal characteristic defined
over the discrete valuation ring O = Og. If M is normal and Cohen-Macaulay, then the dualizing
sheaf is given by

wy = (o)

where d = dim(Mg) is the dimension of the generic fiber.

Proof. Both sheaves (24, /O)*’* and wyy are reflexive: for the first this is clear, and for the second

this is [Kov, Lem. 3.22] using the normality of M. Let U := (M) be the locus which is smooth
over O. It follows from [HRa, Thm. 6.12] (and [HRb, Thm. 5.14] for Weil restricted groups in mixed
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characteristic) that the complement M\U has codimension > 2. Also, by [StaPro, 0EAOQ], there is
a map Q‘fw /0 T WM which is an isomorphism restricted to U. Thus, we get an isomorphism

which by

(Q(Jiw/o)*ﬂU = Q?]/O ~wy = wumlu,

the normality of M and the reflexivity of both sheaves (Qﬁ/[ /O)*’*, wps extends to all of

M, cf. [Ha80, Prop. 1.6] (see also [StaPro, 0EBJ]). O
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