NOTES ON TATE’S p-DIVISIBLE GROUPS

THOMAS J. HAINES

1. STATEMENT OF PURPOSE
The aim here is simply to provide some details to some of the proofs in Tate’s paper
[T].
2. TATE’S SECTION 2.2

2.1. Lemmas about divisibility. We say I' — I" is an isogeny of the formal group
[' = Spf(A) if the corresponding map A — A is injective and makes A free over itself
of finite rank. Tate calls I divisible, if p : I' — T' is an isogeny. This is equivalent to
Y A — Ais injective and makes A, free of finite rank over A.

Lemma 2.1.1. Suppose Ay is A-free of rank n. Let ay,...,a, € A form a basis.
Then the images ay, .. .,a, € Ay = A/Y(I)A form an R-basis for A;.

Proof. Given a € A, there exist a; =1; + 8; € R® I = A such that
a = Z 1/1(@1)(1,@
Reducing modulo ¥ (I).A, we get
showing that the a; generate A; over R.
If > ria; =01e Y ra; € (I)A, then there exist elements o € I with
Y(r1+aq)ar + -+ Y(r, + a))a, € (1) A.
Repeating, we get elements af € I’ such that
Yo +af +--)ag+ -+ p(r, +ap +ak+ - a, =0,

(Using the fact that the ideals I7 — 0 in the topology on A so that these inifinite
sums converge. )
By the A-freeness of Ay, this gives

mGRﬂ@b(I)zO

for all 4, proving the desired independence statement over R of the elements a; €
A OJ
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Lemma 2.1.2. Suppose p : A — A is injective and Ay is free over A. Then for
each v, Ayv is free over A and

rank 4 Ay = (rank 4.4,)".
Proof. If a4, ..., a, € A give an A-basis for A, then the set of elements

wyil(a’iufl) e 'w(a’h)a’io

for i = (i,_1,...,14p) ranging over all elements of (Z/nZ)", forms an A-basis for Ay».
The proof is by induction on v. The generation does not use the injectivity of ¥,
but the linear-independence does. U

Corollary 2.1.3. Applying Lemma 2.1.1 to both v and 1", and invoking Lemma
2.1.2, we get the equality

rankpA/Y"(I)A = (rankg A/ (1)A)".

2.2. Tate’s Proposition 1.

2.2.1. In T+ I'(p), why is I'(p) p-divisible? We assume I is divisible. Note that by
Lemma 2.1.1 and the fact that I',» = ker[p”]r corresponds to A/¢"(I).A, the A-rank
of Ay is the order of 'y, which is p for some h (since ', is connected — cf. [Sh], p
50). Then Corollary 2.1.3 shows that I'(p) is p-divisible of height h.

2.2.2. In G — T, why is I' divisible? We first check that ¢ : A — A is injective. For
each v, the diagram

V+1 ﬁ' G[
1/+1

AVJrl 'L)Al/
N
AV—‘rl
The map @Z) is injective since p : G,41 — G, is a quotignt map. This shows 1
is injective: if~ ¥(ay11)y41 = 0, then for all v, we have ¥ (a,) = 0, which by the
injectivity of ¢ implies that a, = 0.
Next we check that A, is free of finite rank over A (and the rank will be the height
of G, namely n = p"). Let ai,...,a, € A be elements whose images in A/¢(I)A
yield an R-basis. We claim that a4, ..., a, form an A-basis for A,.

The fact that they generate is very similar to the proof of Lemma 2.1.1. Indeed,
given a € A, for some r; € R we have

a € Zriai +y(I)A

corresponds to the diagram
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We can find some o] € I for which

a€ Z¢(ﬁ' +af)a; + ¥ (I1)* A

Repeating this as in the proof of Lemma 2.1.1, we get (always with 04{ e )
azzw(ri+a}+a?+~~)ai.

This shows that A, is generated by the elements ay, ..., a,.

Now we prove that the a; are independent over A. Note first that their images
clearly generate (A/v"(I).A), over A/~ 1(I).A, hence form a basis for (A/y"(I).A),
over A/ 1(I)A) as well. Why are they independent? First, the map p: G, — G,
induces a faithfully flat quotient map p : G, — G,_1, and thus ¢ : A, — A, factors
through the injective homomorphim @Z :A,_1 — A,, and A, is finite and flat over
A,_y via 9. In fact since A, = A/¢"(I)A is local, we see that

AJr =D)AL AJy* (1) A

is an injection and makes the target finite and free over the source. By comparing the
R-ranks (p"" vs p"=b") we see that (A/¢"(I).A), has rank n = p" over A/y"~1(I)A.
Now suppose we have a dependence relation
w<al)al +-+ w(an)an =0,

for some «; € A. Consider this relation modulo " (I).A. The freeness result just
proved shows that each «; € ¥"~1(I).A. This holds for every v. Thus each «; = 0, for
example by Tate’s Lemma 0. This completes the proof that ¢ : I' — I' is an isogeny
if I' comes from a connected p-divisible group.

2.2.3. Reduction of essential surjectivity in Proposition 1 to R = k. In the first part
of this subsection, we do not assume that the p-divisible group G = ligSpec(Ay) is

connected.

Since the map of finite free R-modules A, ; — A, splits R-linearly, A is the direct
product of a countable number of copies of R (as an R-module). Hence A is R-flat
(as an R-module it is R[[X]], which is R-flat by [AM], 10.14).

Lemma 2.2.1. For everyn > 1, we have

A/m"A = AQpR/m"™ = lim(A4, ® R/m")

A similar result holds for A in place of A, so that
R[[X1,...,X4|®rR/m" = R/m"[[X1,..., XJ]].
In particular, we have Ay = ImA, ;. and Ay, = k[ X1, ..., X4]].
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Proof. Let J, be the kernel of the projection A — A,. Thus A = @A/Jl,. In view

of the definition of completed tensor product, our main assertion is immediate since
R/m™ has the discrete topology. The side assertion that A/m"A = AQgrR/m" is easy:
use the R-flatness of A, and a Mittag-Leffler argument to show that

0— ARpm™ - A — A®rR/m" — 0

is exact; then observe that the image of A®zm” in A is just m"A. U
Lemma 2.2.2. Any continuous k-algebra homomorphism ¢ : k[[Xy,..., X,]] — Ay
can be lifted to a continuous R-algebra homomorphism ¢ : R[[X1,..., X,]] = A.

Proof. Recall A = l'glA/J,,. Let J, 1 = J,®gk. Since A — A/ J, splits R-linearly, we
have Ag/J, 1, = A,k and thus Ay = lglAk/Jl,,k.

The map ¢ is determined by the images of the X; in A, and since A (hence Ay) is
complete, the continuity/convergence amounts to saying that there exists N = N(v),
an increasing function of v, with the property that for all 7 and all sufficiently large
v, we have

o(X) € Jy.
We may assume N(v) > v for all v. Let ¢(X;) be an arbitrary lift of ¢(X;). Then
these elements will determine a continuous homomorphism ¢, provided we can prove
convergence in A.

We have ¢(XN) € J, + mA for large v. Thus ¢(XN°) € J, + mVA C J, + m“A
for all v large. Then the function v — N(v)? will play for ¢ the role the function
v+ N(v) played for ¢, since J, + m”A — 0 as v+ oo, in the topology on A.

O

From now on we assume Spf(A) is a connected p-divisible group. Let M, denote
the maximal ideal of A. In performing the reduction to R = k, we are assuming the
p-divisible group Spf(Ax) = lim Spf (A, ) is of the form Spf(.Ay) for some d. That is,
we are given a continuous isomorphism

k([ Xy, ..., Xq]] = A
By Lemma 2.2.2, we may lift this to a continuous homomorphism ¢ : R[[X1,..., X]] —
A. By Nakayama, the composition R[[Xq,...,X,]] = A — A, is surjective for each
v. This seems to imply ¢ is surjective, but this doesn’t seem to be easy to justify.

Instead we take a different approach.
Write R[[X7, ..., X4]] = A and consider the exact sequence

0— Ker - A — A — Cok — 0.
The following sequence (which is the same with the "hats” removed, hence is exact)
ARrR/m — A®rR/m — Cok®zR/m — 0

shows that mCok = Cok. But then Cok C M4Cok. Since (A, M,) is a local ring and
Cok is finitely generated over A (by one element), we conclude that Cok = 0.
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Now the flatness of A (more precisely the flatness of every A,) over R implies that
0 — Ker®zR/m — ASzR/m — ARrR/m — 0

is exact. We conclude that mKer = Ker. Since A is Noetherian, Ker is a finitely-
generated ideal in A. If I = (Xq,...,X,), then M = mA + [ is the maximal ideal
of A. We have Ker C mKer C MKer, hence by Nakayama’s lemma, Ker = 0. This
completes the reduction to R = k that was the object of this section.

2.3. Tate’s Proposition 2. Tate’s Proposition 2 states that the discriminant ideal
of A, over R is generated by p™?" where h = ht(G) and n = dim(G).

2.3.1. Discriminant identities. Let A be an R-algebra which is free of rank n as an R-
module; say A = &7, Rw;. We define the discriminant to be the element of R/(R*)?
given by
5A/R = diSCR(A) = det(Tl"(win>ij).
Lemma 2.3.1. We have the identities
() Sarwpar/r = (6aryr)™" - (3an/r)™, where n' = 1kg(A’) and n” = rkp(A”).
(b) For AJA"/R, we have

rk 4/ A
5A/R = (5::,‘?}2 : NA//RéA/A,.

Now suppose that we have an exact sequence of finite flat commutative group
schemes

0—H — H— H"—0.
with terms have orders m/, m, and m” respectively (so m = m'm”).
Tate uses the following lemma in his proof of his Proposition 2.

Lemma 2.3.2. disc(H) = disc(H")™" - disc(H")™.

Proof. (Sketch.) In order to prove the lemma, it seems necessary to extend the
definition of 04,z to a broader context. We need the following ingredients, which we
simply assume without proof from now on.

(i) The extension of the definition of §4,r to the context where A is faithfully flat
over R and R is a product of local rings. See Conrad’s Math 676 (Michigan)
notes for some of this.

(ii) The Lemma 2.3.1 in this general context. I do not know a reference for this.

We have H' xg H = H Xpy» H via the map (h',h) — (h'h,h). We now take
discriminants on both sides of the corresponding equality

A/ ®RA:A®A” A
On the left hand side we get (64/r)™ - (64/r)™. On the right hand side we use

8@ g ajar = (8a/47)"™ to get

m’ 2 m’
5A®A//A/R = (5A"/R)( ) . NA”/R((SEX/A”)'
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Again using transitivity we have d4/r = 5%/1% * Nanw/r(d4/a7), so that the right hand
of the last equation is

Oar/r)™™ - (Sayr)™™.
Thus

(Baryr)™ - (Oasp)™ = @aryr) ™ + (Oayr)™™

(Barr)™ - (Sam/p)™ = (Bayp)™.
Taking the m’-th roots of both side gives

(6 /R)m” - (647 /R)m’ = 64/R-
O

The Lemma 2.3.2 and the obvious triviality of discriminant ideals for étale groups
immediately reduced Proposition 2 to the case of connected p-divisible groups.

2.3.2. Proof of Proposition 2 assuming Lemma 1. We are in the situation where
G = G° and corresponds to the formal group I' = Spf(.A) via the Serre-Tate cor-
respondence. As in Proposition 1, we have A, = A/J,. Consider A as a free module
of rank p" over itself by means of ¢ := ¢”. Consider A as an algebra (via ¢) over
another copy A’ of A. Let I’ denote the augmentation ideal of A" (generated by the
X/). Since A, = A/I'A, it suffices to prove the discriminant ideal of A over A’ is
generated by the desired power of p. More precisely, suppose aq,...,a, € A form a
basis over A’. Then ay,...,a, € A/I'A form an R-basis (by Lemma 2.1.1); and note
r = rank g4 A = p"°¥, for h° := ht(G®)). Then the reduction holds since

da/a = det(Tr(a;a;))

modulo I’ A4 is
5A,,/R = det(Tr(ELidj)).

Next, we consider the modules of formal differentials 2 and 2’ of A resp. A’. There
are free modules over A resp. A’ generated by the differentials of the variables d.X;
resp. dX/, 1 <i <n. The map ¢ : A" — A induces an A’-linear map d¢ : Q' — .
Choosing bases in €' resp. 2, we get basis element 6’ resp. 6 of A" resp. A"Q). Let
do(0') = ab, for some a € A.

By Lemma 1 (discussed below), we know that 6 4/4 = N4 a(a). Granting this, let
us finish the proof of Proposition 2.

The first step is to choose a basis of translation-invariant differentials w;, ie. such
that if g : A — A®gA defines the formal group structure, then dy : Q@ — Q & Q
satisfies du(w;) = w; ® w;.

Let us elaborate. The identity du(w;) = w; ® w; is a consequence of left/right
invariance. For g € G(S), define left translation 1, by

5 G——=SxsG PN gvsa G
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(and right translation 7; is similarly defined). Writing du(w;) = w, @ ws, the left-

invariance Tjw; = w; gives w; = Wwy. Right invariance likewise yields w; = w,. So
du(w;) = w; ® w; if w; is left/right invariant. On the other hand, the existence of a
left (or right)-invariant basis w; for Q4,5 is proved in [BLR], p. 100.

It follows that du® : Q — Q% has du®(w;) = w”, and hence in the obvious
notation we have do(w)) = p“w;, whence a = p*". Proposition 2 now follows from
Lemma 1 and the fact that A is A'-free of rank p**.

2.3.3. Proof of Lemma 1 assuming the existence of a certain Trace map. We shall
assume the existence and properties of Tate’s trace map Tr : A"Q — A"€):

(i) Tr is A’-linear
(ii) a > (0 — Tr(a#)) gives an A-linear module isomorphism
A = Hom 4 (A", A"Q))
(iii) If 0" € A"V, and = € A, then
Tr(z - dp(0")) = (Traya(x))6".

Now use the basis elements # € A™Q) and 6/ € A™C) to identify A"Q = A and
A"QY = A’ Then we can reformulate (ii) as an A-linear isomorphism

(ii") A = Homy (A, A")
Say 7 <— Tr 44 under the above isomorphism, which means
Tr(r28) = Tra/a(z)0, Vre A

Now (iii) means Tr(xaf) = Try, 4 (2)¢ for v € A, and so in the presence of (ii’), (iii)
can be reformulated as

(iii") @ — Try/a under A = Homy (A, A').

Therefore Lemma 1 will result from the following lemma.
Lemma 2.3.3. If 7 € A has the property of (ii’), then 6aya = Naja(T).

Proof. Write A = @" | A'e;, and let m; : A — A’ be the projection onto the i-th
factor. Under A = Hom 4 (A, A’"), we have 1 +— f (this is the definition of fy), and
r; <— m; (this is the definition of r;). It follows by A-linearity that r; <— r;fy, so
that fo(r;x) = m(x).

Thus

(Naja (7)) = (det(m;(7e;)))
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Here in the penultimate equation we used the fact that (r;) = (a;;)(e;) for some
invertible matrix (a;;) over A’ O

3. REMARKS ON DUALITY FOR TATE’S SECTION (2.3)

3.1. Construction of dual of a p-divisible group. The point of characterizing
G, as the kernel of p” : Gy, — G4, is that it dualizes well, allowing us to easily
check that the dual of a p-divisible group is again a p-divisible group.

Indeed, we easily see that

coklp” : Gy = Gyl = Gug/ Gy
which is isomorphic to G, via
P Guyu/Gu = Gy
It follows by taking duals that

G, = ker[p” : Gy, , — G, ],
which shows that (G, 1)) is a p-divisible group, where i, : G), — G/, is the dual of

p: Gu+1 — Gu-

3.2. Connection with dual abelian varieties. Let X be an abelian scheme of
dimension n over k, with dual abelian variety X’. Then X’(p) is the Cartier dual of
X(p):
X'(p) = (X(p))

(cf. [MD N

Let X be the formal completion of X along its zero section, so X = Spf(k[[X1, ..., X,]])
since X is smooth of dimension n over k. Both X (p) and (X (p))’ have height 2n. We
shall below that each has dimension n.

We have X [p”] = X (p)°[p”] since X is supported on an infinitesimal neighborhood
of the zero section. Therefore B

X «— X(p)°
under the Serre-Tate equivalence. In particular
dim X (p) = dim X (p)° = dim X = n.

Furthermore, X (p)° has dimension n and height h for some integer h with n < h <
2n. It turns out that every such value of h is attained for some X.
4. TATE’S PROPOSITION 4
Since k is perfect the sequence
0—=G,—Gr— G —0

splits canonically. Put another way, there exists a Hopf k-algebra morphism ¢ : A% =
k[[X1,...,X,]] = Ag such that the resulting canonical morphism

1; : AZ@]{AEt = Azt[[Xla cee aXnH — Ay
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is an isomorphism of Hopf k-algebras.
By Lemma 2.2.2, there is a lift ¢ for ¢ (not necessarily a Hopf R-algebra map), and
then this induces a continuous R-algebra homomorphism

V) A°QrAt — A
which lifts 1.
We claim 1) is an isomorphism. This shows that as formal schemes G = G° x G,
and hence there is a formal section of G — G (note that it is not necessarily a

section of formal groups). This will show that for each complete ring S we can plug
into these functors, the sequence

0— G°(S) = G(S) = G“S) = 0
is exact.

Let K := Ker(¢)) and C' := Cok(¢)). If C' # 0, then choose a maximal ideal 2t of
A such that Cyy # 0. The surjectivity of ¢ implies that C/mC = 0, i.e. C = mC.
Then we also have Coyy = mCyy. Now Coy is finitely generated (by one element)
over the local ring Agy, and Coy = mCoy C MCon. Thus by Nakayama, Coyn = 0, a
contradiction. Thus C' = 0. N

Now we prove that K = 0. Set A := A°®@pA. As above, since A is R-flat, we get
an exact sequence

O—>Kk—>ﬁk—>Ak—>O
hence K = mK. Now we’d like to argue as for C' to show that K = 0; howevgr, since
A need not be Noetherian, we can’t say K is a finitely generated ideal in A, so we
need a different argument. Denote by J, C A the obvious family of ideals such that
A= 1&121\/ :]; Note that if :7; denotes the image of :7; in A, then we have an exact

sequence

0—>K/KOJA,,—>E/<7,,—>A/=7,,—>O.
Now K/K N jy is a finitely-generated ideal in the Noetherian ring X/ j:,, hence the
equality m(K/K N jy) =K/Kn 7, implies by the argument for C' above that K =
Kn ju (This works even though A like A is not local; we need to localize at its
maximal ideals.) Then we see that K C (), :];, =0, and K = 0 as desired.

5. TATE’S COROLLARY 1 TO PROPOSITION 4

An easy diagram chase reduces us to the separate cases where G is étale or con-
nected. First suppose G is étale. Then as noted earlier in Tate’s section 2.4, we
have

G(S) = lim G, (S/ms5).

It is enough to show that for x € G, (S/mS), there is a finite extension S’ O S of the
same form as S and an element y € G, 1(S’/mS’) such that py = x. Let kg denote
the residue field of S (equivalently, of S/mS). By the infinitesimal lifting criterion
for étale schemes, we have G, (S/mS) = G,(ks). By the surjectivity of G,1 — G,,
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there is some finite extension &’ D kg and an element y € G,1(k') with py = = in
G,(K'). Now let S’ be a complete valuation ring containing S and having residue field
k'. By the infinitesimal lifting property, we have y € G,41(5'/mS’) = G,41(K'), and
py = z holds in G,,(5"/mS’), as desired.

Now we suppose G is connected. Let I' be the associated divisible commuta-
tive formal group, with ring A = R[[X1,...,X,]]. We identify G(S) with the set
Homeongs (A, S) of continuous R-algebra homomorphisms ¢ : A — S. We need to
find a finite extension of complete valuation rings ¢ : S < S’ and a homomorphism
¢ A — S for which ¢/ o) = io¢. Since ¥ : A — A makes A finite and free
over itself, we may take for the ¢’ the canonical map A — ./4@7/,7 495 in the push-out
diagram

L AB S
S

w Ty

¢

6. TATE'S MAIN THEOREM (4.2)
We just make a few remarks about a few points in the proof.

Use of disciminants in Proof of Cor. 2. Tate uses the fact that if B, C A, and
discg(B,) = discg(A,), then B, = A,. This follows by choosing a ”stacked basis”
Wi, ...,wy resp. mwy, ..., 7w, for A, resp. B,, where each r; > 0. Since

det(Tr(m"w; 77 w;)) = Adet(Tr(ww;)),
where ¢ = 72" we see that discg(B,) = discg(4,) implies that r; = 0 for all 4,
hence B, = A,.

Why is M assumed to be a Z,-summand in Prop. 129 Given M C T(F'), we need to
find a corresponding p-divisible group F, C F®grK. Because M is a direct summand,
the Galois module M /p”M is contained in T'(F)/p*T(F) = F,(K). We define the

étale K-group F,, by the equality of Galois modules E,, (K) := M /p” M.

Why the algebras D; are stationary Recall that R is a PID in this discussion.
Tate defines E, = Spec(A,) where A, := u,(B,) C A,,. It follows that each A, is
a finite-rank and free Hopf algebra over R. Since

Ei+1/Ei = SpeC(Dl)

by definition of quotient we have D; C A;1 hence D; is also finite-free over R.
The maps induced by p

Eivvi1/Eiv1 = By [ E;
(generically isomorphisms) induce maps

Di — Di+1



NOTES ON TATE’S p-DIVISIBLE GROUPS 11

which are all isomorphisms upon tensoring by K, hence are all injective and the D;
can be viewed as an increasing sequence of R-orders in a common separable K-algebra
D; ®g K. Thus the D; are all contained in the integral closure of R in D; ®pr K.

Lemma 6.0.1. If R is a normal Noetherian domain, and R is its integral closure in
a finite-dimensional separable K -algebra, then R is a Noetherian R-module.

Proof. Adapt 5.17 of [AM], which handles the case of separable field extensions of
K. O

Since the integral closure of R in D; ® g K is Noetherian R-module, it follows that
there exists an ¢ such that D; = D, for all i > 4.
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