NOTES ON TATE'S *p*-DIVISIBLE GROUPS

THOMAS J. HAINES

1. Statement of purpose

The aim here is simply to provide some details to some of the proofs in Tate's paper [T].

2. TATE'S SECTION 2.2

2.1. Lemmas about divisibility. We say $\Gamma \to \Gamma$ is an isogeny of the formal group $\Gamma = \operatorname{Spf}(\mathcal{A})$ if the corresponding map $\mathcal{A} \to \mathcal{A}$ is injective and makes \mathcal{A} free over itself of finite rank. Tate calls Γ divisible, if $p : \Gamma \to \Gamma$ is an isogeny. This is equivalent to $\psi : \mathcal{A} \to \mathcal{A}$ is injective and makes \mathcal{A}_{ψ} free of finite rank over \mathcal{A} .

Lemma 2.1.1. Suppose \mathcal{A}_{ψ} is \mathcal{A} -free of rank n. Let $a_1, \ldots, a_n \in \mathcal{A}$ form a basis. Then the images $\bar{a}_1, \ldots, \bar{a}_n \in A_1 = \mathcal{A}/\psi(I)\mathcal{A}$ form an R-basis for A_1 .

Proof. Given $a \in \mathcal{A}$, there exist $\alpha_i = r_i + \beta_i \in R \oplus I = \mathcal{A}$ such that

$$a = \sum_{i} \psi(\alpha_i) a_i.$$

Reducing modulo $\psi(I)\mathcal{A}$, we get

$$\bar{a} = \sum_{i} \psi(r_i) \bar{a}_i$$

showing that the \bar{a}_i generate A_1 over R.

If $\sum_i r_i \bar{a}_i = 0$ i.e. $\sum_i r_i a_i \in \psi(I) \mathcal{A}$, then there exist elements $\alpha_i^1 \in I$ with

$$\psi(r_1 + \alpha_1^1)a_1 + \dots + \psi(r_n + \alpha_n^1)a_n \in \psi(I)^2 \mathcal{A}$$

Repeating, we get elements $\alpha_i^j \in I^j$ such that

$$\psi(r_1 + \alpha_1^1 + \alpha_i^2 + \cdots)a_1 + \cdots + \psi(r_n + \alpha_n^1 + \alpha_n^2 + \cdots)a_n = 0.$$

(Using the fact that the ideals $I^j \to 0$ in the topology on \mathcal{A} so that these infinite sums converge.)

By the \mathcal{A} -freeness of \mathcal{A}_{ψ} , this gives

$$r_i \in R \cap \psi(I) = 0$$

for all *i*, proving the desired independence statement over *R* of the elements $\bar{a}_i \in A_1$.

Lemma 2.1.2. Suppose $\psi : \mathcal{A} \to \mathcal{A}$ is injective and \mathcal{A}_{ψ} is free over \mathcal{A} . Then for each ν , $\mathcal{A}_{\psi^{\nu}}$ is free over \mathcal{A} and

$$\operatorname{rank}_{\mathcal{A}}\mathcal{A}_{\psi^{\nu}} = (\operatorname{rank}_{\mathcal{A}}\mathcal{A}_{\psi})^{\nu}.$$

Proof. If $a_1, \ldots, a_n \in \mathcal{A}$ give an \mathcal{A} -basis for A_{ψ} , then the set of elements

 $\psi^{\nu-1}(a_{i_{\nu-1}})\dots\psi(a_{i_1})a_{i_0}$

for $\mathbf{i} = (i_{\nu-1}, \ldots, i_0)$ ranging over all elements of $(\mathbb{Z}/n\mathbb{Z})^{\nu}$, forms an \mathcal{A} -basis for $\mathcal{A}_{\psi^{\nu}}$.

The proof is by induction on ν . The generation does not use the injectivity of ψ , but the linear-independence does.

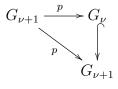
Corollary 2.1.3. Applying Lemma 2.1.1 to both ψ and ψ^{ν} , and invoking Lemma 2.1.2, we get the equality

$$\operatorname{rank}_{R}\mathcal{A}/\psi^{\nu}(I)\mathcal{A} = (\operatorname{rank}_{R}\mathcal{A}/\psi(I)\mathcal{A})^{\nu}.$$

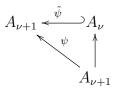
2.2. Tate's Proposition 1.

2.2.1. In $\Gamma \mapsto \Gamma(p)$, why is $\Gamma(p)$ *p*-divisible? We assume Γ is divisible. Note that by Lemma 2.1.1 and the fact that $\Gamma_{p^{\nu}} = \ker[p^{\nu}]_{\Gamma}$ corresponds to $\mathcal{A}/\psi^{\nu}(I)\mathcal{A}$, the \mathcal{A} -rank of \mathcal{A}_{ψ} is the order of Γ_p , which is p^h for some h (since Γ_p is connected – cf. [Sh], p. 50). Then Corollary 2.1.3 shows that $\Gamma(p)$ is *p*-divisible of height h.

2.2.2. In $G \mapsto \Gamma$, why is Γ divisible? We first check that $\psi : \mathcal{A} \to \mathcal{A}$ is injective. For each ν , the diagram



corresponds to the diagram



The map $\tilde{\psi}$ is injective since $p : G_{\nu+1} \to G_{\nu}$ is a quotient map. This shows ψ is injective: if $\psi(a_{\nu+1})_{\nu+1} = 0$, then for all ν , we have $\tilde{\psi}(a_{\nu}) = 0$, which by the injectivity of $\tilde{\psi}$ implies that $a_{\nu} = 0$.

Next we check that \mathcal{A}_{ψ} is free of finite rank over \mathcal{A} (and the rank will be the height of G, namely $n = p^h$). Let $a_1, \ldots, a_n \in \mathcal{A}$ be elements whose images in $\mathcal{A}/\psi(I)\mathcal{A}$ yield an R-basis. We claim that a_1, \ldots, a_n form an \mathcal{A} -basis for \mathcal{A}_{ψ} .

The fact that they generate is very similar to the proof of Lemma 2.1.1. Indeed, given $a \in \mathcal{A}$, for some $r_i \in R$ we have

$$a \in \sum_{i} r_i a_i + \psi(I) \mathcal{A}.$$

We can find some $\alpha_i^1 \in I$ for which

$$a \in \sum_{i} \psi(r_i + \alpha_i^1) a_i + \psi(I)^2 \mathcal{A}.$$

Repeating this as in the proof of Lemma 2.1.1, we get (always with $\alpha_i^j \in I^j$)

$$a = \sum_{i} \psi(r_i + \alpha_i^1 + \alpha_i^2 + \cdots) a_i.$$

This shows that \mathcal{A}_{ψ} is generated by the elements a_1, \ldots, a_n .

Now we prove that the a_i are independent over \mathcal{A} . Note first that their images clearly generate $(\mathcal{A}/\psi^{\nu}(I)\mathcal{A})_{\psi}$ over $\mathcal{A}/\psi^{\nu-1}(I)\mathcal{A}$, hence form a basis for $(\mathcal{A}/\psi^{\nu}(I)\mathcal{A})_{\psi}$ over $\mathcal{A}/\psi^{\nu-1}(I)\mathcal{A}$) as well. Why are they independent? First, the map $p: G_{\nu} \to G_{\nu}$ induces a faithfully flat quotient map $p: G_{\nu} \to G_{\nu-1}$, and thus $\psi: A_{\nu} \to A_{\nu}$ factors through the *injective* homomorphim $\tilde{\psi}: A_{\nu-1} \to A_{\nu}$, and A_{ν} is finite and flat over $A_{\nu-1}$ via $\tilde{\psi}$. In fact since $A_{\nu} = \mathcal{A}/\psi^{\nu}(I)\mathcal{A}$ is local, we see that

$$\mathcal{A}/\psi^{\nu-1}(I)\mathcal{A} \xrightarrow{\psi} \mathcal{A}/\psi^{\nu}(I)\mathcal{A}$$

is an injection and makes the target finite and free over the source. By comparing the *R*-ranks $(p^{\nu h} \text{ vs } p^{(\nu-1)h})$, we see that $(\mathcal{A}/\psi^{\nu}(I)\mathcal{A})_{\psi}$ has rank $n = p^{h}$ over $\mathcal{A}/\psi^{\nu-1}(I)\mathcal{A}$.

Now suppose we have a dependence relation

$$\psi(\alpha_1)a_1 + \dots + \psi(\alpha_n)a_n = 0,$$

for some $\alpha_i \in \mathcal{A}$. Consider this relation modulo $\psi^{\nu}(I)\mathcal{A}$. The freeness result just proved shows that each $\alpha_i \in \psi^{\nu-1}(I)\mathcal{A}$. This holds for every ν . Thus each $\alpha_i = 0$, for example by Tate's Lemma 0. This completes the proof that $\psi : \Gamma \to \Gamma$ is an isogeny if Γ comes from a connected *p*-divisible group.

2.2.3. Reduction of essential surjectivity in Proposition 1 to R = k. In the first part of this subsection, we do not assume that the p-divisible group $G = \varinjlim \operatorname{Spec}(A_{\nu})$ is

connected.

Since the map of finite free *R*-modules $A_{\nu+1} \to A_{\nu}$ splits *R*-linearly, *A* is the direct product of a countable number of copies of *R* (as an *R*-module). Hence *A* is *R*-flat (as an *R*-module it is R[[X]], which is *R*-flat by [AM], 10.14).

Lemma 2.2.1. For every $n \ge 1$, we have

$$A/\mathfrak{m}^n A = A\widehat{\otimes}_R R/\mathfrak{m}^n = \varprojlim_{\nu} (A_\nu \otimes_R R/\mathfrak{m}^n)$$

A similar result holds for \mathcal{A} in place of A, so that

$$R[[X_1,\ldots,X_d]]\widehat{\otimes}_R R/\mathfrak{m}^n = R/\mathfrak{m}^n[[X_1,\ldots,X_d]].$$

In particular, we have $A_k = \varprojlim_{\nu} A_{\nu,k}$ and $\mathcal{A}_k = k[[X_1, \ldots, X_d]].$

THOMAS J. HAINES

Proof. Let J_{ν} be the kernel of the projection $A \to A_{\nu}$. Thus $A = \varprojlim_{\nu} A/J_{\nu}$. In view of the definition of completed tensor product, our main assertion is immediate since R/\mathfrak{m}^n has the discrete topology. The side assertion that $A/\mathfrak{m}^n A = A \widehat{\otimes}_R R/\mathfrak{m}^n$ is easy: use the *R*-flatness of A_{ν} and a Mittag-Leffler argument to show that

$$0 \to A \widehat{\otimes}_R \mathfrak{m}^n \to A \to A \widehat{\otimes}_R R/\mathfrak{m}^n \to 0$$

is exact; then observe that the image of $A \widehat{\otimes}_R \mathfrak{m}^n$ in A is just $\mathfrak{m}^n A$.

Lemma 2.2.2. Any continuous k-algebra homomorphism $\bar{\phi} : k[[X_1, \ldots, X_n]] \to A_k$ can be lifted to a continuous R-algebra homomorphism $\phi : R[[X_1, \ldots, X_n]] \to A$.

Proof. Recall $A = \varprojlim_{\nu} A/J_{\nu}$. Let $J_{\nu,k} = J_{\nu} \widehat{\otimes}_R k$. Since $A \to A/J_{\nu}$ splits *R*-linearly, we have $A_k/J_{\nu,k} = A_{\nu,k}$ and thus $A_k = \varprojlim_{\nu,k} A_k/J_{\nu,k}$.

The map $\overline{\phi}$ is determined by the images of the X_i in A_k , and since A (hence A_k) is complete, the continuity/convergence amounts to saying that there exists $N = N(\nu)$, an increasing function of ν , with the property that for all i and all sufficiently large ν , we have

$$\phi(X_i^N) \in J_{\nu,k}.$$

We may assume $N(\nu) \ge \nu$ for all ν . Let $\phi(X_i)$ be an arbitrary lift of $\overline{\phi}(X_i)$. Then these elements will determine a continuous homomorphism ϕ , provided we can prove convergence in A.

We have $\phi(X_i^N) \in J_{\nu} + \mathfrak{m}A$ for large ν . Thus $\phi(X_i^{N^2}) \in J_{\nu} + \mathfrak{m}^N A \subseteq J_{\nu} + \mathfrak{m}^{\nu}A$ for all ν large. Then the function $\nu \mapsto N(\nu)^2$ will play for ϕ the role the function $\nu \mapsto N(\nu)$ played for $\overline{\phi}$, since $J_{\nu} + \mathfrak{m}^{\nu}A \to 0$ as $\nu \mapsto \infty$, in the topology on A.

From now on we assume $\operatorname{Spf}(A)$ is a *connected* p-divisible group. Let M_A denote the maximal ideal of A. In performing the reduction to R = k, we are assuming the p-divisible group $\operatorname{Spf}(A_k) = \varinjlim \operatorname{Spf}(A_{\nu,k})$ is of the form $\operatorname{Spf}(A_k)$ for some d. That is, we are given a continuous isomorphism

$$k[[X_1,\ldots,X_d]] \cong A_k$$

By Lemma 2.2.2, we may lift this to a continuous homomorphism $\phi : R[[X_1, \ldots, X_d]] \rightarrow A$. By Nakayama, the composition $R[[X_1, \ldots, X_d]] \rightarrow A \rightarrow A_{\nu}$ is surjective for each ν . This seems to imply ϕ is surjective, but this doesn't seem to be easy to justify. Instead we take a different approach.

Write $R[[X_1, \ldots, X_d]] = \mathcal{A}$ and consider the exact sequence

$$0 \to \operatorname{Ker} \to \mathcal{A} \to A \to \operatorname{Cok} \to 0.$$

The following sequence (which is the same with the "hats" removed, hence is exact)

$$\mathcal{A}\widehat{\otimes}_R R/\mathfrak{m} \twoheadrightarrow A\widehat{\otimes}_R R/\mathfrak{m} \to \mathrm{Cok}\widehat{\otimes}_R R/\mathfrak{m} \to 0$$

shows that $\mathfrak{m}\operatorname{Cok} = \operatorname{Cok}$. But then $\operatorname{Cok} \subseteq M_A\operatorname{Cok}$. Since (A, M_A) is a local ring and Cok is finitely generated over A (by one element), we conclude that $\operatorname{Cok} = 0$.

Now the flatness of A (more precisely the flatness of every A_{ν}) over R implies that

$$0 \to \operatorname{Ker}\widehat{\otimes}_R R/\mathfrak{m} \to \mathcal{A}\widehat{\otimes}_R R/\mathfrak{m} \to A\widehat{\otimes}_R R/\mathfrak{m} \to 0$$

is exact. We conclude that $\mathfrak{m} \operatorname{Ker} = \operatorname{Ker}$. Since \mathcal{A} is Noetherian, Ker is a finitelygenerated ideal in \mathcal{A} . If $I = (X_1, \ldots, X_d)$, then $M = \mathfrak{m} \mathcal{A} + I$ is the maximal ideal of \mathcal{A} . We have $\operatorname{Ker} \subseteq \mathfrak{m} \operatorname{Ker} \subseteq M \operatorname{Ker}$, hence by Nakayama's lemma, $\operatorname{Ker} = 0$. This completes the reduction to R = k that was the object of this section.

2.3. Tate's Proposition 2. Tate's Proposition 2 states that the discriminant ideal of A_{ν} over R is generated by $p^{n\nu p^{h\nu}}$, where h = ht(G) and $n = \dim(G)$.

2.3.1. Discriminant identities. Let A be an R-algebra which is free of rank n as an R-module; say $A = \bigoplus_{i=1}^{n} R\omega_i$. We define the discriminant to be the element of $R/(R^{\times})^2$ given by

$$\delta_{A/R} = \operatorname{disc}_R(A) = \operatorname{det}(\operatorname{Tr}(\omega_i \omega_j)_{ij}).$$

Lemma 2.3.1. We have the identities

(a)
$$\delta_{A'\otimes_R A''/R} = (\delta_{A'/R})^{n''} \cdot (\delta_{A''/R})^{n'}$$
, where $n' = \operatorname{rk}_R(A')$ and $n'' = \operatorname{rk}_R(A'')$.
(b) For $A/A'/R$, we have

$$\delta_{A/R} = \delta_{A'/R}^{\mathrm{rk}_{A'}A} \cdot N_{A'/R} \delta_{A/A'}.$$

Now suppose that we have an exact sequence of finite flat commutative group schemes

$$0 \to H' \to H \to H'' \to 0.$$

with terms have orders m', m, and m'' respectively (so m = m'm'').

Tate uses the following lemma in his proof of his Proposition 2.

Lemma 2.3.2. disc $(H) = disc(H')^{m''} \cdot disc(H'')^{m'}$.

Proof. (Sketch.) In order to prove the lemma, it seems necessary to extend the definition of $\delta_{A/R}$ to a broader context. We need the following ingredients, which we simply assume without proof from now on.

- (i) The extension of the definition of $\delta_{A/R}$ to the context where A is faithfully flat over R and R is a product of local rings. See Conrad's Math 676 (Michigan) notes for some of this.
- (ii) The Lemma 2.3.1 in this general context. I do not know a reference for this.

We have $H' \times_R H = H \times_{H''} H$ via the map $(h', h) \mapsto (h'h, h)$. We now take discriminants on both sides of the corresponding equality

$$A' \otimes_R A = A \otimes_{A''} A.$$

On the left hand side we get $(\delta_{A'/R})^m \cdot (\delta_{A/R})^{m'}$. On the right hand side we use $\delta_{A\otimes_{A''}A/A''} = (\delta_{A/A''})^{2m'}$ to get

$$\delta_{A \otimes_{A''} A/R} = (\delta_{A''/R})^{(m')^2} \cdot N_{A''/R} (\delta_{A/A''}^{2m'}).$$

Again using transitivity we have $\delta_{A/R} = \delta_{A''/R}^{m'} \cdot N_{A''/R}(\delta_{A/A''})$, so that the right hand of the last equation is

$$(\delta_{A''/R})^{-m'^2} \cdot (\delta_{A/R})^{2m'}$$

Thus

$$(\delta_{A'/R})^m \cdot (\delta_{A/R})^{m'} = (\delta_{A''/R})^{-m'^2} \cdot (\delta_{A/R})^{2m'}$$
$$(\delta_{A'/R})^m \cdot (\delta_{A''/R})^{m'^2} = (\delta_{A/R})^{m'}.$$

Taking the m'-th roots of both side gives

$$(\delta_{A'/R})^{m''} \cdot (\delta_{A''/R})^{m'} = \delta_{A/R}.$$

The Lemma 2.3.2 and the obvious triviality of discriminant ideals for étale groups immediately reduced Proposition 2 to the case of connected p-divisible groups.

2.3.2. Proof of Proposition 2 assuming Lemma 1. We are in the situation where $G = G^{\circ}$ and corresponds to the formal group $\Gamma = \text{Spf}(\mathcal{A})$ via the Serre-Tate correspondence. As in Proposition 1, we have $A_{\nu} = \mathcal{A}/J_{\nu}$. Consider \mathcal{A} as a free module of rank $p^{h\nu}$ over itself by means of $\phi := \psi^{\nu}$. Consider \mathcal{A} as an algebra (via ϕ) over another copy \mathcal{A}' of \mathcal{A} . Let I' denote the augmentation ideal of \mathcal{A}' (generated by the X'_i). Since $A_{\nu} = \mathcal{A}/I'\mathcal{A}$, it suffices to prove the discriminant ideal of \mathcal{A} over \mathcal{A}' is generated by the desired power of p. More precisely, suppose $a_1, \ldots, a_r \in \mathcal{A}$ form a basis over \mathcal{A}' . Then $\bar{a}_1, \ldots, \bar{a}_r \in \mathcal{A}/I'\mathcal{A}$ form an R-basis (by Lemma 2.1.1); and note $r = \operatorname{rank}_{\mathcal{A}'}\mathcal{A} = p^{h^{\circ}\nu}$, for $h^{\circ} := \operatorname{ht}(G^{\circ})$). Then the reduction holds since

$$\delta_{\mathcal{A}/\mathcal{A}'} = \det(\mathrm{Tr}(a_i a_j))$$

modulo $I'\mathcal{A}$ is

$$\delta_{A_{\nu}/R} = \det(\operatorname{Tr}(\bar{a}_i \bar{a}_j)).$$

Next, we consider the modules of formal differentials Ω and Ω' of \mathcal{A} resp. \mathcal{A}' . There are free modules over \mathcal{A} resp. \mathcal{A}' generated by the differentials of the variables dX_i resp. dX'_i , $1 \leq i \leq n$. The map $\phi : \mathcal{A}' \to \mathcal{A}$ induces an \mathcal{A}' -linear map $d\phi : \Omega' \to \Omega$. Choosing bases in Ω' resp. Ω , we get basis element θ' resp. θ of $\Lambda^n \Omega'$ resp. $\Lambda^n \Omega$. Let $d\phi(\theta') = a\theta$, for some $a \in \mathcal{A}$.

By Lemma 1 (discussed below), we know that $\delta_{\mathcal{A}/\mathcal{A}'} = N_{\mathcal{A}/\mathcal{A}'}(a)$. Granting this, let us finish the proof of Proposition 2.

The first step is to choose a basis of translation-invariant differentials ω_i , i.e. such that if $\mu : \mathcal{A} \to \mathcal{A} \widehat{\otimes}_R \mathcal{A}$ defines the formal group structure, then $d\mu : \Omega \to \Omega \oplus \Omega$ satisfies $d\mu(\omega_i) = \omega_i \oplus \omega_i$.

Let us elaborate. The identity $d\mu(\omega_i) = \omega_i \oplus \omega_i$ is a consequence of left/right invariance. For $g \in G(S)$, define *left translation* τ_g by

$$\tau_g : G \longrightarrow S \times_S G \xrightarrow{(g, \mathrm{id})} G \times_S G \xrightarrow{m} G$$

6

(and right translation τ'_g is similarly defined). Writing $d\mu(\omega_i) = \omega_a \oplus \omega_b$, the leftinvariance $\tau^*_g \omega_i = \omega_i$ gives $\omega_i = \omega_b$. Right invariance likewise yields $\omega_i = \omega_a$. So $d\mu(\omega_i) = \omega_i \oplus \omega_i$ if ω_i is left/right invariant. On the other hand, the existence of a left (or right)-invariant basis ω_i for $\Omega_{A/R}$ is proved in [BLR], p. 100.

It follows that $d\mu^{(p)}: \Omega \to \Omega^{\oplus p}$ has $d\mu^{(p)}(\omega_i) = \omega_i^{\oplus p}$, and hence in the obvious notation we have $d\phi(\omega'_i) = p^{\nu}\omega_i$, whence $a = p^{\nu n}$. Proposition 2 now follows from Lemma 1 and the fact that \mathcal{A} is \mathcal{A}' -free of rank $p^{\nu h}$.

2.3.3. Proof of Lemma 1 assuming the existence of a certain Trace map. We shall assume the existence and properties of Tate's trace map $\text{Tr} : \Lambda^n \Omega \to \Lambda^n \Omega$:

(i) Tr is \mathcal{A}' -linear

(ii) $a \mapsto (\theta \mapsto \operatorname{Tr}(a\theta))$ gives an \mathcal{A} -linear module isomorphism

 $A \xrightarrow{\sim} \operatorname{Hom}_{\mathcal{A}'}(\Lambda^n \Omega, \Lambda^n \Omega')$

(iii) If $\theta' \in \Lambda^n \Omega'$, and $x \in \mathcal{A}$, then

$$\operatorname{Tr}(x \cdot d\phi(\theta')) = (\operatorname{Tr}_{\mathcal{A}/\mathcal{A}'}(x))\theta'.$$

Now use the basis elements $\theta \in \Lambda^n \Omega$ and $\theta' \in \Lambda^n \Omega'$ to identify $\Lambda^n \Omega \cong \mathcal{A}$ and $\Lambda^n \Omega' \cong \mathcal{A}'$. Then we can reformulate (ii) as an \mathcal{A} -linear isomorphism

(ii') $\mathcal{A} \xrightarrow{\sim} \operatorname{Hom}_{\mathcal{A}'}(\mathcal{A}, \mathcal{A}')$

Say $\tau \longleftrightarrow \operatorname{Tr}_{\mathcal{A}/\mathcal{A}'}$ under the above isomorphism, which means

$$\operatorname{Tr}(\tau x\theta) = \operatorname{Tr}_{\mathcal{A}/\mathcal{A}'}(x)\theta', \quad \forall x \in \mathcal{A}.$$

Now (iii) means $\operatorname{Tr}(xa\theta) = \operatorname{Tr}_{\mathcal{A}/\mathcal{A}'}(x)\theta'$ for $x \in A$, and so in the presence of (ii'), (iii) can be reformulated as

(iii') $a \longleftrightarrow \operatorname{Tr}_{\mathcal{A}/\mathcal{A}'}$ under $\mathcal{A} \xrightarrow{\sim} \operatorname{Hom}_{\mathcal{A}'}(\mathcal{A}, \mathcal{A}')$.

Therefore Lemma 1 will result from the following lemma.

Lemma 2.3.3. If $\tau \in \mathcal{A}$ has the property of (ii'), then $\delta_{\mathcal{A}/\mathcal{A}'} = N_{\mathcal{A}/\mathcal{A}'}(\tau)$.

Proof. Write $\mathcal{A} = \bigoplus_{i=1}^{m} \mathcal{A}' e_i$, and let $\pi_i : \mathcal{A} \to \mathcal{A}'$ be the projection onto the *i*-th factor. Under $\mathcal{A} \cong \operatorname{Hom}_{\mathcal{A}'}(\mathcal{A}, \mathcal{A}')$, we have $1 \longleftrightarrow f_0$ (this is the definition of f_0), and $r_i \longleftrightarrow \pi_i$ (this is the definition of r_i). It follows by \mathcal{A} -linearity that $r_i \longleftrightarrow r_i f_0$, so that $f_0(r_i x) = \pi_i(x)$.

Thus

$$(N_{\mathcal{A}/\mathcal{A}'}(\tau)) = (\det(\pi_j(\tau e_i)))$$

= $(\det(f_0(r_j\tau e_i)))$
= $(\det(f_0(\tau r_j e_i)))$
= $(\det(\operatorname{Tr}_{\mathcal{A}/\mathcal{A}'}(r_j e_i)))$
= $(\det(\operatorname{Tr}_{\mathcal{A}/\mathcal{A}'}(e_j e_i)))$
= $\delta_{\mathcal{A}/\mathcal{A}'}.$

THOMAS J. HAINES

Here in the penultimate equation we used the fact that $(r_j) = (a_{ij})(e_j)$ for some invertible matrix (a_{ij}) over \mathcal{A}' .

3. Remarks on duality for Tate's section (2.3)

3.1. Construction of dual of a *p*-divisible group. The point of characterizing G_{ν} as the kernel of $p^{\nu} : G_{\nu+\mu} \to G_{\nu+\mu}$ is that it dualizes well, allowing us to easily check that the dual of a *p*-divisible group is again a *p*-divisible group.

Indeed, we easily see that

$$\operatorname{cok}[p^{\nu}:G_{\nu+\mu}\to G_{\nu+\mu}]=G_{\nu+\mu}/G_{\mu}$$

which is isomorphic to G_{ν} via

$$p^{\mu}: G_{\nu+\mu}/G_{\mu} \xrightarrow{\sim} G_{\nu}.$$

It follows by taking duals that

$$G_{\nu}^{\vee} \xrightarrow{\sim} \ker[p^{\nu}: G_{\nu+\mu}^{\vee} \to G_{\nu+\mu}^{\vee}],$$

which shows that $(G_{\nu}^{\vee}, i_{\nu}^{\vee})$ is a *p*-divisible group, where $i_{\nu}^{\vee} : G_{\nu}^{\vee} \to G_{\nu+1}^{\vee}$ is the dual of $p: G_{\nu+1} \to G_{\nu}$.

3.2. Connection with dual abelian varieties. Let X be an abelian scheme of dimension n over k, with dual abelian variety X'. Then X'(p) is the Cartier dual of X(p):

$$X'(p) \cong (X(p))'$$

(cf. [M]).

Let \widetilde{X} be the formal completion of X along its zero section, so $\widetilde{X} = \text{Spf}(k[[X_1, \ldots, X_n]])$ since X is smooth of dimension n over k. Both X(p) and (X(p))' have height 2n. We shall below that each has dimension n.

We have $X[p^{\nu}] = X(p)^{\circ}[p^{\nu}]$ since X is supported on an infinitesimal neighborhood of the zero section. Therefore

$$\widetilde{X} \longleftrightarrow X(p)^{\circ}$$

under the Serre-Tate equivalence. In particular

$$\dim X(p) = \dim X(p)^{\circ} = \dim X = n.$$

Furthermore, $X(p)^{\circ}$ has dimension n and height h for some integer h with $n \leq h \leq 2n$. It turns out that every such value of h is attained for some X.

4. TATE'S PROPOSITION 4

Since k is perfect the sequence

$$0 \to G_k^{\circ} \to G_k \to G_k^{et} \to 0$$

splits canonically. Put another way, there exists a Hopf k-algebra morphism $\bar{\phi} : A_k^{\circ} = k[[X_1, \ldots, X_n]] \to A_k$ such that the resulting canonical morphism

$$\overline{\psi}: A_k^{\circ}\widehat{\otimes}_k A_k^{et} = A_k^{et}[[X_1, \dots, X_n]] \to A_k$$

is an isomorphism of Hopf k-algebras.

By Lemma 2.2.2, there is a lift ϕ for $\overline{\phi}$ (not necessarily a Hopf *R*-algebra map), and then this induces a continuous *R*-algebra homomorphism

$$\psi: A^{\circ}\widehat{\otimes}_R A^{et} \to A$$

which lifts ψ .

We claim ψ is an isomorphism. This shows that as formal schemes $G = G^{\circ} \times G^{et}$, and hence there is a formal section of $G \to G^{et}$ (note that it is not necessarily a section of formal *groups*). This will show that for each complete ring S we can plug into these functors, the sequence

$$0 \to G^{\circ}(S) \to G(S) \to G^{et}(S) \to 0$$

is exact.

Let $K := \operatorname{Ker}(\psi)$ and $C := \operatorname{Cok}(\psi)$. If $C \neq 0$, then choose a maximal ideal \mathfrak{M} of A such that $C_{\mathfrak{M}} \neq 0$. The surjectivity of $\overline{\psi}$ implies that $C/\mathfrak{m}C = 0$, i.e. $C = \mathfrak{m}C$. Then we also have $C_{\mathfrak{M}} = \mathfrak{m}C_{\mathfrak{M}}$. Now $C_{\mathfrak{M}}$ is finitely generated (by one element) over the local ring $A_{\mathfrak{M}}$, and $C_{\mathfrak{M}} = \mathfrak{m}C_{\mathfrak{M}} \subseteq \mathfrak{M}C_{\mathfrak{M}}$. Thus by Nakayama, $C_{\mathfrak{M}} = 0$, a contradiction. Thus C = 0.

Now we prove that K = 0. Set $\widehat{A} := A^{\circ} \widehat{\otimes}_R A^{et}$. As above, since A is R-flat, we get an exact sequence

$$0 \to K_k \to \widehat{A}_k \to A_k \to 0$$

hence $K = \mathfrak{m}K$. Now we'd like to argue as for C to show that K = 0; however, since \widehat{A} need not be Noetherian, we can't say K is a finitely generated ideal in \widehat{A} , so we need a different argument. Denote by $\widehat{J}_{\nu} \subset \widehat{A}$ the obvious family of ideals such that $\widehat{A} = \varprojlim \widehat{A}/\widehat{J}_{\nu}$. Note that if \widetilde{J}_{ν} denotes the image of \widehat{J}_{ν} in A, then we have an exact sequence

$$0 \to K/K \cap \widehat{J}_{\nu} \to \widehat{A}/\widehat{J}_{\nu} \to A/\widetilde{J}_{\nu} \to 0.$$

Now $K/K \cap \widehat{J}_{\nu}$ is a finitely-generated ideal in the Noetherian ring $\widehat{A}/\widehat{J}_{\nu}$, hence the equality $\mathfrak{m}(K/K \cap \widehat{J}_{\nu}) = K/K \cap \widehat{J}_{\nu}$ implies by the argument for C above that $K = K \cap \widehat{J}_{\nu}$. (This works even though \widehat{A} like A is not local; we need to localize at its maximal ideals.) Then we see that $K \subseteq \bigcap_{\nu} \widehat{J}_{\nu} = 0$, and K = 0 as desired.

5. TATE'S COROLLARY 1 TO PROPOSITION 4

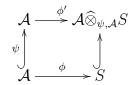
An easy diagram chase reduces us to the separate cases where G is étale or connected. First suppose G is étale. Then as noted earlier in Tate's section 2.4, we have

$$G(S) = \varinjlim_{\nu} G_{\nu}(S/\mathfrak{m}S).$$

It is enough to show that for $x \in G_{\nu}(S/\mathfrak{m}S)$, there is a finite extension $S' \supset S$ of the same form as S and an element $y \in G_{\nu+1}(S'/\mathfrak{m}S')$ such that py = x. Let k_S denote the residue field of S (equivalently, of $S/\mathfrak{m}S$). By the infinitesimal lifting criterion for étale schemes, we have $G_{\nu}(S/\mathfrak{m}S) = G_{\nu}(k_S)$. By the surjectivity of $G_{\nu+1} \to G_{\nu}$,

there is some finite extension $k' \supset k_S$ and an element $y \in G_{\nu+1}(k')$ with py = x in $G_{\nu}(k')$. Now let S' be a complete valuation ring containing S and having residue field k'. By the infinitesimal lifting property, we have $y \in G_{\nu+1}(S'/\mathfrak{m}S') = G_{\nu+1}(k')$, and py = x holds in $G_{\nu}(S'/\mathfrak{m}S')$, as desired.

Now we suppose G is connected. Let Γ be the associated divisible commutative formal group, with ring $\mathcal{A} = R[[X_1, \ldots, X_n]]$. We identify G(S) with the set $\operatorname{Hom}_{\operatorname{conts}}(\mathcal{A}, S)$ of continuous R-algebra homomorphisms $\phi : \mathcal{A} \to S$. We need to find a finite extension of complete valuation rings $i : S \hookrightarrow S'$ and a homomorphism $\phi' : \mathcal{A} \to S'$ for which $\phi' \circ \psi = i \circ \phi$. Since $\psi : \mathcal{A} \hookrightarrow \mathcal{A}$ makes \mathcal{A} finite and free over itself, we may take for the ϕ' the canonical map $\mathcal{A} \to \mathcal{A} \widehat{\otimes}_{\psi,\mathcal{A}} S$ in the push-out diagram



6. TATE'S MAIN THEOREM (4.2)

We just make a few remarks about a few points in the proof.

Use of disciminants in Proof of Cor. 2. Tate uses the fact that if $B_{\nu} \subseteq A_{\nu}$ and $\operatorname{disc}_{R}(B_{\nu}) = \operatorname{disc}_{R}(A_{\nu})$, then $B_{\nu} = A_{\nu}$. This follows by choosing a "stacked basis" $\omega_{1}, \ldots, \omega_{n}$ resp. $\pi^{r_{1}}\omega_{1}, \ldots, \pi^{r_{n}}\omega_{n}$ for A_{ν} resp. B_{ν} , where each $r_{i} \geq 0$. Since

$$\det(\operatorname{Tr}(\pi^{r_i}\omega_i\,\pi^{r_j}\omega_j)) = c^2\det(\operatorname{Tr}(\omega_i\omega_j)),$$

where $c = \pi^{\sum_i r_i}$, we see that $\operatorname{disc}_R(B_{\nu}) = \operatorname{disc}_R(A_{\nu})$ implies that $r_i = 0$ for all i, hence $B_{\nu} = A_{\nu}$.

Why is M assumed to be a \mathbb{Z}_p -summand in Prop. 12? Given $M \subset T(F)$, we need to find a corresponding p-divisible group $E_* \subset F \otimes_R K$. Because M is a direct summand, the Galois module $M/p^{\nu}M$ is contained in $T(F)/p^{\nu}T(F) = F_{\nu}(\bar{K})$. We define the étale K-group $E_{*\nu}$ by the equality of Galois modules $E_{*\nu}(\bar{K}) := M/p^{\nu}M$.

Why the algebras D_i are stationary Recall that R is a PID in this discussion.

Tate defines $E_{\nu} = \operatorname{Spec}(A_{\nu})$ where $A_{\nu} := u_{\nu}(B_{\nu}) \subset A_{*\nu}$. It follows that each A_{ν} is a finite-rank and free Hopf algebra over R. Since

$$E_{i+1}/E_i = \operatorname{Spec}(D_i)$$

by definition of quotient we have $D_i \subset A_{i+1}$ hence D_i is also finite-free over R.

The maps induced by \boldsymbol{p}

$$E_{i+\nu+1}/E_{i+1} \to E_{i+\nu}/E_i$$

(generically isomorphisms) induce maps

$$D_i \to D_{i+1}$$

which are all isomorphisms upon tensoring by K, hence are all injective and the D_i can be viewed as an increasing sequence of R-orders in a common separable K-algebra $D_i \otimes_R K$. Thus the D_i are all contained in the integral closure of R in $D_i \otimes_R K$.

Lemma 6.0.1. If R is a normal Noetherian domain, and \tilde{R} is its integral closure in a finite-dimensional separable K-algebra, then \tilde{R} is a Noetherian R-module.

Proof. Adapt 5.17 of [AM], which handles the case of separable *field* extensions of K.

Since the integral closure of R in $D_i \otimes_R K$ is Noetherian R-module, it follows that there exists an i_0 such that $D_i = D_{i+1}$ for all $i \ge i_0$.

References

- [AM] Atiyah-Macdonald, Introduction to Commutative Algebra.
- [BLR] S. Bosch, W. Lütkebohmert, M. Raynaud, Néron Models, Springer-Verlag. 1990. Math. Ann. 275, 365-399 (1986).
- [Mat] Matsumura, Commutative Ring Theory.
- [M] D. Mumford, Abelian Varieties.
- [T] J. Tate, *p*-divisible groups.
- [Sh] S. S. Shatz, *Group Schemes, Formal Groups, and p-Divisible Groups*, In: Arithemetic Geometry ed. Cornell and Silverman.