
NOTES ON TATE’S p-DIVISIBLE GROUPS

THOMAS J. HAINES

1. Statement of purpose

The aim here is simply to provide some details to some of the proofs in Tate’s paper
[T].

2. Tate’s Section 2.2

2.1. Lemmas about divisibility. We say Γ→ Γ is an isogeny of the formal group
Γ = Spf(A) if the corresponding map A → A is injective and makes A free over itself
of finite rank. Tate calls Γ divisible, if p : Γ → Γ is an isogeny. This is equivalent to
ψ : A → A is injective and makes Aψ free of finite rank over A.

Lemma 2.1.1. Suppose Aψ is A-free of rank n. Let a1, . . . , an ∈ A form a basis.
Then the images ā1, . . . , ān ∈ A1 = A/ψ(I)A form an R-basis for A1.

Proof. Given a ∈ A, there exist αi = ri + βi ∈ R⊕ I = A such that

a =
∑
i

ψ(αi)ai.

Reducing modulo ψ(I)A, we get

ā =
∑
i

ψ(ri)āi

showing that the āi generate A1 over R.
If
∑

i riāi = 0 i.e.
∑

i riai ∈ ψ(I)A, then there exist elements α1
i ∈ I with

ψ(r1 + α1
1)a1 + · · ·+ ψ(rn + α1

n)an ∈ ψ(I)2A.

Repeating, we get elements αji ∈ Ij such that

ψ(r1 + α1
1 + α2

i + · · · )a1 + · · ·+ ψ(rn + α1
n + α2

n + · · · )an = 0.

(Using the fact that the ideals Ij → 0 in the topology on A so that these inifinite
sums converge.)

By the A-freeness of Aψ, this gives

ri ∈ R ∩ ψ(I) = 0

for all i, proving the desired independence statement over R of the elements āi ∈
A1. �
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Lemma 2.1.2. Suppose ψ : A → A is injective and Aψ is free over A. Then for
each ν, Aψν is free over A and

rankAAψν = (rankAAψ)ν .

Proof. If a1, . . . , an ∈ A give an A-basis for Aψ, then the set of elements

ψν−1(aiν−1) . . . ψ(ai1)ai0

for i = (iν−1, . . . , i0) ranging over all elements of (Z/nZ)ν , forms an A-basis for Aψν .
The proof is by induction on ν. The generation does not use the injectivity of ψ,

but the linear-independence does. �

Corollary 2.1.3. Applying Lemma 2.1.1 to both ψ and ψν, and invoking Lemma
2.1.2, we get the equality

rankRA/ψν(I)A = (rankRA/ψ(I)A)ν .

2.2. Tate’s Proposition 1.

2.2.1. In Γ 7→ Γ(p), why is Γ(p) p-divisible? We assume Γ is divisible. Note that by
Lemma 2.1.1 and the fact that Γpν = ker[pν ]Γ corresponds to A/ψν(I)A, the A-rank
of Aψ is the order of Γp, which is ph for some h (since Γp is connected – cf. [Sh], p.
50). Then Corollary 2.1.3 shows that Γ(p) is p-divisible of height h.

2.2.2. In G 7→ Γ, why is Γ divisible? We first check that ψ : A → A is injective. For
each ν, the diagram

Gν+1
p //

p ##

Gν� _

��
Gν+1

corresponds to the diagram

Aν+1 Aν?
_ψ̃oo

Aν+1

ψ
cc OO

The map ψ̃ is injective since p : Gν+1 → Gν is a quotient map. This shows ψ
is injective: if ψ(aν+1)ν+1 = 0, then for all ν, we have ψ̃(aν) = 0, which by the

injectivity of ψ̃ implies that aν = 0.
Next we check that Aψ is free of finite rank over A (and the rank will be the height

of G, namely n = ph). Let a1, . . . , an ∈ A be elements whose images in A/ψ(I)A
yield an R-basis. We claim that a1, . . . , an form an A-basis for Aψ.

The fact that they generate is very similar to the proof of Lemma 2.1.1. Indeed,
given a ∈ A, for some ri ∈ R we have

a ∈
∑
i

riai + ψ(I)A.
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We can find some α1
i ∈ I for which

a ∈
∑
i

ψ(ri + α1
i )ai + ψ(I)2A.

Repeating this as in the proof of Lemma 2.1.1, we get (always with αji ∈ Ij)

a =
∑
i

ψ(ri + α1
i + α2

i + · · · )ai.

This shows that Aψ is generated by the elements a1, . . . , an.
Now we prove that the ai are independent over A. Note first that their images

clearly generate (A/ψν(I)A)ψ over A/ψν−1(I)A, hence form a basis for (A/ψν(I)A)ψ
over A/ψν−1(I)A) as well. Why are they independent? First, the map p : Gν → Gν

induces a faithfully flat quotient map p : Gν → Gν−1, and thus ψ : Aν → Aν factors
through the injective homomorphim ψ̃ : Aν−1 → Aν , and Aν is finite and flat over
Aν−1 via ψ̃. In fact since Aν = A/ψν(I)A is local, we see that

A/ψν−1(I)A ψ // A/ψν(I)A

is an injection and makes the target finite and free over the source. By comparing the
R-ranks (pνh vs p(ν−1)h), we see that (A/ψν(I)A)ψ has rank n = ph over A/ψν−1(I)A.

Now suppose we have a dependence relation

ψ(α1)a1 + · · ·+ ψ(αn)an = 0,

for some αi ∈ A. Consider this relation modulo ψν(I)A. The freeness result just
proved shows that each αi ∈ ψν−1(I)A. This holds for every ν. Thus each αi = 0, for
example by Tate’s Lemma 0. This completes the proof that ψ : Γ→ Γ is an isogeny
if Γ comes from a connected p-divisible group.

2.2.3. Reduction of essential surjectivity in Proposition 1 to R = k. In the first part
of this subsection, we do not assume that the p-divisible group G = lim−→

ν

Spec(Aν) is

connected.
Since the map of finite free R-modules Aν+1 → Aν splits R-linearly, A is the direct

product of a countable number of copies of R (as an R-module). Hence A is R-flat
(as an R-module it is R[[X]], which is R-flat by [AM], 10.14).

Lemma 2.2.1. For every n ≥ 1, we have

A/mnA = A⊗̂RR/mn = lim←−
ν

(Aν ⊗R R/mn)

A similar result holds for A in place of A, so that

R[[X1, . . . , Xd]]⊗̂RR/mn = R/mn[[X1, . . . , Xd]].

In particular, we have Ak = lim←−
ν

Aν,k and Ak = k[[X1, . . . , Xd]].
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Proof. Let Jν be the kernel of the projection A → Aν . Thus A = lim←−
ν

A/Jν . In view

of the definition of completed tensor product, our main assertion is immediate since
R/mn has the discrete topology. The side assertion that A/mnA = A⊗̂RR/mn is easy:
use the R-flatness of Aν and a Mittag-Leffler argument to show that

0→ A⊗̂Rmn → A→ A⊗̂RR/mn → 0

is exact; then observe that the image of A⊗̂Rmn in A is just mnA. �

Lemma 2.2.2. Any continuous k-algebra homomorphism φ̄ : k[[X1, . . . , Xn]] → Ak
can be lifted to a continuous R-algebra homomorphism φ : R[[X1, . . . , Xn]]→ A.

Proof. Recall A = lim←−
ν

A/Jν . Let Jν,k = Jν⊗̂Rk. Since A→ A/Jν splits R-linearly, we

have Ak/Jν,k = Aν,k and thus Ak = lim←−
ν

Ak/Jν,k.

The map φ̄ is determined by the images of the Xi in Ak, and since A (hence Ak) is
complete, the continuity/convergence amounts to saying that there exists N = N(ν),
an increasing function of ν, with the property that for all i and all sufficiently large
ν, we have

φ̄(XN
i ) ∈ Jν,k.

We may assume N(ν) ≥ ν for all ν. Let φ(Xi) be an arbitrary lift of φ̄(Xi). Then
these elements will determine a continuous homomorphism φ, provided we can prove
convergence in A.

We have φ(XN
i ) ∈ Jν + mA for large ν. Thus φ(XN2

i ) ∈ Jν + mNA ⊆ Jν + mνA
for all ν large. Then the function ν 7→ N(ν)2 will play for φ the role the function
ν 7→ N(ν) played for φ̄, since Jν + mνA→ 0 as ν 7→ ∞, in the topology on A.

�

From now on we assume Spf(A) is a connected p-divisible group. Let MA denote
the maximal ideal of A. In performing the reduction to R = k, we are assuming the
p-divisible group Spf(Ak) = lim−→ Spf(Aν,k) is of the form Spf(Ak) for some d. That is,
we are given a continuous isomorphism

k[[X1, . . . , Xd]] ∼= Ak

By Lemma 2.2.2, we may lift this to a continuous homomorphism φ : R[[X1, . . . , Xd]]→
A. By Nakayama, the composition R[[X1, . . . , Xd]] → A → Aν is surjective for each
ν. This seems to imply φ is surjective, but this doesn’t seem to be easy to justify.
Instead we take a different approach.

Write R[[X1, . . . , Xd]] = A and consider the exact sequence

0→ Ker→ A→ A→ Cok→ 0.

The following sequence (which is the same with the ”hats” removed, hence is exact)

A⊗̂RR/m � A⊗̂RR/m→ Cok⊗̂RR/m→ 0

shows that mCok = Cok. But then Cok ⊆MACok. Since (A,MA) is a local ring and
Cok is finitely generated over A (by one element), we conclude that Cok = 0.
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Now the flatness of A (more precisely the flatness of every Aν) over R implies that

0→ Ker⊗̂RR/m→ A⊗̂RR/m→ A⊗̂RR/m→ 0

is exact. We conclude that mKer = Ker. Since A is Noetherian, Ker is a finitely-
generated ideal in A. If I = (X1, . . . , Xd), then M = mA + I is the maximal ideal
of A. We have Ker ⊆ mKer ⊆ MKer, hence by Nakayama’s lemma, Ker = 0. This
completes the reduction to R = k that was the object of this section.

2.3. Tate’s Proposition 2. Tate’s Proposition 2 states that the discriminant ideal
of Aν over R is generated by pnνp

hν
, where h = ht(G) and n = dim(G).

2.3.1. Discriminant identities. Let A be an R-algebra which is free of rank n as an R-
module; say A = ⊕ni=1Rωi. We define the discriminant to be the element of R/(R×)2

given by

δA/R = discR(A) = det(Tr(ωiωj)ij).

Lemma 2.3.1. We have the identities

(a) δA′⊗RA′′/R = (δA′/R)n
′′ · (δA′′/R)n

′
, where n′ = rkR(A′) and n′′ = rkR(A′′).

(b) For A/A′/R, we have

δA/R = δ
rkA′A
A′/R ·NA′/RδA/A′ .

Now suppose that we have an exact sequence of finite flat commutative group
schemes

0→ H ′ → H → H ′′ → 0.

with terms have orders m′, m, and m′′ respectively (so m = m′m′′).
Tate uses the following lemma in his proof of his Proposition 2.

Lemma 2.3.2. disc(H) = disc(H ′)m
′′ · disc(H ′′)m

′
.

Proof. (Sketch.) In order to prove the lemma, it seems necessary to extend the
definition of δA/R to a broader context. We need the following ingredients, which we
simply assume without proof from now on.

(i) The extension of the definition of δA/R to the context where A is faithfully flat
over R and R is a product of local rings. See Conrad’s Math 676 (Michigan)
notes for some of this.

(ii) The Lemma 2.3.1 in this general context. I do not know a reference for this.

We have H ′ ×R H = H ×H′′ H via the map (h′, h) 7→ (h′h, h). We now take
discriminants on both sides of the corresponding equality

A′ ⊗R A = A⊗A′′ A.
On the left hand side we get (δA′/R)m · (δA/R)m

′
. On the right hand side we use

δA⊗A′′A/A′′ = (δA/A′′)
2m′ to get

δA⊗A′′A/R = (δA′′/R)(m′)2 ·NA′′/R(δ2m′

A/A′′).
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Again using transitivity we have δA/R = δm
′

A′′/R ·NA′′/R(δA/A′′), so that the right hand
of the last equation is

(δA′′/R)−m
′2 · (δA/R)2m′ .

Thus

(δA′/R)m · (δA/R)m
′
= (δA′′/R)−m

′2 · (δA/R)2m′

(δA′/R)m · (δA′′/R)m
′2

= (δA/R)m
′
.

Taking the m′-th roots of both side gives

(δA′/R)m
′′ · (δA′′/R)m

′
= δA/R.

�

The Lemma 2.3.2 and the obvious triviality of discriminant ideals for étale groups
immediately reduced Proposition 2 to the case of connected p-divisible groups.

2.3.2. Proof of Proposition 2 assuming Lemma 1. We are in the situation where
G = G◦ and corresponds to the formal group Γ = Spf(A) via the Serre-Tate cor-
respondence. As in Proposition 1, we have Aν = A/Jν . Consider A as a free module
of rank phν over itself by means of φ := ψν . Consider A as an algebra (via φ) over
another copy A′ of A. Let I ′ denote the augmentation ideal of A′ (generated by the
X ′i). Since Aν = A/I ′A, it suffices to prove the discriminant ideal of A over A′ is
generated by the desired power of p. More precisely, suppose a1, . . . , ar ∈ A form a
basis over A′. Then ā1, . . . , ār ∈ A/I ′A form an R-basis (by Lemma 2.1.1); and note
r = rankA′A = ph

◦ν , for h◦ := ht(G◦)). Then the reduction holds since

δA/A′ = det(Tr(aiaj))

modulo I ′A is

δAν/R = det(Tr(āiāj)).

Next, we consider the modules of formal differentials Ω and Ω′ of A resp. A′. There
are free modules over A resp. A′ generated by the differentials of the variables dXi

resp. dX ′i, 1 ≤ i ≤ n. The map φ : A′ → A induces an A′-linear map dφ : Ω′ → Ω.
Choosing bases in Ω′ resp. Ω, we get basis element θ′ resp. θ of ΛnΩ′ resp. ΛnΩ. Let
dφ(θ′) = aθ, for some a ∈ A.

By Lemma 1 (discussed below), we know that δA/A′ = NA/A′(a). Granting this, let
us finish the proof of Proposition 2.

The first step is to choose a basis of translation-invariant differentials ωi, ie. such
that if µ : A → A⊗̂RA defines the formal group structure, then dµ : Ω → Ω ⊕ Ω
satisfies dµ(ωi) = ωi ⊕ ωi.

Let us elaborate. The identity dµ(ωi) = ωi ⊕ ωi is a consequence of left/right
invariance. For g ∈ G(S), define left translation τg by

τg : G // S ×S G
(g,id)

// G×S G
m // G
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(and right translation τ ′g is similarly defined). Writing dµ(ωi) = ωa ⊕ ωb, the left-
invariance τ ∗gωi = ωi gives ωi = ωb. Right invariance likewise yields ωi = ωa. So
dµ(ωi) = ωi ⊕ ωi if ωi is left/right invariant. On the other hand, the existence of a
left (or right)-invariant basis ωi for ΩA/R is proved in [BLR], p. 100.

It follows that dµ(p) : Ω → Ω⊕p has dµ(p)(ωi) = ω⊕pi , and hence in the obvious
notation we have dφ(ω′i) = pνωi, whence a = pνn. Proposition 2 now follows from
Lemma 1 and the fact that A is A′-free of rank pνh.

2.3.3. Proof of Lemma 1 assuming the existence of a certain Trace map. We shall
assume the existence and properties of Tate’s trace map Tr : ΛnΩ→ ΛnΩ:

(i) Tr is A′-linear
(ii) a 7→ (θ 7→ Tr(aθ)) gives an A-linear module isomorphism

A →̃ HomA′(Λ
nΩ,ΛnΩ′)

(iii) If θ′ ∈ ΛnΩ′, and x ∈ A, then

Tr(x · dφ(θ′)) = (TrA/A′(x))θ′.

Now use the basis elements θ ∈ ΛnΩ and θ′ ∈ ΛnΩ′ to identify ΛnΩ ∼= A and
ΛnΩ′ ∼= A′. Then we can reformulate (ii) as an A-linear isomorphism

(ii’) A →̃ HomA′(A,A′)

Say τ ←→ TrA/A′ under the above isomorphism, which means

Tr(τxθ) = TrA/A′(x)θ′, ∀x ∈ A.
Now (iii) means Tr(xaθ) = TrA/A′(x)θ′ for x ∈ A, and so in the presence of (ii’), (iii)
can be reformulated as

(iii’) a←→ TrA/A′ under A →̃ HomA′(A,A′).

Therefore Lemma 1 will result from the following lemma.

Lemma 2.3.3. If τ ∈ A has the property of (ii’), then δA/A′ = NA/A′(τ).

Proof. Write A = ⊕mi=1A′ei, and let πi : A → A′ be the projection onto the i-th
factor. Under A ∼= HomA′(A,A′), we have 1←→ f0 (this is the definition of f0), and
ri ←→ πi (this is the definition of ri). It follows by A-linearity that ri ←→ rif0, so
that f0(rix) = πi(x).

Thus

(NA/A′(τ)) = (det(πj(τei)))

= (det(f0(rjτei)))

= (det(f0(τrjei)))

= (det(TrA/A′(rjei)))

= (det(TrA/A′(ejei)))

= δA/A′ .
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Here in the penultimate equation we used the fact that (rj) = (aij)(ej) for some
invertible matrix (aij) over A′. �

3. Remarks on duality for Tate’s section (2.3)

3.1. Construction of dual of a p-divisible group. The point of characterizing
Gν as the kernel of pν : Gν+µ → Gν+µ is that it dualizes well, allowing us to easily
check that the dual of a p-divisible group is again a p-divisible group.

Indeed, we easily see that

cok[pν : Gν+µ → Gν+µ] = Gν+µ/Gµ

which is isomorphic to Gν via

pµ : Gν+µ/Gµ →̃ Gν .

It follows by taking duals that

G∨ν →̃ ker[pν : G∨ν+µ → G∨ν+µ],

which shows that (G∨ν , i
∨
ν ) is a p-divisible group, where i∨ν : G∨ν → G∨ν+1 is the dual of

p : Gν+1 → Gν .

3.2. Connection with dual abelian varieties. Let X be an abelian scheme of
dimension n over k, with dual abelian variety X ′. Then X ′(p) is the Cartier dual of
X(p):

X ′(p) ∼= (X(p))′

(cf. [M]).

Let X̃ be the formal completion ofX along its zero section, so X̃ = Spf(k[[X1, . . . , Xn]])
since X is smooth of dimension n over k. Both X(p) and (X(p))′ have height 2n. We
shall below that each has dimension n.

We have X̃[pν ] = X(p)◦[pν ] since X̃ is supported on an infinitesimal neighborhood
of the zero section. Therefore

X̃ ←→ X(p)◦

under the Serre-Tate equivalence. In particular

dimX(p) = dimX(p)◦ = dim X̃ = n.

Furthermore, X(p)◦ has dimension n and height h for some integer h with n ≤ h ≤
2n. It turns out that every such value of h is attained for some X.

4. Tate’s Proposition 4

Since k is perfect the sequence

0→ G◦k → Gk → Get
k → 0

splits canonically. Put another way, there exists a Hopf k-algebra morphism φ̄ : A◦k =
k[[X1, . . . , Xn]]→ Ak such that the resulting canonical morphism

ψ̄ : A◦k⊗̂kAetk = Aetk [[X1, . . . , Xn]]→ Ak
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is an isomorphism of Hopf k-algebras.
By Lemma 2.2.2, there is a lift φ for φ̄ (not necessarily a Hopf R-algebra map), and

then this induces a continuous R-algebra homomorphism

ψ : A◦⊗̂RAet → A

which lifts ψ̄.
We claim ψ is an isomorphism. This shows that as formal schemes G = G◦ ×Get,

and hence there is a formal section of G → Get (note that it is not necessarily a
section of formal groups). This will show that for each complete ring S we can plug
into these functors, the sequence

0→ G◦(S)→ G(S)→ Get(S)→ 0

is exact.
Let K := Ker(ψ) and C := Cok(ψ). If C 6= 0, then choose a maximal ideal M of

A such that CM 6= 0. The surjectivity of ψ̄ implies that C/mC = 0, i.e. C = mC.
Then we also have CM = mCM. Now CM is finitely generated (by one element)
over the local ring AM, and CM = mCM ⊆ MCM. Thus by Nakayama, CM = 0, a
contradiction. Thus C = 0.

Now we prove that K = 0. Set Â := A◦⊗̂RAet. As above, since A is R-flat, we get
an exact sequence

0→ Kk → Âk → Ak → 0

hence K = mK. Now we’d like to argue as for C to show that K = 0; however, since

Â need not be Noetherian, we can’t say K is a finitely generated ideal in Â, so we

need a different argument. Denote by Ĵν ⊂ Â the obvious family of ideals such that

Â = lim←−
ν

Â/Ĵν . Note that if J̃ν denotes the image of Ĵν in A, then we have an exact

sequence

0→ K/K ∩ Ĵν → Â/Ĵν → A/J̃ν → 0.

Now K/K ∩ Ĵν is a finitely-generated ideal in the Noetherian ring Â/Ĵν , hence the

equality m(K/K ∩ Ĵν) = K/K ∩ Ĵν implies by the argument for C above that K =

K ∩ Ĵν . (This works even though Â like A is not local; we need to localize at its

maximal ideals.) Then we see that K ⊆
⋂
ν Ĵν = 0, and K = 0 as desired.

5. Tate’s Corollary 1 to Proposition 4

An easy diagram chase reduces us to the separate cases where G is étale or con-
nected. First suppose G is étale. Then as noted earlier in Tate’s section 2.4, we
have

G(S) = lim−→
ν

Gν(S/mS).

It is enough to show that for x ∈ Gν(S/mS), there is a finite extension S ′ ⊃ S of the
same form as S and an element y ∈ Gν+1(S ′/mS ′) such that py = x. Let kS denote
the residue field of S (equivalently, of S/mS). By the infinitesimal lifting criterion
for étale schemes, we have Gν(S/mS) = Gν(kS). By the surjectivity of Gν+1 → Gν ,
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there is some finite extension k′ ⊃ kS and an element y ∈ Gν+1(k′) with py = x in
Gν(k

′). Now let S ′ be a complete valuation ring containing S and having residue field
k′. By the infinitesimal lifting property, we have y ∈ Gν+1(S ′/mS ′) = Gν+1(k′), and
py = x holds in Gν(S

′/mS ′), as desired.
Now we suppose G is connected. Let Γ be the associated divisible commuta-

tive formal group, with ring A = R[[X1, . . . , Xn]]. We identify G(S) with the set
Homconts(A, S) of continuous R-algebra homomorphisms φ : A → S. We need to
find a finite extension of complete valuation rings i : S ↪→ S ′ and a homomorphism
φ′ : A → S ′ for which φ′ ◦ ψ = i ◦ φ. Since ψ : A ↪→ A makes A finite and free
over itself, we may take for the φ′ the canonical map A → A⊗̂ψ,AS in the push-out
diagram

A φ′ // A⊗̂ψ,AS

A
?�

ψ

OO

φ // S
?�

OO

6. Tate’s Main Theorem (4.2)

We just make a few remarks about a few points in the proof.

Use of disciminants in Proof of Cor. 2. Tate uses the fact that if Bν ⊆ Aν and
discR(Bν) = discR(Aν), then Bν = Aν . This follows by choosing a ”stacked basis”
ω1, . . . , ωn resp. πr1ω1, . . . , π

rnωn for Aν resp. Bν , where each ri ≥ 0. Since

det(Tr(πriωi π
rjωj)) = c2det(Tr(ωiωj)),

where c = π
∑
i ri , we see that discR(Bν) = discR(Aν) implies that ri = 0 for all i,

hence Bν = Aν .

Why is M assumed to be a Zp-summand in Prop. 12? Given M ⊂ T (F ), we need to
find a corresponding p-divisible group E∗ ⊂ F⊗RK. Because M is a direct summand,
the Galois module M/pνM is contained in T (F )/pνT (F ) = Fν(K̄). We define the
étale K-group E∗ν by the equality of Galois modules E∗ν(K̄) := M/pνM .

Why the algebras Di are stationary Recall that R is a PID in this discussion.
Tate defines Eν = Spec(Aν) where Aν := uν(Bν) ⊂ A∗ν . It follows that each Aν is

a finite-rank and free Hopf algebra over R. Since

Ei+1/Ei = Spec(Di)

by definition of quotient we have Di ⊂ Ai+1 hence Di is also finite-free over R.
The maps induced by p

Ei+ν+1/Ei+1 → Ei+ν/Ei

(generically isomorphisms) induce maps

Di → Di+1
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which are all isomorphisms upon tensoring by K, hence are all injective and the Di

can be viewed as an increasing sequence of R-orders in a common separable K-algebra
Di ⊗R K. Thus the Di are all contained in the integral closure of R in Di ⊗R K.

Lemma 6.0.1. If R is a normal Noetherian domain, and R̃ is its integral closure in
a finite-dimensional separable K-algebra, then R̃ is a Noetherian R-module.

Proof. Adapt 5.17 of [AM], which handles the case of separable field extensions of
K. �

Since the integral closure of R in Di ⊗RK is Noetherian R-module, it follows that
there exists an i0 such that Di = Di+1 for all i ≥ i0.
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