Survey of Affine Deligne-Lusztig Varieties

Thomas J. Haines

Mathematics Department University of Maryland

March 5, 2009

- ∢ ≣ →

.≣ . ►

- ∢ ∩ ¬ >

Outline

- **1** A Question in σ -linear algebra
- 2 Basic Questions about ADLVs
- Isocrystals and Mazur's inequality
- 4 Non-emptiness of ADLVs in the affine Grassmannian
- 5 Dimensions of ADLVs in the affine Grassmannian
- 6 ADLVs in the affine flag variety

A 1

A question in σ -linear algebra

- Let $k = \mathbb{F}_q$. Gal (\overline{k}/k) has a canonical generator $\sigma : x \mapsto x^q$.
- Let O := k̄[[ε]] and Frac(O) =: L = k̄((ε)). The Frobenius automorphism σ of L is defined by

$$\sigma(\sum_i a_i \epsilon^i) = \sum_i a_i^q \epsilon^i.$$

- We have $L^{\sigma} = F := k((\epsilon))$ and $\mathcal{O}^{\sigma} = \mathcal{O}_F := k[[\epsilon]].$
- σ -Linear Algebra Question: Given $b \in GL_n(L)$ and $\mu = (\mu_1, \dots, \mu_n) \in \mathbb{Z}^n$, does there exist an \mathcal{O} -lattice $\Lambda \subset L^n$ such that $b\sigma(\Lambda) \subseteq \Lambda$, and

$$\Lambda/b\sigma(\Lambda) \cong \mathcal{O}/\epsilon^{\mu_1} \oplus \cdots \oplus \mathcal{O}/\epsilon^{\mu_n},$$

in other words, such that $inv(\Lambda, b\sigma(\Lambda)) = \mu$? If yes, what is the **dimension** of the "space of such Λ 's"?

A question in σ -linear algebra

- Let $k = \mathbb{F}_q$. Gal (\overline{k}/k) has a canonical generator $\sigma : x \mapsto x^q$.
- Let O := k̄[[ε]] and Frac(O) =: L = k̄((ε)). The Frobenius automorphism σ of L is defined by

$$\sigma(\sum_i a_i \epsilon^i) = \sum_i a_i^q \epsilon^i.$$

• We have $L^{\sigma} = F := k((\epsilon))$ and $\mathcal{O}^{\sigma} = \mathcal{O}_F := k[[\epsilon]].$

• σ -Linear Algebra Question: Given $b \in GL_n(L)$ and $\mu = (\mu_1, \dots, \mu_n) \in \mathbb{Z}^n$, does there exist an \mathcal{O} -lattice $\Lambda \subset L^n$ such that $b\sigma(\Lambda) \subseteq \Lambda$, and

$$\Lambda/b\sigma(\Lambda) \cong \mathcal{O}/\epsilon^{\mu_1} \oplus \cdots \oplus \mathcal{O}/\epsilon^{\mu_n},$$

in other words, such that $inv(\Lambda, b\sigma(\Lambda)) = \mu$? If yes, what is the **dimension** of the "space of such Λ 's"?

A question in σ -linear algebra

- Let $k = \mathbb{F}_q$. Gal (\overline{k}/k) has a canonical generator $\sigma : x \mapsto x^q$.
- Let O := k̄[[ε]] and Frac(O) =: L = k̄((ε)). The Frobenius automorphism σ of L is defined by

$$\sigma(\sum_i a_i \epsilon^i) = \sum_i a_i^q \epsilon^i.$$

• We have $L^{\sigma} = F := k((\epsilon))$ and $\mathcal{O}^{\sigma} = \mathcal{O}_F := k[[\epsilon]]$.

• σ -Linear Algebra Question: Given $b \in GL_n(L)$ and $\mu = (\mu_1, \dots, \mu_n) \in \mathbb{Z}^n$, does there exist an \mathcal{O} -lattice $\Lambda \subset L^n$ such that $b\sigma(\Lambda) \subseteq \Lambda$, and

$$\Lambda/b\sigma(\Lambda) \cong \mathcal{O}/\epsilon^{\mu_1} \oplus \cdots \oplus \mathcal{O}/\epsilon^{\mu_n},$$

in other words, such that $inv(\Lambda, b\sigma(\Lambda)) = \mu$? If yes, what is the **dimension** of the "space of such Λ 's"?

A question in σ -linear algebra

- Let $k = \mathbb{F}_q$. Gal (\overline{k}/k) has a canonical generator $\sigma : x \mapsto x^q$.
- Let O := k̄[[ε]] and Frac(O) =: L = k̄((ε)). The Frobenius automorphism σ of L is defined by

$$\sigma(\sum_i a_i \epsilon^i) = \sum_i a_i^q \epsilon^i.$$

- We have $L^{\sigma} = F := k((\epsilon))$ and $\mathcal{O}^{\sigma} = \mathcal{O}_F := k[[\epsilon]]$.
- σ -Linear Algebra Question: Given $b \in GL_n(L)$ and $\mu = (\mu_1, \dots, \mu_n) \in \mathbb{Z}^n$, does there exist an \mathcal{O} -lattice $\Lambda \subset L^n$ such that $b\sigma(\Lambda) \subseteq \Lambda$, and

$$\Lambda/b\sigma(\Lambda) \cong \mathcal{O}/\epsilon^{\mu_1} \oplus \cdots \oplus \mathcal{O}/\epsilon^{\mu_n},$$

in other words, such that $inv(\Lambda, b\sigma(\Lambda)) = \mu$? If yes, what is the **dimension** of the "space of such Λ 's"?

- A question in σ -linear algebra
 - Let $k = \mathbb{F}_q$. Gal (\overline{k}/k) has a canonical generator $\sigma : x \mapsto x^q$.
 - Let O := k̄[[ε]] and Frac(O) =: L = k̄((ε)). The Frobenius automorphism σ of L is defined by

$$\sigma(\sum_i a_i \epsilon^i) = \sum_i a_i^q \epsilon^i.$$

- We have $L^{\sigma} = F := k((\epsilon))$ and $\mathcal{O}^{\sigma} = \mathcal{O}_F := k[[\epsilon]].$
- σ -Linear Algebra Question: Given $b \in GL_n(L)$ and $\mu = (\mu_1, \dots, \mu_n) \in \mathbb{Z}^n$, does there exist an \mathcal{O} -lattice $\Lambda \subset L^n$ such that $b\sigma(\Lambda) \subseteq \Lambda$, and

$$\Lambda/b\sigma(\Lambda) \cong \mathcal{O}/\epsilon^{\mu_1} \oplus \cdots \oplus \mathcal{O}/\epsilon^{\mu_n},$$

in other words, such that $inv(\Lambda, b\sigma(\Lambda)) = \mu$? If yes, what is the **dimension** of the "space of such Λ 's"?

Examples

- Define X^{GL_n}_μ(b) = {Λ ⊂ Lⁿ | inv(Λ, bσ(Λ)) = μ}. Call it the Affine Deligne-Lusztig Variety (ADLV) associated to GL_n, b, and μ.
- (I) n = 2, b = 1, and $\mu = (0, 0)$. Then
- $X^{\mathsf{GL}_2}_{\mu}(b) = \{\Lambda \mid \sigma(\Lambda) = \Lambda\}$
- = $\{\mathcal{O}_F \text{-lattices } \Lambda_F \subset F^2\}$
- = the vertices in the building (a tree) for GL₂(F). This is an infinite discrete set (dim = 0).
- (II) n=2, b=1 and $\mu=(\mu_1,\mu_2)$, where $\mu_1\geq\mu_2$. Then

0

dim
$$X_{\mu}^{\mathsf{GL}_2}(b) = \begin{cases} -\infty, & \text{if } \mu_1 + \mu_2 \neq 0 \\ \mu_1, & \text{if } \mu_1 + \mu_2 = 0. \end{cases}$$

Examples

- Define $X_{\mu}^{\mathsf{GL}_n}(b) = \{\Lambda \subset L^n \mid \mathsf{inv}(\Lambda, b\sigma(\Lambda)) = \mu\}$. Call it the Affine Deligne-Lusztig Variety (ADLV) associated to GL_n , b, and μ .
- (I) n = 2, b = 1, and $\mu = (0, 0)$. Then
- $X^{\mathsf{GL}_2}_{\mu}(b) = \{\Lambda \mid \sigma(\Lambda) = \Lambda\}$
- = $\{\mathcal{O}_F$ -lattices $\Lambda_F \subset F^2\}$
- the vertices in the building (a tree) for GL₂(F). This is an infinite discrete set (dim = 0).
- (II) $n=2,\,b=1$ and $\mu=(\mu_1,\mu_2)$, where $\mu_1\geq\mu_2$. Then

0

dim
$$X_{\mu}^{\mathsf{GL}_2}(b) = \begin{cases} -\infty, & \text{if } \mu_1 + \mu_2 \neq 0 \\ \mu_1, & \text{if } \mu_1 + \mu_2 = 0. \end{cases}$$

(E)

Examples

- Define $X_{\mu}^{\mathsf{GL}_n}(b) = \{\Lambda \subset L^n \mid \mathsf{inv}(\Lambda, b\sigma(\Lambda)) = \mu\}$. Call it the Affine Deligne-Lusztig Variety (ADLV) associated to GL_n , b, and μ .
- (I) n = 2, b = 1, and $\mu = (0, 0)$. Then

•
$$X^{\mathsf{GL}_2}_{\mu}(b) = \{\Lambda \mid \sigma(\Lambda) = \Lambda\}$$

- = $\{\mathcal{O}_F ext{-lattices} \Lambda_F \subset F^2\}$
- = the vertices in the building (a tree) for $GL_2(F)$. This is an infinite discrete set (dim = 0).
- (II) $n=2,\,b=1$ and $\mu=(\mu_1,\mu_2)$, where $\mu_1\geq\mu_2.$ Then

0

dim
$$X_{\mu}^{\mathsf{GL}_2}(b) = \begin{cases} -\infty, & \text{if } \mu_1 + \mu_2 \neq 0 \\ \mu_1, & \text{if } \mu_1 + \mu_2 = 0. \end{cases}$$

(E)

Examples

- Define X^{GL_n}_μ(b) = {Λ ⊂ Lⁿ | inv(Λ, bσ(Λ)) = μ}. Call it the Affine Deligne-Lusztig Variety (ADLV) associated to GL_n, b, and μ.
- (I) n = 2, b = 1, and $\mu = (0, 0)$. Then

•
$$X^{\mathsf{GL}_2}_{\mu}(b) = \{\Lambda \mid \sigma(\Lambda) = \Lambda\}$$

• =
$$\{\mathcal{O}_F \text{-lattices } \Lambda_F \subset F^2\}$$

• = the vertices in the building (a tree) for $GL_2(F)$. This is an infinite discrete set (dim = 0).

• (II)
$$n=2,\,b=1$$
 and $\mu=(\mu_1,\mu_2)$, where $\mu_1\geq\mu_2.$ Then

0

dim
$$X_{\mu}^{\mathsf{GL}_2}(b) = \begin{cases} -\infty, & \text{if } \mu_1 + \mu_2 \neq 0 \\ \mu_1, & \text{if } \mu_1 + \mu_2 = 0. \end{cases}$$

∃ ► < ∃ ►</p>

Examples

- Define X^{GL_n}_μ(b) = {Λ ⊂ Lⁿ | inv(Λ, bσ(Λ)) = μ}. Call it the Affine Deligne-Lusztig Variety (ADLV) associated to GL_n, b, and μ.
- (I) n = 2, b = 1, and $\mu = (0, 0)$. Then

•
$$X^{\mathsf{GL}_2}_{\mu}(b) = \{\Lambda \mid \sigma(\Lambda) = \Lambda\}$$

• =
$$\{\mathcal{O}_F \text{-lattices } \Lambda_F \subset F^2\}$$

• = the vertices in the building (a tree) for $GL_2(F)$. This is an infinite discrete set (dim = 0).

• (II) n=2, b=1 and $\mu=(\mu_1,\mu_2)$, where $\mu_1\geq \mu_2$. Then

dim
$$X_{\mu}^{\mathsf{GL}_2}(b) = \begin{cases} -\infty, & \text{if } \mu_1 + \mu_2 \neq 0 \\ \mu_1, & \text{if } \mu_1 + \mu_2 = 0. \end{cases}$$

A B F A B F

Examples

- Define X^{GL_n}_μ(b) = {Λ ⊂ Lⁿ | inv(Λ, bσ(Λ)) = μ}. Call it the Affine Deligne-Lusztig Variety (ADLV) associated to GL_n, b, and μ.
- (I) n = 2, b = 1, and $\mu = (0, 0)$. Then

•
$$X^{\mathsf{GL}_2}_{\mu}(b) = \{\Lambda \mid \sigma(\Lambda) = \Lambda\}$$

• =
$$\{\mathcal{O}_F \text{-lattices } \Lambda_F \subset F^2\}$$

• = the vertices in the building (a tree) for $GL_2(F)$. This is an infinite discrete set (dim = 0).

• (II)
$$n=2,\,b=1$$
 and $\mu=(\mu_1,\mu_2)$, where $\mu_1\geq\mu_2.$ Then

dim
$$X_{\mu}^{\mathsf{GL}_2}(b) = \begin{cases} -\infty, & \text{if } \mu_1 + \mu_2 \neq 0 \\ \mu_1, & \text{if } \mu_1 + \mu_2 = 0. \end{cases}$$

Examples

- Define X^{GL_n}_μ(b) = {Λ ⊂ Lⁿ | inv(Λ, bσ(Λ)) = μ}. Call it the Affine Deligne-Lusztig Variety (ADLV) associated to GL_n, b, and μ.
- (I) n = 2, b = 1, and $\mu = (0, 0)$. Then

•
$$X^{\mathsf{GL}_2}_{\mu}(b) = \{\Lambda \mid \sigma(\Lambda) = \Lambda\}$$

• =
$$\{\mathcal{O}_F \text{-lattices } \Lambda_F \subset F^2\}$$

the vertices in the building (a tree) for GL₂(F). This is an infinite discrete set (dim = 0).

• (II)
$$n=2, b=1$$
 and $\mu=(\mu_1,\mu_2)$, where $\mu_1\geq\mu_2$. Then

۲

dim
$$X^{\mathsf{GL}_2}_{\mu}(b) = \begin{cases} -\infty, & \text{if } \mu_1 + \mu_2 \neq 0 \\ \mu_1, & \text{if } \mu_1 + \mu_2 = 0. \end{cases}$$

• It is instructive to prove that **non-emptiness implies** $\mu_1 + \mu_2 = 0$.

- Let $\Lambda_0 = \mathcal{O}e_1 \oplus \mathcal{O}e_2$. Let $K = \operatorname{GL}_2(\mathcal{O}) = \operatorname{Stab}_{\operatorname{GL}_2(L)}(\Lambda_0)$.
- Write $\Lambda = g\Lambda_0$ for $g \in GL_2(L)$.
- Theory of elementary divisors implies

$$\Lambda \in X^{\mathsf{GL}_2}_{\mu}(1) \Leftrightarrow g^{-1}\sigma(g) \in K \begin{bmatrix} \epsilon^{\mu_1} & 0\\ 0 & \epsilon^{\mu_2} \end{bmatrix} K.$$

• Taking determinants, the above implies

$$\epsilon^{\mu_1+\mu_2} \in \det(g^{-1}\sigma(g))\mathcal{O}^{\times} = \mathcal{O}^{\times},$$

and thus $\mu_1 + \mu_2 = 0$.

< 回 > < 三 > < 三 >

- It is instructive to prove that **non-emptiness implies** $\mu_1 + \mu_2 = 0$.
- Let $\Lambda_0 = \mathcal{O}e_1 \oplus \mathcal{O}e_2$. Let $K = \mathsf{GL}_2(\mathcal{O}) = \mathsf{Stab}_{\mathsf{GL}_2(L)}(\Lambda_0)$.
- Write $\Lambda = g\Lambda_0$ for $g \in GL_2(L)$.
- Theory of elementary divisors implies

$$\Lambda \in X^{\mathsf{GL}_2}_{\mu}(1) \Leftrightarrow g^{-1}\sigma(g) \in K \begin{bmatrix} \epsilon^{\mu_1} & 0\\ 0 & \epsilon^{\mu_2} \end{bmatrix} K.$$

• Taking determinants, the above implies

$$\epsilon^{\mu_1+\mu_2} \in \det(g^{-1}\sigma(g))\mathcal{O}^{\times} = \mathcal{O}^{\times},$$

and thus $\mu_1 + \mu_2 = 0$.

< 回 > < 三 > < 三 >

- It is instructive to prove that **non-emptiness implies** $\mu_1 + \mu_2 = 0$.
- Let $\Lambda_0 = \mathcal{O}e_1 \oplus \mathcal{O}e_2$. Let $K = \mathsf{GL}_2(\mathcal{O}) = \mathsf{Stab}_{\mathsf{GL}_2(L)}(\Lambda_0)$.
- Write $\Lambda = g\Lambda_0$ for $g \in GL_2(L)$.

• Theory of elementary divisors implies

$$\Lambda \in X^{\mathsf{GL}_2}_{\mu}(1) \Leftrightarrow g^{-1}\sigma(g) \in K \begin{bmatrix} \epsilon^{\mu_1} & 0\\ 0 & \epsilon^{\mu_2} \end{bmatrix} K.$$

• Taking determinants, the above implies

$$\epsilon^{\mu_1+\mu_2} \in \det(g^{-1}\sigma(g))\mathcal{O}^{\times} = \mathcal{O}^{\times},$$

and thus $\mu_1 + \mu_2 = 0$.

(*) *) *) *)

< 17 ▶

- It is instructive to prove that **non-emptiness implies** $\mu_1 + \mu_2 = 0$.
- Let $\Lambda_0 = \mathcal{O}e_1 \oplus \mathcal{O}e_2$. Let $K = \mathsf{GL}_2(\mathcal{O}) = \mathsf{Stab}_{\mathsf{GL}_2(L)}(\Lambda_0)$.
- Write $\Lambda = g\Lambda_0$ for $g \in GL_2(L)$.
- Theory of elementary divisors implies

$$\Lambda \in X^{\mathsf{GL}_2}_{\mu}(1) \Leftrightarrow g^{-1}\sigma(g) \in K \begin{bmatrix} \epsilon^{\mu_1} & 0 \\ 0 & \epsilon^{\mu_2} \end{bmatrix} K.$$

• Taking determinants, the above implies

$$\epsilon^{\mu_1+\mu_2} \in \det(g^{-1}\sigma(g))\mathcal{O}^{\times} = \mathcal{O}^{\times},$$

and thus $\mu_1 + \mu_2 = 0$.

< 回 > < 三 > < 三 >

- It is instructive to prove that **non-emptiness implies** $\mu_1 + \mu_2 = 0$.
- Let $\Lambda_0 = \mathcal{O}e_1 \oplus \mathcal{O}e_2$. Let $K = \mathsf{GL}_2(\mathcal{O}) = \mathsf{Stab}_{\mathsf{GL}_2(L)}(\Lambda_0)$.
- Write $\Lambda = g\Lambda_0$ for $g \in GL_2(L)$.
- Theory of elementary divisors implies

$$\Lambda \in X^{\mathsf{GL}_2}_{\mu}(1) \Leftrightarrow g^{-1}\sigma(g) \in K \begin{bmatrix} \epsilon^{\mu_1} & 0\\ 0 & \epsilon^{\mu_2} \end{bmatrix} K.$$

• Taking determinants, the above implies

$$\epsilon^{\mu_1+\mu_2} \in \det(g^{-1}\sigma(g))\mathcal{O}^{\times} = \mathcal{O}^{\times},$$

and thus $\mu_1 + \mu_2 = 0$.

< 回 > < 三 > < 三 >

ADLVs for general ${\boldsymbol{G}}$

- Let G denote a (split) connected reductive group, and put $K = G(\mathcal{O})$.
- Examples: GL_n , SL_n , SO(n), Sp(2n), G_2 , E_8 , etc.
- The analog of μ = (μ₁,..., μ₂) ∈ Zⁿ, with μ₁ ≥ ··· ≥ μ_n is a dominant cocharacter μ : G_m → A, for A a (split) maximal torus in G. Denote these by X_{*}(A)_{dom}.
- Cartan Decomposition: $G(L) = \coprod_{\mu \in X_*(A)_{\text{dom}}} K\mu(\epsilon)K.$
- Define $X^G_{\mu}(b) = \{gK \in G(L)/K \mid g^{-1}b\sigma(g) \in K\mu(\epsilon)K\}.$
- This is a locally closed, finite-dimensional subvariety of the affine Grassmannian G(L)/K.

()

ADLVs for general ${\boldsymbol{G}}$

- Let G denote a (split) connected reductive group, and put $K = G(\mathcal{O})$.
- Examples: GL_n , SL_n , SO(n), Sp(2n), G_2 , E_8 , etc.
- The analog of μ = (μ₁,..., μ₂) ∈ Zⁿ, with μ₁ ≥ ··· ≥ μ_n is a dominant cocharacter μ : G_m → A, for A a (split) maximal torus in G. Denote these by X_{*}(A)_{dom}.
- Cartan Decomposition: $G(L) = \coprod_{\mu \in X_*(A)_{\text{dom}}} K\mu(\epsilon)K.$
- Define $X^G_{\mu}(b) = \{gK \in G(L)/K \mid g^{-1}b\sigma(g) \in K\mu(\epsilon)K\}.$
- This is a locally closed, finite-dimensional subvariety of the affine Grassmannian G(L)/K.

(E)

ADLVs for general ${\boldsymbol{G}}$

- Let G denote a (split) connected reductive group, and put $K = G(\mathcal{O})$.
- Examples: GL_n , SL_n , SO(n), Sp(2n), G_2 , E_8 , etc.
- The analog of μ = (μ₁,..., μ₂) ∈ Zⁿ, with μ₁ ≥ ··· ≥ μ_n is a dominant cocharacter μ : G_m → A, for A a (split) maximal torus in G. Denote these by X_{*}(A)_{dom}.
- Cartan Decomposition: $G(L) = \coprod_{\mu \in X_*(A)_{\text{dom}}} K\mu(\epsilon)K.$
- Define $X^G_{\mu}(b) = \{gK \in G(L)/K \mid g^{-1}b\sigma(g) \in K\mu(\epsilon)K\}.$
- This is a locally closed, finite-dimensional subvariety of the affine Grassmannian G(L)/K.

A B M A B M

ADLVs for general ${\cal G}$

- Let G denote a (split) connected reductive group, and put $K = G(\mathcal{O})$.
- Examples: GL_n , SL_n , SO(n), Sp(2n), G_2 , E_8 , etc.
- The analog of μ = (μ₁,..., μ₂) ∈ Zⁿ, with μ₁ ≥ ··· ≥ μ_n is a dominant cocharacter μ : G_m → A, for A a (split) maximal torus in G. Denote these by X_{*}(A)_{dom}.
- Cartan Decomposition: $G(L) = \coprod_{\mu \in X_*(A)_{\text{dom}}} K\mu(\epsilon)K.$
- Define $X^G_{\mu}(b) = \{gK \in G(L)/K \mid g^{-1}b\sigma(g) \in K\mu(\epsilon)K\}.$
- This is a locally closed, finite-dimensional subvariety of the affine Grassmannian G(L)/K.

- 4 回 ト - 4 回 ト

ADLVs for general G

- Let G denote a (split) connected reductive group, and put $K = G(\mathcal{O})$.
- Examples: GL_n , SL_n , SO(n), Sp(2n), G_2 , E_8 , etc.
- The analog of μ = (μ₁,..., μ₂) ∈ Zⁿ, with μ₁ ≥ ··· ≥ μ_n is a dominant cocharacter μ : G_m → A, for A a (split) maximal torus in G. Denote these by X_{*}(A)_{dom}.
- Cartan Decomposition: $G(L) = \coprod_{\mu \in X_*(A)_{\text{dom}}} K\mu(\epsilon)K.$
- Define $X^G_{\mu}(b) = \{gK \in G(L)/K \mid g^{-1}b\sigma(g) \in K\mu(\epsilon)K\}.$
- This is a locally closed, finite-dimensional subvariety of the affine Grassmannian G(L)/K.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

ADLVs for general ${\cal G}$

- Let G denote a (split) connected reductive group, and put $K = G(\mathcal{O})$.
- Examples: GL_n , SL_n , SO(n), Sp(2n), G_2 , E_8 , etc.
- The analog of μ = (μ₁,..., μ₂) ∈ Zⁿ, with μ₁ ≥ ··· ≥ μ_n is a dominant cocharacter μ : G_m → A, for A a (split) maximal torus in G. Denote these by X_{*}(A)_{dom}.
- Cartan Decomposition: $G(L) = \coprod_{\mu \in X_*(A)_{\text{dom}}} K\mu(\epsilon)K.$
- Define $X^G_{\mu}(b) = \{gK \in G(L)/K \mid g^{-1}b\sigma(g) \in K\mu(\epsilon)K\}.$
- This is a locally closed, finite-dimensional subvariety of the affine Grassmannian G(L)/K.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Classical Deligne-Lusztig varieties

- Let $B \subset G$ be a Borel subgroup containing A, and let $W = N_G(A)/A$ be the Weyl group.
- Bruhat Decomposition $G = \coprod_{w \in W} BwB$, where $G = G(\overline{k})$ and $B = B(\overline{k})$ here.
- Define $X_w = \{gB \in G/B \mid g^{-1}\sigma(g) \in BwB\}.$
- This is a locally closed subvariety of the flag variety G/B which is non-empty, smooth, and has dimension equal to $\ell(w)$.
- Deligne and Lusztig introduced these and they are a crucial tool in the representation theory of the finite groups of Lie type, i.e., the finite groups $G(\mathbb{F}_q)$.

< 回 > < 三 > < 三 >

Classical Deligne-Lusztig varieties

- Let $B \subset G$ be a Borel subgroup containing A, and let $W = N_G(A)/A$ be the Weyl group.
- Bruhat Decomposition $G = \coprod_{w \in W} BwB$, where $G = G(\overline{k})$ and $B = B(\overline{k})$ here.
- Define $X_w = \{gB \in G/B \mid g^{-1}\sigma(g) \in BwB\}.$
- This is a locally closed subvariety of the flag variety G/B which is non-empty, smooth, and has dimension equal to $\ell(w)$.
- Deligne and Lusztig introduced these and they are a crucial tool in the representation theory of the finite groups of Lie type, i.e., the finite groups $G(\mathbb{F}_q)$.

- 4 回 ト - 4 回 ト

Classical Deligne-Lusztig varieties

- Let $B \subset G$ be a Borel subgroup containing A, and let $W = N_G(A)/A$ be the Weyl group.
- Bruhat Decomposition $G = \coprod_{w \in W} BwB$, where $G = G(\overline{k})$ and $B = B(\overline{k})$ here.
- Define $X_w = \{gB \in G/B \mid g^{-1}\sigma(g) \in BwB\}.$
- This is a locally closed subvariety of the flag variety G/B which is non-empty, smooth, and has dimension equal to $\ell(w)$.
- Deligne and Lusztig introduced these and they are a crucial tool in the representation theory of the finite groups of Lie type, i.e., the finite groups $G(\mathbb{F}_q)$.

- 4 回 ト - 4 回 ト

Classical Deligne-Lusztig varieties

- Let $B \subset G$ be a Borel subgroup containing A, and let $W = N_G(A)/A$ be the Weyl group.
- Bruhat Decomposition $G = \coprod_{w \in W} BwB$, where $G = G(\overline{k})$ and $B = B(\overline{k})$ here.
- Define $X_w = \{gB \in G/B \mid g^{-1}\sigma(g) \in BwB\}.$
- This is a locally closed subvariety of the flag variety G/B which is non-empty, smooth, and has dimension equal to $\ell(w)$.
- Deligne and Lusztig introduced these and they are a crucial tool in the representation theory of the finite groups of Lie type, i.e., the finite groups $G(\mathbb{F}_q)$.

Classical Deligne-Lusztig varieties

- Let B ⊂ G be a Borel subgroup containing A, and let W = N_G(A)/A be the Weyl group.
- Bruhat Decomposition $G = \coprod_{w \in W} BwB$, where $G = G(\overline{k})$ and $B = B(\overline{k})$ here.
- Define $X_w = \{gB \in G/B \mid g^{-1}\sigma(g) \in BwB\}.$
- This is a locally closed subvariety of the flag variety G/B which is non-empty, smooth, and has dimension equal to $\ell(w)$.
- Deligne and Lusztig introduced these and they are a crucial tool in the representation theory of the finite groups of Lie type, i.e., the finite groups $G(\mathbb{F}_q)$.

Basic Questions about ADLVs

- (I) For which (μ, b) is $X^G_{\mu}(b) \neq \emptyset$?
- (II) If non-empty, is $X^G_{\mu}(b)$ equidimensional, and is there a formula for its dimension?
- (III) What is the geometric structure of $X^G_{\mu}(b)$ (irreducible components, singularities, etc.)?
- The fact that $X^G_{\mu}(b)$ can be empty should be contrasted with the classical case.
- Also, there are many different "Frobenius elements" $b\sigma$ (in the classical case there is only one, so only b = 1 appears).
- ADLVs arise from Shimura varieties over finite fields and isocrystals with additional structure.

< 3 > < 3 >

Basic Questions about ADLVs

- (I) For which (μ, b) is $X^G_{\mu}(b) \neq \emptyset$?
- (II) If non-empty, is $X^G_{\mu}(b)$ equidimensional, and is there a formula for its dimension?
- (III) What is the geometric structure of $X^G_{\mu}(b)$ (irreducible components, singularities, etc.)?
- The fact that $X^G_{\mu}(b)$ can be empty should be contrasted with the classical case.
- Also, there are many different "Frobenius elements" $b\sigma$ (in the classical case there is only one, so only b = 1 appears).
- ADLVs arise from Shimura varieties over finite fields and isocrystals with additional structure.

()

Basic Questions about ADLVs

- (I) For which (μ, b) is $X^G_{\mu}(b) \neq \emptyset$?
- (II) If non-empty, is $X^G_{\mu}(b)$ equidimensional, and is there a formula for its dimension?
- (III) What is the geometric structure of $X^G_{\mu}(b)$ (irreducible components, singularities, etc.)?
- The fact that $X^G_{\mu}(b)$ can be empty should be contrasted with the classical case.
- Also, there are many different "Frobenius elements" $b\sigma$ (in the classical case there is only one, so only b = 1 appears).
- ADLVs arise from Shimura varieties over finite fields and isocrystals with additional structure.

< 3 > < 3 >

Basic Questions about ADLVs

- (I) For which (μ, b) is $X^G_{\mu}(b) \neq \emptyset$?
- (II) If non-empty, is $X^G_{\mu}(b)$ equidimensional, and is there a formula for its dimension?
- (III) What is the geometric structure of $X^G_{\mu}(b)$ (irreducible components, singularities, etc.)?
- The fact that $X^G_\mu(b)$ can be empty should be contrasted with the classical case.
- Also, there are many different "Frobenius elements" $b\sigma$ (in the classical case there is only one, so only b = 1 appears).
- ADLVs arise from Shimura varieties over finite fields and isocrystals with additional structure.

Basic Questions about ADLVs

- (I) For which (μ, b) is $X^G_{\mu}(b) \neq \emptyset$?
- (II) If non-empty, is $X^G_{\mu}(b)$ equidimensional, and is there a formula for its dimension?
- (III) What is the geometric structure of $X^G_{\mu}(b)$ (irreducible components, singularities, etc.)?
- The fact that $X^G_\mu(b)$ can be empty should be contrasted with the classical case.
- Also, there are many different "Frobenius elements" $b\sigma$ (in the classical case there is only one, so only b = 1 appears).
- ADLVs arise from Shimura varieties over finite fields and isocrystals with additional structure.

- - E > - E >

Basic Questions about ADLVs

- (I) For which (μ, b) is $X^G_{\mu}(b) \neq \emptyset$?
- (II) If non-empty, is $X^G_{\mu}(b)$ equidimensional, and is there a formula for its dimension?
- (III) What is the geometric structure of $X^G_{\mu}(b)$ (irreducible components, singularities, etc.)?
- The fact that $X^G_\mu(b)$ can be empty should be contrasted with the classical case.
- Also, there are many different "Frobenius elements" $b\sigma$ (in the classical case there is only one, so only b = 1 appears).
- ADLVs arise from Shimura varieties over finite fields and isocrystals with additional structure.

Isocrystals

- Usual context is p-adic: F = Q_p, O_F = Z_p, L = Q^{un}_p, O = ring of integers in L, k = 𝔽_p = O_F/pO_F.
- σ is the Frobenius automorphism: either $x \mapsto x^p \in \text{Gal}(\overline{\mathbb{F}}_p/\mathbb{F}_p)$, or as the element of Gal(L/F), defined by

$$\sigma(\sum_{i >> -\infty} a_i p^i) = \sum_{i >> -\infty} a_i^p p^i.$$

• An **isocrystal** is a pair (V, Φ) , where V is a finite-dimensional L-vector space, and $\Phi: V \to V$ is a σ -linear bijection:

$$\Phi(\alpha v) = \sigma(\alpha)\Phi(v), \quad \forall v \in V, \ \alpha \in L.$$

 If V₀ is an F-vector space and V = V₀ ⊗_F L, then all (V,Φ) are of form (V, b(1 ⊗ σ)), for b ∈ GL(V) = GL_n(L).

A B M A B M

Isocrystals

- Usual context is p-adic: F = Q_p, O_F = Z_p, L = Q^{un}_p, O = ring of integers in L, k = 𝔽_p = O_F/pO_F.
- σ is the Frobenius automorphism: either $x \mapsto x^p \in \text{Gal}(\overline{\mathbb{F}}_p/\mathbb{F}_p)$, or as the element of Gal(L/F), defined by

$$\sigma(\sum_{i>>-\infty}a_ip^i)=\sum_{i>>-\infty}a_i^pp^i.$$

 An isocrystal is a pair (V, Φ), where V is a finite-dimensional L-vector space, and Φ : V → V is a σ-linear bijection:

$$\Phi(\alpha v) = \sigma(\alpha)\Phi(v), \quad \forall v \in V, \ \alpha \in L.$$

If V₀ is an F-vector space and V = V₀ ⊗_F L, then all (V,Φ) are of form (V, b(1 ⊗ σ)), for b ∈ GL(V) = GL_n(L).

・ 同 ト ・ ヨ ト ・ ヨ ト

Isocrystals

- Usual context is p-adic: F = Q_p, O_F = Z_p, L = Q^{un}_p, O = ring of integers in L, k = 𝔽_p = O_F/pO_F.
- σ is the Frobenius automorphism: either $x \mapsto x^p \in \text{Gal}(\overline{\mathbb{F}}_p/\mathbb{F}_p)$, or as the element of Gal(L/F), defined by

$$\sigma(\sum_{i>>-\infty}a_ip^i)=\sum_{i>>-\infty}a_i^pp^i.$$

 An isocrystal is a pair (V, Φ), where V is a finite-dimensional L-vector space, and Φ : V → V is a σ-linear bijection:

$$\Phi(\alpha v) = \sigma(\alpha)\Phi(v), \quad \forall v \in V, \ \alpha \in L.$$

If V₀ is an F-vector space and V = V₀ ⊗_F L, then all (V,Φ) are of form (V, b(1 ⊗ σ)), for b ∈ GL(V) = GL_n(L).

- 4 回 ト - 4 回 ト

Isocrystals

- Usual context is p-adic: F = Q_p, O_F = Z_p, L = Q^{un}_p, O = ring of integers in L, k = 𝔽_p = O_F/pO_F.
- σ is the Frobenius automorphism: either $x \mapsto x^p \in \text{Gal}(\overline{\mathbb{F}}_p/\mathbb{F}_p)$, or as the element of Gal(L/F), defined by

$$\sigma(\sum_{i>>-\infty}a_ip^i)=\sum_{i>>-\infty}a_i^pp^i.$$

 An isocrystal is a pair (V, Φ), where V is a finite-dimensional L-vector space, and Φ : V → V is a σ-linear bijection:

$$\Phi(\alpha v) = \sigma(\alpha)\Phi(v), \quad \forall v \in V, \ \alpha \in L.$$

If V₀ is an F-vector space and V = V₀ ⊗_F L, then all (V,Φ) are of form (V, b(1 ⊗ σ)), for b ∈ GL(V) = GL_n(L).

・ 同 ト ・ ヨ ト ・ ヨ ト

Dieudonne's classification of isocrystals

• Dieudonne proved that the category of isocrystals is abelian and semi-simple. The simple objects, parametrized by $\lambda=r/s\in\mathbb{Q},$ are of form

$$V_{\lambda} := (L^s, b_{r,s}\sigma)$$

$$b_{r,s} = egin{bmatrix} 0 & 1 & & \ & \ddots & \ddots & \ & & 0 & 1 \ p^r & & & 0 \end{bmatrix} \in \mathsf{GL}_s(L).$$

- The s-tuple $(r/s, \cdots, r/s)$ is called the Newton vector of V_{λ} .
- Any (V,Φ) has a Newton vector v
 (V,Φ) = (λ₁, λ₂,..., λ_n) ∈ Qⁿ_{dom} by decomposing (V,Φ) as a sum of simple objects and stringing together all the Newton vectors of the simple objects, in non-increasing order.
- Given $b \in GL(V)(L)$, define its **Newton point** $\overline{\nu}_b \in \mathbb{Q}^n_{dom}$ to be the Newton vector of the isocrytal $(L^n, b\sigma)$.

Dieudonne's classification of isocrystals

• Dieudonne proved that the category of isocrystals is abelian and semi-simple. The simple objects, parametrized by $\lambda=r/s\in\mathbb{Q},$ are of form

$$V_{\lambda} := (L^s, b_{r,s}\sigma)$$

$$b_{r,s} = egin{bmatrix} 0 & 1 & & \ & \ddots & \ddots & \ & & 0 & 1 \ p^r & & & 0 \end{bmatrix} \in \mathsf{GL}_s(L).$$

- The s-tuple $(r/s, \dots, r/s)$ is called the Newton vector of V_{λ} .
- Any (V,Φ) has a Newton vector v
 (V,Φ) = (λ₁, λ₂,..., λ_n) ∈ Qⁿ_{dom} by decomposing (V,Φ) as a sum of simple objects and stringing together all the Newton vectors of the simple objects, in non-increasing order.
- Given $b \in GL(V)(L)$, define its **Newton point** $\overline{\nu}_b \in \mathbb{Q}^n_{\text{dom}}$ to be the Newton vector of the isocrytal $(L^n, b\sigma)$.

Dieudonne's classification of isocrystals

• Dieudonne proved that the category of isocrystals is abelian and semi-simple. The simple objects, parametrized by $\lambda=r/s\in\mathbb{Q},$ are of form

$$V_{\lambda} := (L^s, b_{r,s}\sigma)$$

$$b_{r,s} = \begin{bmatrix} 0 & 1 & & \\ & \ddots & \ddots & \\ & & 0 & 1 \\ p^r & & & 0 \end{bmatrix} \in \mathsf{GL}_s(L).$$

- The s-tuple $(r/s, \dots, r/s)$ is called the Newton vector of V_{λ} .
- Any (V,Φ) has a Newton vector vector vector vector vector vector vector, λ_n) ∈ Qⁿ_{dom} by decomposing (V,Φ) as a sum of simple objects and stringing together all the Newton vectors of the simple objects, in non-increasing order.
- Given $b \in GL(V)(L)$, define its **Newton point** $\overline{\nu}_b \in \mathbb{Q}^n_{dom}$ to be the Newton vector of the isocrytal $(L^n, b\sigma)$.

Dieudonne's classification of isocrystals

• Dieudonne proved that the category of isocrystals is abelian and semi-simple. The simple objects, parametrized by $\lambda=r/s\in\mathbb{Q},$ are of form

$$V_{\lambda} := (L^s, b_{r,s}\sigma)$$

$$b_{r,s} = \begin{bmatrix} 0 & 1 & & \\ & \ddots & \ddots & \\ & & 0 & 1 \\ p^r & & & 0 \end{bmatrix} \in \mathsf{GL}_s(L).$$

- The s-tuple $(r/s, \dots, r/s)$ is called the Newton vector of V_{λ} .
- Any (V,Φ) has a Newton vector v
 (V,Φ) = (λ₁, λ₂,..., λ_n) ∈ Qⁿ_{dom} by decomposing (V,Φ) as a sum of simple objects and stringing together all the Newton vectors of the simple objects, in non-increasing order.
- Given $b \in GL(V)(L)$, define its **Newton point** $\overline{\nu}_b \in \mathbb{Q}^n_{dom}$ to be the Newton vector of the isocrytal $(L^n, b\sigma)$.

Elementary computation of Newton points

- $\overline{\nu}_b$ is unchanged if b is replaced with $g^{-1}b\sigma(g)$ (since isomorphism class of $(V, b\sigma)$ is unchanged).
- Therefore we can replace b with an element of form ε^λw, i.e., a monomial matrix in GL_n(L).
- Let N be the order of the permutation matrix w. Then $\overline{\nu}_b$ is the unique dominant element in $\mathbb{Q}^n_{\text{dom}}$ which is some permutation of $\frac{1}{N} \sum_{i=0}^{N-1} w^i(\lambda)$.
- For general groups G, Kottwitz defined Newton points for $b \in G(L)$, and a similar result holds.

()

Elementary computation of Newton points

- $\overline{\nu}_b$ is unchanged if b is replaced with $g^{-1}b\sigma(g)$ (since isomorphism class of $(V, b\sigma)$ is unchanged).
- Therefore we can replace b with an element of form $\epsilon^{\lambda}w$, i.e., a monomial matrix in $GL_n(L)$.
- Let N be the order of the permutation matrix w. Then $\overline{\nu}_b$ is the unique dominant element in $\mathbb{Q}^n_{\text{dom}}$ which is some permutation of $\frac{1}{N} \sum_{i=0}^{N-1} w^i(\lambda)$.
- For general groups G, Kottwitz defined Newton points for $b \in G(L)$, and a similar result holds.

* E > * E >

Elementary computation of Newton points

- $\overline{\nu}_b$ is unchanged if b is replaced with $g^{-1}b\sigma(g)$ (since isomorphism class of $(V, b\sigma)$ is unchanged).
- Therefore we can replace b with an element of form $\epsilon^{\lambda}w$, i.e., a monomial matrix in $GL_n(L)$.
- Let N be the order of the permutation matrix w. Then $\overline{\nu}_b$ is the unique dominant element in $\mathbb{Q}^n_{\text{dom}}$ which is some permutation of $\frac{1}{N} \sum_{i=0}^{N-1} w^i(\lambda)$.
- For general groups G, Kottwitz defined Newton points for $b \in G(L)$, and a similar result holds.

- 4 同 6 4 日 6 4 日 6

Elementary computation of Newton points

- $\overline{\nu}_b$ is unchanged if b is replaced with $g^{-1}b\sigma(g)$ (since isomorphism class of $(V, b\sigma)$ is unchanged).
- Therefore we can replace b with an element of form $\epsilon^{\lambda}w$, i.e., a monomial matrix in $GL_n(L)$.
- Let N be the order of the permutation matrix w. Then $\overline{\nu}_b$ is the unique dominant element in $\mathbb{Q}^n_{\text{dom}}$ which is some permutation of $\frac{1}{N} \sum_{i=0}^{N-1} w^i(\lambda)$.
- For general groups G, Kottwitz defined Newton points for $b \in G(L)$, and a similar result holds.

- 4 同 6 4 日 6 4 日 6

Mazur's inequality and its converse

- For an *O*-lattice Λ ⊂ V, define its Hodge point μ = μ(Λ) ∈ Zⁿ_{dom} by inv(Λ, Φ(Λ)) = μ. This makes sense even when Φ(Λ) ⊈ Λ.
- Mazur's inequality: For every lattice Λ ⊂ V, μ(Λ) ≥ ν(V,Φ). (This holds in either function-field or p-adic context.)
- That is, The Hodge polygon lies above the Newton polygon (with same endpoints).
- Gives a necessary condition for non-emptiness of $X_{\mu}^{\mathsf{GL}_n}(b)$.
- Question: does the converse of Mazur's \leq hold? That is, given $\mu \geq \overline{\nu}(V, \Phi)$, does there exist a lattice $\Lambda \in V$ whose Hodge point is μ ?
- The answer is yes (Kottwitz-Rapoport). In other words X^{GL_n}_µ(b) ≠ Ø iff v
 _b ≥ µ.

< ∃> < ∃>

Mazur's inequality and its converse

- For an *O*-lattice Λ ⊂ V, define its Hodge point μ = μ(Λ) ∈ Zⁿ_{dom} by inv(Λ, Φ(Λ)) = μ. This makes sense even when Φ(Λ) ⊈ Λ.
- Mazur's inequality: For every lattice Λ ⊂ V, μ(Λ) ≥ ν(V,Φ). (This holds in either function-field or p-adic context.)
- That is, The Hodge polygon lies above the Newton polygon (with same endpoints).
- Gives a necessary condition for non-emptiness of $X_{\mu}^{\mathsf{GL}_n}(b)$.
- Question: does the converse of Mazur's \leq hold? That is, given $\mu \geq \overline{\nu}(V, \Phi)$, does there exist a lattice $\Lambda \in V$ whose Hodge point is μ ?
- The answer is yes (Kottwitz-Rapoport). In other words X^{GL_n}_µ(b) ≠ Ø iff v
 _b ≥ µ.

< ∃> < ∃>

Mazur's inequality and its converse

- For an *O*-lattice Λ ⊂ V, define its Hodge point μ = μ(Λ) ∈ Zⁿ_{dom} by inv(Λ, Φ(Λ)) = μ. This makes sense even when Φ(Λ) ⊈ Λ.
- Mazur's inequality: For every lattice Λ ⊂ V, μ(Λ) ≥ ν
 (V,Φ). (This holds in either function-field or p-adic context.)
- That is, The Hodge polygon lies above the Newton polygon (with same endpoints).
- Gives a necessary condition for non-emptiness of X^{GL_n}_μ(b).
- Question: does the converse of Mazur's \leq hold? That is, given $\mu \geq \overline{\nu}(V, \Phi)$, does there exist a lattice $\Lambda \in V$ whose Hodge point is μ ?
- The answer is yes (Kottwitz-Rapoport). In other words X^{GL_n}_µ(b) ≠ Ø iff v
 _b ≥ µ.

(*) *) *) *)

< 6 >

Mazur's inequality and its converse

- For an *O*-lattice Λ ⊂ V, define its Hodge point μ = μ(Λ) ∈ Zⁿ_{dom} by inv(Λ, Φ(Λ)) = μ. This makes sense even when Φ(Λ) ⊈ Λ.
- Mazur's inequality: For every lattice Λ ⊂ V, μ(Λ) ≥ ν
 (V,Φ). (This holds in either function-field or p-adic context.)
- That is, The Hodge polygon lies above the Newton polygon (with same endpoints).
- Gives a necessary condition for non-emptiness of X^{GL_n}_u(b).
- Question: does the converse of Mazur's \leq hold? That is, given $\mu \geq \overline{\nu}(V, \Phi)$, does there exist a lattice $\Lambda \in V$ whose Hodge point is μ ?
- The answer is yes (Kottwitz-Rapoport). In other words X^{GL_n}_µ(b) ≠ Ø iff v
 _b ≥ µ.

- 4 同 6 4 日 6 4 日 6

Mazur's inequality and its converse

- For an *O*-lattice Λ ⊂ V, define its Hodge point μ = μ(Λ) ∈ Zⁿ_{dom} by inv(Λ, Φ(Λ)) = μ. This makes sense even when Φ(Λ) ⊈ Λ.
- Mazur's inequality: For every lattice Λ ⊂ V, μ(Λ) ≥ ν
 (V,Φ). (This holds in either function-field or p-adic context.)
- That is, The Hodge polygon lies above the Newton polygon (with same endpoints).
- Gives a necessary condition for non-emptiness of $X_{\mu}^{\mathsf{GL}_n}(b)$.
- Question: does the converse of Mazur's \leq hold? That is, given $\mu \geq \overline{\nu}(V, \Phi)$, does there exist a lattice $\Lambda \in V$ whose Hodge point is μ ?
- The answer is yes (Kottwitz-Rapoport). In other words X^{GL_n}_µ(b) ≠ Ø iff v
 _b ≥ µ.

・ 同 ト ・ ヨ ト ・ ヨ ト

Mazur's inequality and its converse

- For an *O*-lattice Λ ⊂ V, define its Hodge point μ = μ(Λ) ∈ Zⁿ_{dom} by inv(Λ, Φ(Λ)) = μ. This makes sense even when Φ(Λ) ⊈ Λ.
- Mazur's inequality: For every lattice Λ ⊂ V, μ(Λ) ≥ ν
 (V,Φ). (This holds in either function-field or p-adic context.)
- That is, The Hodge polygon lies above the Newton polygon (with same endpoints).
- Gives a necessary condition for non-emptiness of $X_{\mu}^{\mathsf{GL}_n}(b)$.
- Question: does the converse of Mazur's \leq hold? That is, given $\mu \geq \overline{\nu}(V, \Phi)$, does there exist a lattice $\Lambda \in V$ whose Hodge point is μ ?
- The answer is yes (Kottwitz-Rapoport). In other words X^{GL_n}_µ(b) ≠ Ø iff v
 _b ≥ µ.

Mazur's inequality and its converse

- For an *O*-lattice Λ ⊂ V, define its Hodge point μ = μ(Λ) ∈ Zⁿ_{dom} by inv(Λ, Φ(Λ)) = μ. This makes sense even when Φ(Λ) ⊈ Λ.
- Mazur's inequality: For every lattice Λ ⊂ V, μ(Λ) ≥ ν(V,Φ). (This holds in either function-field or p-adic context.)
- That is, The Hodge polygon lies above the Newton polygon (with same endpoints).
- Gives a necessary condition for non-emptiness of $X_{\mu}^{\mathsf{GL}_n}(b)$.
- Question: does the converse of Mazur's \leq hold? That is, given $\mu \geq \overline{\nu}(V, \Phi)$, does there exist a lattice $\Lambda \in V$ whose Hodge point is μ ?
- The answer is yes (Kottwitz-Rapoport). In other words $X_{\mu}^{\mathsf{GL}_n}(b) \neq \emptyset$ iff $\overline{\nu}_b \geq \mu$.

Newton and Hodge Polygons

Example

 $(1,1,0,0,0) \geq \left(\tfrac{1}{2}, \tfrac{1}{2}, \tfrac{1}{3}, \tfrac{1}{3}, \tfrac{1}{3}\right)$

<ロ> <同> <同> < 回> < 回>

Mazur inequality and non-emptiness in general

- For general G, Kottwitz defined notions of G-isocrystal, and also the **Newton point** $\overline{\nu}_b \in X_*(A)_{\mathbb{Q},dom}$ for $b \in G(L)$.
- The inequality $\mu \geq \overline{\nu}_b$ now is for usual dominance order on $X_*(A)_{\mathbb{R}, \text{dom}}$.

Theorem

 $X^G_{\mu}(b) \neq \emptyset \Leftrightarrow \mu \ge \overline{\nu}_b.$

- Kottwitz-Rapoport (GL_n and GSp_{2n} and reduced general case to problem on root systems), C. Lucarelli (split classical groups), Q. Gashi (general split groups).
- Other special cases handled by Fontaine-Rapoport, and Wintenberger.
- Upshot: We know exactly when ADLVs in any affine Grassmannian are non-empty.

Mazur inequality and non-emptiness in general

- For general G, Kottwitz defined notions of G-isocrystal, and also the Newton point $\overline{\nu}_b \in X_*(A)_{\mathbb{Q},dom}$ for $b \in G(L)$.
- The inequality $\mu \geq \overline{\nu}_b$ now is for usual dominance order on $X_*(A)_{\mathbb{R}, \text{dom}}.$

Theorem

 $X^G_{\mu}(b) \neq \emptyset \Leftrightarrow \mu \ge \overline{\nu}_b.$

- Kottwitz-Rapoport (GL_n and GSp_{2n} and reduced general case to problem on root systems), C. Lucarelli (split classical groups), Q. Gashi (general split groups).
- Other special cases handled by Fontaine-Rapoport, and Wintenberger.
- Upshot: We know exactly when ADLVs in any affine Grassmannian are non-empty.

Mazur inequality and non-emptiness in general

- For general G, Kottwitz defined notions of G-isocrystal, and also the Newton point v
 *v
 b* ∈ X_{*}(A)_{Q,dom} for b ∈ G(L).
- The inequality $\mu \geq \overline{\nu}_b$ now is for usual dominance order on $X_*(A)_{\mathbb{R}, \text{dom}}.$

Theorem

- Kottwitz-Rapoport (GL_n and GSp_{2n} and reduced general case to problem on root systems), C. Lucarelli (split classical groups), Q. Gashi (general split groups).
- Other special cases handled by Fontaine-Rapoport, and Wintenberger.
- Upshot: We know exactly when ADLVs in any affine Grassmannian are non-empty.

Mazur inequality and non-emptiness in general

- For general G, Kottwitz defined notions of G-isocrystal, and also the Newton point v
 *v
 b* ∈ X_{*}(A)_{Q,dom} for b ∈ G(L).
- The inequality $\mu \geq \overline{\nu}_b$ now is for usual dominance order on $X_*(A)_{\mathbb{R}, \text{dom}}.$

Theorem

- Kottwitz-Rapoport (GL_n and GSp_{2n} and reduced general case to problem on root systems), C. Lucarelli (split classical groups), Q. Gashi (general split groups).
- Other special cases handled by Fontaine-Rapoport, and Wintenberger.
- Upshot: We know exactly when ADLVs in any affine Grassmannian are non-empty.

Mazur inequality and non-emptiness in general

- For general G, Kottwitz defined notions of G-isocrystal, and also the Newton point v
 *v
 b* ∈ X_{*}(A)_{Q,dom} for b ∈ G(L).
- The inequality $\mu \geq \overline{\nu}_b$ now is for usual dominance order on $X_*(A)_{\mathbb{R}, \text{dom}}.$

Theorem

- Kottwitz-Rapoport (GL_n and GSp_{2n} and reduced general case to problem on root systems), C. Lucarelli (split classical groups), Q. Gashi (general split groups).
- Other special cases handled by Fontaine-Rapoport, and Wintenberger.
- Upshot: We know exactly when ADLVs in any affine Grassmannian are non-empty.

Mazur inequality and non-emptiness in general

- For general G, Kottwitz defined notions of G-isocrystal, and also the Newton point v
 v _b ∈ X_{*}(A)_{Q,dom} for b ∈ G(L).
- The inequality $\mu \geq \overline{\nu}_b$ now is for usual dominance order on $X_*(A)_{\mathbb{R}, \text{dom}}.$

Theorem

- Kottwitz-Rapoport (GL_n and GSp_{2n} and reduced general case to problem on root systems), C. Lucarelli (split classical groups), Q. Gashi (general split groups).
- Other special cases handled by Fontaine-Rapoport, and Wintenberger.
- Upshot: We know exactly when ADLVs in any affine Grassmannian are non-empty.

Application of G-isocrystals: moduli of abelian varieties over \overline{k}

- Dieudonne: every polarized *n*-dim'l abelian variety \mathcal{A} over \overline{k} gives rise to a GSp_{2n} -isocrystal $(L^{2n}, b\sigma)$. The Newton point $\overline{\nu}_b$ is therefore an invariant of \mathcal{A} .
- Define the **Newton stratum** S_b in the moduli space of all A to consist of those A with fixed Newton point $\overline{\nu}_b$.
- Examples: ordinary abelian varieties form a single Newton stratum (which is open and dense in the moduli space). Supersingular AVs form another Newton stratum.

Application of G-isocrystals: moduli of abelian varieties over \overline{k}

- Dieudonne: every polarized *n*-dim'l abelian variety \mathcal{A} over \overline{k} gives rise to a GSp_{2n} -isocrystal $(L^{2n}, b\sigma)$. The Newton point $\overline{\nu}_b$ is therefore an invariant of \mathcal{A} .
- Define the **Newton stratum** S_b in the moduli space of all A to consist of those A with fixed Newton point $\overline{\nu}_b$.
- Examples: ordinary abelian varieties form a single Newton stratum (which is open and dense in the moduli space). Supersingular AVs form another Newton stratum.

Application of G-isocrystals: moduli of abelian varieties over \overline{k}

- Dieudonne: every polarized *n*-dim'l abelian variety \mathcal{A} over \overline{k} gives rise to a GSp_{2n} -isocrystal $(L^{2n}, b\sigma)$. The Newton point $\overline{\nu}_b$ is therefore an invariant of \mathcal{A} .
- Define the **Newton stratum** S_b in the moduli space of all A to consist of those A with fixed Newton point $\overline{\nu}_b$.
- Examples: ordinary abelian varieties form a single Newton stratum (which is open and dense in the moduli space). Supersingular AVs form another Newton stratum.

What about $\dim X^G_{\mu}(b)$?

Theorem (GHKR + Viehmann)

If $X^G_{\mu}(b) \neq \emptyset$, then

$$\mathsf{dim} \ X^G_\mu(b) = \langle \rho, \mu - \overline{\nu}_b \rangle - \frac{1}{2} (\mathsf{rk}_F G - \mathsf{rk}_F J_b).$$

We write $\operatorname{def}_G(b) := \operatorname{rk}_F G - \operatorname{rk}_F J_b$.

< 17 >

* E > * E >

Remarks

•
$$J_b(F) = \{g \in G(L) \mid g^{-1}b\sigma(g) = b\}.$$

- Conjectured by Rapoport, who pointed out the similarity with Chai's conjecture.
- In particular, if b = 1, get dim $X^G_{\mu}(1) = \langle \rho, \mu \rangle$ (cf. GL₂ example).
- After some work, Chai's conjecture takes the form surprising form

$$\dim(\mathcal{S}_b) = \langle \rho, \mu + \overline{\nu}_b \rangle - \frac{1}{2} (\mathsf{rk}_F G - \mathsf{rk}_F J_b),$$

where $\mu = (1^n, 0^n)$, a cocharacter for GSp_{2n} . There is a geometric reason for this similarity.

• $X^G_{\mu}(b)$ is conjectured to be equidimensional. This is proved when $b \in A(L)$ [GHKR] and when b is "basic" [Hartl-Viehmann].

()

Remarks

- $J_b(F) = \{g \in G(L) \mid g^{-1}b\sigma(g) = b\}.$
- Conjectured by Rapoport, who pointed out the similarity with Chai's conjecture.
- In particular, if b = 1, get dim $X^G_{\mu}(1) = \langle \rho, \mu \rangle$ (cf. GL₂ example).
- After some work, Chai's conjecture takes the form surprising form

$$\dim(\mathcal{S}_b) = \langle \rho, \mu + \overline{\nu}_b \rangle - \frac{1}{2} (\mathsf{rk}_F G - \mathsf{rk}_F J_b),$$

where $\mu = (1^n, 0^n)$, a cocharacter for GSp_{2n} . There is a geometric reason for this similarity.

• $X^G_{\mu}(b)$ is conjectured to be equidimensional. This is proved when $b \in A(L)$ [GHKR] and when b is "basic" [Hartl-Viehmann].

A B + A B +

Remarks

- $J_b(F) = \{g \in G(L) \mid g^{-1}b\sigma(g) = b\}.$
- Conjectured by Rapoport, who pointed out the similarity with Chai's conjecture.
- In particular, if b = 1, get dim $X^G_{\mu}(1) = \langle \rho, \mu \rangle$ (cf. GL₂ example).

• After some work, Chai's conjecture takes the form surprising form

$$\dim(\mathcal{S}_b) = \langle \rho, \mu + \overline{\nu}_b \rangle - \frac{1}{2} (\mathsf{rk}_F G - \mathsf{rk}_F J_b),$$

where $\mu = (1^n, 0^n)$, a cocharacter for GSp_{2n} . There is a geometric reason for this similarity.

• $X^G_{\mu}(b)$ is conjectured to be equidimensional. This is proved when $b \in A(L)$ [GHKR] and when b is "basic" [Hartl-Viehmann].

- 4 回 ト - 4 回 ト

Remarks

- $J_b(F) = \{g \in G(L) \mid g^{-1}b\sigma(g) = b\}.$
- Conjectured by Rapoport, who pointed out the similarity with Chai's conjecture.
- In particular, if b = 1, get dim $X^G_{\mu}(1) = \langle \rho, \mu \rangle$ (cf. GL₂ example).
- After some work, Chai's conjecture takes the form surprising form

$$\mathsf{dim}(\mathcal{S}_b) = \langle
ho, \mu + \overline{
u}_b
angle - rac{1}{2} (\mathsf{rk}_F G - \mathsf{rk}_F J_b),$$

where $\mu = (1^n, 0^n)$, a cocharacter for GSp_{2n} . There is a geometric reason for this similarity.

• $X^G_{\mu}(b)$ is conjectured to be equidimensional. This is proved when $b \in A(L)$ [GHKR] and when b is "basic" [Hartl-Viehmann].

イロン イロン イヨン イヨン

Remarks

- $J_b(F) = \{g \in G(L) \mid g^{-1}b\sigma(g) = b\}.$
- Conjectured by Rapoport, who pointed out the similarity with Chai's conjecture.
- In particular, if b = 1, get dim $X^G_{\mu}(1) = \langle \rho, \mu \rangle$ (cf. GL₂ example).
- After some work, Chai's conjecture takes the form surprising form

$$\mathsf{dim}(\mathcal{S}_b) = \langle
ho, \mu + \overline{
u}_b
angle - rac{1}{2} (\mathsf{rk}_F G - \mathsf{rk}_F J_b),$$

where $\mu = (1^n, 0^n)$, a cocharacter for GSp_{2n} . There is a geometric reason for this similarity.

• $X^G_{\mu}(b)$ is conjectured to be equidimensional. This is proved when $b \in A(L)$ [GHKR] and when b is "basic" [Hartl-Viehmann].

・ 同 ト ・ ヨ ト ・ ヨ ト

ADLVs in the affine flag variety

- Let I ⊂ G(L) be an Iwahori subgroup, and call G(L)/I the affine flag variety.
- $I \setminus G(L)/I = W = X_*(A) \rtimes W.$
- For $x \in W$ and $b \in G(L)$, define

 $X_x^G(b) = \{gI \in G(L)/I \mid g^{-1}b\sigma(g) \in IxI\}.$

- Questions: When are $X_x^G(b) \neq \emptyset$? Are they equidimensional? Is there a formula for the dimensions?
- Much less is known, but progress has been made.
- The following picture shows the dimensions of ADLVs for $G = G_2$, b = 1.

< 回 > < 回 > < 回 >

ADLVs in the affine flag variety

- Let $I \subset G(L)$ be an Iwahori subgroup, and call G(L)/I the affine flag variety.
- $I \setminus G(L)/I = \widetilde{W} = X_*(A) \rtimes W.$

• For $x \in W$ and $b \in G(L)$, define

 $X_x^G(b) = \{gI \in G(L)/I \mid g^{-1}b\sigma(g) \in IxI\}.$

- Questions: When are $X_x^G(b) \neq \emptyset$? Are they equidimensional? Is there a formula for the dimensions?
- Much less is known, but progress has been made.
- The following picture shows the dimensions of ADLVs for $G = G_2$, b = 1.

・ 同 ト ・ ヨ ト ・ ヨ ト

ADLVs in the affine flag variety

- Let I ⊂ G(L) be an Iwahori subgroup, and call G(L)/I the affine flag variety.
- $I \setminus G(L)/I = \widetilde{W} = X_*(A) \rtimes W.$
- For $x \in \widetilde{W}$ and $b \in G(L)$, define

$X_x^G(b) = \{gI \in G(L)/I \mid g^{-1}b\sigma(g) \in IxI\}.$

- Questions: When are $X_x^G(b) \neq \emptyset$? Are they equidimensional? Is there a formula for the dimensions?
- Much less is known, but progress has been made.
- The following picture shows the dimensions of ADLVs for $G = G_2$, b = 1.

- 4 回 ト 4 三 ト

ADLVs in the affine flag variety

- Let I ⊂ G(L) be an Iwahori subgroup, and call G(L)/I the affine flag variety.
- $I \setminus G(L)/I = \widetilde{W} = X_*(A) \rtimes W.$
- For $x \in \widetilde{W}$ and $b \in G(L)$, define

$$X_x^G(b) = \{gI \in G(L)/I \mid g^{-1}b\sigma(g) \in IxI\}.$$

- Questions: When are $X_x^G(b) \neq \emptyset$? Are they equidimensional? Is there a formula for the dimensions?
- Much less is known, but progress has been made.
- The following picture shows the dimensions of ADLVs for $G = G_2$, b = 1.

- 4 同 6 4 日 6 4 日 6

ADLVs in the affine flag variety

- Let I ⊂ G(L) be an Iwahori subgroup, and call G(L)/I the affine flag variety.
- $I \setminus G(L)/I = \widetilde{W} = X_*(A) \rtimes W.$
- For $x \in \widetilde{W}$ and $b \in G(L)$, define

$$X_x^G(b) = \{gI \in G(L)/I \mid g^{-1}b\sigma(g) \in IxI\}.$$

- Questions: When are $X_x^G(b) \neq \emptyset$? Are they equidimensional? Is there a formula for the dimensions?
- Much less is known, but progress has been made.
- The following picture shows the dimensions of ADLVs for $G = G_2$, b = 1.

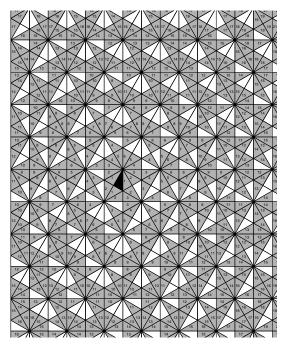
イロト イポト イヨト イヨト

ADLVs in the affine flag variety

- Let I ⊂ G(L) be an Iwahori subgroup, and call G(L)/I the affine flag variety.
- $I \setminus G(L)/I = \widetilde{W} = X_*(A) \rtimes W.$
- For $x \in \widetilde{W}$ and $b \in G(L)$, define

$$X_x^G(b) = \{gI \in G(L)/I \mid g^{-1}b\sigma(g) \in IxI\}.$$

- Questions: When are $X_x^G(b) \neq \emptyset$? Are they equidimensional? Is there a formula for the dimensions?
- Much less is known, but progress has been made.
- The following picture shows the dimensions of ADLVs for $G = G_2$, b = 1.



Some results

Theorem (GHKR)

- (i) There is an algorithm, in terms of foldings in Bruhat-Tits building of G(L), to compute dim $X_x^G(b)$ for all G,x, and b.
- (ii) There is a conjectural (non-algorithmic) description of when $X_x^G(b)$ is empty, for b "basic", and we can prove emptiness occurs when predicted.
- (iii) There is a conjectural formula for x "generic" and b "basic" which is supported by computer evidence: write $x = w_2 \epsilon^{\lambda} w_1 w_2^{-1}$, for $w_i \in W$ and $\lambda \in X_*(A)_{\text{dom}}$. Conjecture: $X_x(b) \neq \emptyset \Leftrightarrow w_1 \notin \bigcup_{T \subsetneq S} W_T$, in which case

dim
$$X_x^G(b) = \frac{1}{2}(\ell(x) + \ell(w_1) - \mathsf{def}_G(b)).$$

< 回 > < 回 > < 回 >