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A question in σ-linear algebra

Let k = Fq. Gal(k/k) has a canonical generator σ : x 7→ xq.

Let O := k[[ε]] and Frac(O) =: L = k((ε)). The Frobenius
automorphism σ of L is defined by

σ(
∑

i

aiε
i) =

∑
i

aq
i ε

i.

We have Lσ = F := k((ε)) and Oσ = OF := k[[ε]].

σ-Linear Algebra Question: Given b ∈ GLn(L) and
µ = (µ1, . . . , µn) ∈ Zn, does there exist an O-lattice Λ ⊂ Ln such
that bσ(Λ) ⊆ Λ, and

Λ/bσ(Λ) ∼= O/εµ1 ⊕ · · · ⊕ O/εµn ,

in other words, such that inv(Λ, bσ(Λ)) = µ? If yes, what is the
dimension of the “space of such Λ’s”?

Goal: Explain why this question is interesting and how it is
answered.
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Examples

Define XGLn
µ (b) = {Λ ⊂ Ln | inv(Λ, bσ(Λ)) = µ}. Call it the Affine

Deligne-Lusztig Variety (ADLV) associated to GLn, b, and µ.

(I) n = 2, b = 1, and µ = (0, 0). Then

XGL2
µ (b) = {Λ | σ(Λ) = Λ}

= {OF -lattices ΛF ⊂ F 2}
= the vertices in the building (a tree) for GL2(F ). This is an infinite
discrete set (dim = 0).

(II) n = 2, b = 1 and µ = (µ1, µ2), where µ1 ≥ µ2. Then

dim XGL2
µ (b) =

{
−∞, if µ1 + µ2 6= 0

µ1, if µ1 + µ2 = 0.

Thomas J. Haines Survey of Affine Deligne-Lusztig Varieties



logo

A Question in σ-linear algebra
Basic Questions about ADLVs

Isocrystals and Mazur’s inequality
Non-emptiness of ADLVs in the affine Grassmannian

Dimensions of ADLVs in the affine Grassmannian
ADLVs in the affine flag variety

Examples

Define XGLn
µ (b) = {Λ ⊂ Ln | inv(Λ, bσ(Λ)) = µ}. Call it the Affine

Deligne-Lusztig Variety (ADLV) associated to GLn, b, and µ.

(I) n = 2, b = 1, and µ = (0, 0). Then

XGL2
µ (b) = {Λ | σ(Λ) = Λ}

= {OF -lattices ΛF ⊂ F 2}
= the vertices in the building (a tree) for GL2(F ). This is an infinite
discrete set (dim = 0).

(II) n = 2, b = 1 and µ = (µ1, µ2), where µ1 ≥ µ2. Then

dim XGL2
µ (b) =

{
−∞, if µ1 + µ2 6= 0

µ1, if µ1 + µ2 = 0.

Thomas J. Haines Survey of Affine Deligne-Lusztig Varieties



logo

A Question in σ-linear algebra
Basic Questions about ADLVs

Isocrystals and Mazur’s inequality
Non-emptiness of ADLVs in the affine Grassmannian

Dimensions of ADLVs in the affine Grassmannian
ADLVs in the affine flag variety

Examples

Define XGLn
µ (b) = {Λ ⊂ Ln | inv(Λ, bσ(Λ)) = µ}. Call it the Affine

Deligne-Lusztig Variety (ADLV) associated to GLn, b, and µ.

(I) n = 2, b = 1, and µ = (0, 0). Then

XGL2
µ (b) = {Λ | σ(Λ) = Λ}

= {OF -lattices ΛF ⊂ F 2}
= the vertices in the building (a tree) for GL2(F ). This is an infinite
discrete set (dim = 0).

(II) n = 2, b = 1 and µ = (µ1, µ2), where µ1 ≥ µ2. Then

dim XGL2
µ (b) =

{
−∞, if µ1 + µ2 6= 0

µ1, if µ1 + µ2 = 0.

Thomas J. Haines Survey of Affine Deligne-Lusztig Varieties



logo

A Question in σ-linear algebra
Basic Questions about ADLVs

Isocrystals and Mazur’s inequality
Non-emptiness of ADLVs in the affine Grassmannian

Dimensions of ADLVs in the affine Grassmannian
ADLVs in the affine flag variety

Examples

Define XGLn
µ (b) = {Λ ⊂ Ln | inv(Λ, bσ(Λ)) = µ}. Call it the Affine

Deligne-Lusztig Variety (ADLV) associated to GLn, b, and µ.

(I) n = 2, b = 1, and µ = (0, 0). Then

XGL2
µ (b) = {Λ | σ(Λ) = Λ}

= {OF -lattices ΛF ⊂ F 2}
= the vertices in the building (a tree) for GL2(F ). This is an infinite
discrete set (dim = 0).

(II) n = 2, b = 1 and µ = (µ1, µ2), where µ1 ≥ µ2. Then

dim XGL2
µ (b) =

{
−∞, if µ1 + µ2 6= 0

µ1, if µ1 + µ2 = 0.

Thomas J. Haines Survey of Affine Deligne-Lusztig Varieties



logo

A Question in σ-linear algebra
Basic Questions about ADLVs

Isocrystals and Mazur’s inequality
Non-emptiness of ADLVs in the affine Grassmannian

Dimensions of ADLVs in the affine Grassmannian
ADLVs in the affine flag variety

Examples

Define XGLn
µ (b) = {Λ ⊂ Ln | inv(Λ, bσ(Λ)) = µ}. Call it the Affine

Deligne-Lusztig Variety (ADLV) associated to GLn, b, and µ.

(I) n = 2, b = 1, and µ = (0, 0). Then

XGL2
µ (b) = {Λ | σ(Λ) = Λ}

= {OF -lattices ΛF ⊂ F 2}
= the vertices in the building (a tree) for GL2(F ). This is an infinite
discrete set (dim = 0).

(II) n = 2, b = 1 and µ = (µ1, µ2), where µ1 ≥ µ2. Then

dim XGL2
µ (b) =

{
−∞, if µ1 + µ2 6= 0

µ1, if µ1 + µ2 = 0.

Thomas J. Haines Survey of Affine Deligne-Lusztig Varieties



logo

A Question in σ-linear algebra
Basic Questions about ADLVs

Isocrystals and Mazur’s inequality
Non-emptiness of ADLVs in the affine Grassmannian

Dimensions of ADLVs in the affine Grassmannian
ADLVs in the affine flag variety

Examples

Define XGLn
µ (b) = {Λ ⊂ Ln | inv(Λ, bσ(Λ)) = µ}. Call it the Affine

Deligne-Lusztig Variety (ADLV) associated to GLn, b, and µ.

(I) n = 2, b = 1, and µ = (0, 0). Then

XGL2
µ (b) = {Λ | σ(Λ) = Λ}

= {OF -lattices ΛF ⊂ F 2}
= the vertices in the building (a tree) for GL2(F ). This is an infinite
discrete set (dim = 0).

(II) n = 2, b = 1 and µ = (µ1, µ2), where µ1 ≥ µ2. Then

dim XGL2
µ (b) =

{
−∞, if µ1 + µ2 6= 0

µ1, if µ1 + µ2 = 0.

Thomas J. Haines Survey of Affine Deligne-Lusztig Varieties



logo

A Question in σ-linear algebra
Basic Questions about ADLVs

Isocrystals and Mazur’s inequality
Non-emptiness of ADLVs in the affine Grassmannian

Dimensions of ADLVs in the affine Grassmannian
ADLVs in the affine flag variety

Examples

Define XGLn
µ (b) = {Λ ⊂ Ln | inv(Λ, bσ(Λ)) = µ}. Call it the Affine

Deligne-Lusztig Variety (ADLV) associated to GLn, b, and µ.

(I) n = 2, b = 1, and µ = (0, 0). Then

XGL2
µ (b) = {Λ | σ(Λ) = Λ}

= {OF -lattices ΛF ⊂ F 2}
= the vertices in the building (a tree) for GL2(F ). This is an infinite
discrete set (dim = 0).

(II) n = 2, b = 1 and µ = (µ1, µ2), where µ1 ≥ µ2. Then

dim XGL2
µ (b) =

{
−∞, if µ1 + µ2 6= 0

µ1, if µ1 + µ2 = 0.

Thomas J. Haines Survey of Affine Deligne-Lusztig Varieties



logo

A Question in σ-linear algebra
Basic Questions about ADLVs

Isocrystals and Mazur’s inequality
Non-emptiness of ADLVs in the affine Grassmannian

Dimensions of ADLVs in the affine Grassmannian
ADLVs in the affine flag variety

It is instructive to prove that non-emptiness implies µ1 + µ2 = 0.

Let Λ0 = Oe1 ⊕Oe2. Let K = GL2(O) = StabGL2(L)(Λ0).

Write Λ = gΛ0 for g ∈ GL2(L).

Theory of elementary divisors implies

Λ ∈ XGL2
µ (1) ⇔ g−1σ(g) ∈ K

[
εµ1 0
0 εµ2

]
K.

Taking determinants, the above implies

εµ1+µ2 ∈ det(g−1σ(g))O× = O×,

and thus µ1 + µ2 = 0.

Thomas J. Haines Survey of Affine Deligne-Lusztig Varieties
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ADLVs for general G

Let G denote a (split) connected reductive group, and put
K = G(O).

Examples: GLn, SLn, SO(n), Sp(2n), G2, E8, etc.

The analog of µ = (µ1, . . . , µ2) ∈ Zn, with µ1 ≥ · · · ≥ µn is a
dominant cocharacter µ : Gm → A, for A a (split) maximal torus
in G. Denote these by X∗(A)dom.

Cartan Decomposition: G(L) =
∐

µ∈X∗(A)dom
Kµ(ε)K.

Define XG
µ (b) = {gK ∈ G(L)/K | g−1bσ(g) ∈ Kµ(ε)K}.

This is a locally closed, finite-dimensional subvariety of the affine
Grassmannian G(L)/K.
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Classical Deligne-Lusztig varieties

Let B ⊂ G be a Borel subgroup containing A, and let
W = NG(A)/A be the Weyl group.

Bruhat Decomposition G =
∐

w∈W BwB, where G = G(k) and

B = B(k) here.

Define Xw = {gB ∈ G/B | g−1σ(g) ∈ BwB}.
This is a locally closed subvariety of the flag variety G/B which is
non-empty, smooth, and has dimension equal to `(w).

Deligne and Lusztig introduced these and they are a crucial tool in
the representation theory of the finite groups of Lie type, i.e., the
finite groups G(Fq).
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B = B(k) here.

Define Xw = {gB ∈ G/B | g−1σ(g) ∈ BwB}.
This is a locally closed subvariety of the flag variety G/B which is
non-empty, smooth, and has dimension equal to `(w).

Deligne and Lusztig introduced these and they are a crucial tool in
the representation theory of the finite groups of Lie type, i.e., the
finite groups G(Fq).
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Basic Questions about ADLVs

(I) For which (µ, b) is XG
µ (b) 6= ∅?

(II) If non-empty, is XG
µ (b) equidimensional, and is there a formula

for its dimension?

(III) What is the geometric structure of XG
µ (b) (irreducible

components, singularities, etc.)?

The fact that XG
µ (b) can be empty should be contrasted with the

classical case.

Also, there are many different ”Frobenius elements” bσ (in the
classical case there is only one, so only b = 1 appears).

ADLVs arise from Shimura varieties over finite fields and isocrystals
with additional structure.
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Isocrystals

Usual context is p-adic: F = Qp, OF = Zp, L = Q̂un
p , O = ring of

integers in L, k = Fp = OF /pOF .

σ is the Frobenius automorphism: either x 7→ xp ∈ Gal(Fp/Fp), or
as the element of Gal(L/F ), defined by

σ(
∑

i>>−∞
aip

i) =
∑

i>>−∞
ap

i p
i.

An isocrystal is a pair (V,Φ), where V is a finite-dimensional
L-vector space, and Φ : V → V is a σ-linear bijection:

Φ(αv) = σ(α)Φ(v), ∀v ∈ V, α ∈ L.

If V0 is an F -vector space and V = V0 ⊗F L, then all (V,Φ) are of
form (V, b(1⊗ σ)), for b ∈ GL(V ) = GLn(L).
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Dieudonne’s classification of isocrystals

Dieudonne proved that the category of isocrystals is abelian and
semi-simple. The simple objects, parametrized by λ = r/s ∈ Q, are
of form

Vλ := (Ls, br,sσ)

where

br,s =


0 1

. . .
. . .

0 1
pr 0

 ∈ GLs(L).

The s-tuple (r/s, · · · , r/s) is called the Newton vector of Vλ.

Any (V,Φ) has a Newton vector ν(V,Φ) = (λ1, λ2, . . . , λn) ∈ Qn
dom

by decomposing (V,Φ) as a sum of simple objects and stringing
together all the Newton vectors of the simple objects, in
non-increasing order.

Given b ∈ GL(V )(L), define its Newton point νb ∈ Qn
dom to be the

Newton vector of the isocrytal (Ln, bσ).
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Elementary computation of Newton points

νb is unchanged if b is replaced with g−1bσ(g) (since isomorphism
class of (V, bσ) is unchanged).

Therefore we can replace b with an element of form ελw, i.e., a
monomial matrix in GLn(L).

Let N be the order of the permutation matrix w. Then νb is the
unique dominant element in Qn

dom which is some permutation of
1
N

∑N−1
i=0 wi(λ).

For general groups G, Kottwitz defined Newton points for b ∈ G(L),
and a similar result holds.
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Mazur’s inequality and its converse

For an O-lattice Λ ⊂ V , define its Hodge point µ = µ(Λ) ∈ Zn
dom

by inv(Λ,Φ(Λ)) = µ. This makes sense even when Φ(Λ) * Λ.

Mazur’s inequality: For every lattice Λ ⊂ V , µ(Λ) ≥ ν(V,Φ).
(This holds in either function-field or p-adic context.)

That is, The Hodge polygon lies above the Newton polygon
(with same endpoints).

Gives a necessary condition for non-emptiness of XGLn
µ (b).

Question: does the converse of Mazur’s ≤ hold? That is, given
µ ≥ ν(V,Φ), does there exist a lattice Λ ∈ V whose Hodge point is
µ?

The answer is yes (Kottwitz-Rapoport). In other words XGLn
µ (b) 6= ∅

iff νb ≥ µ.
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(This holds in either function-field or p-adic context.)

That is, The Hodge polygon lies above the Newton polygon
(with same endpoints).

Gives a necessary condition for non-emptiness of XGLn
µ (b).

Question: does the converse of Mazur’s ≤ hold? That is, given
µ ≥ ν(V,Φ), does there exist a lattice Λ ∈ V whose Hodge point is
µ?

The answer is yes (Kottwitz-Rapoport). In other words XGLn
µ (b) 6= ∅

iff νb ≥ µ.
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Newton and Hodge Polygons

Example

(1, 1, 0, 0, 0) ≥ ( 1
2 , 1

2 , 1
3 , 1

3 , 1
3 )
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Mazur inequality and non-emptiness in general

For general G, Kottwitz defined notions of G-isocrystal, and also the
Newton point νb ∈ X∗(A)Q,dom for b ∈ G(L).

The inequality µ ≥ νb now is for usual dominance order on
X∗(A)R,dom.

Theorem

XG
µ (b) 6= ∅ ⇔ µ ≥ νb.

Kottwitz-Rapoport (GLn and GSp2n and reduced general case to
problem on root systems), C. Lucarelli (split classical groups), Q.
Gashi (general split groups).

Other special cases handled by Fontaine-Rapoport, and
Wintenberger.

Upshot: We know exactly when ADLVs in any affine Grassmannian
are non-empty.
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Application of G-isocrystals: moduli of abelian varieties over k

Dieudonne: every polarized n-dim’l abelian variety A over k gives
rise to a GSp2n-isocrystal (L2n, bσ). The Newton point νb is
therefore an invariant of A.

Define the Newton stratum Sb in the moduli space of all A to
consist of those A with fixed Newton point νb.

Examples: ordinary abelian varieties form a single Newton stratum
(which is open and dense in the moduli space). Supersingular AVs
form another Newton stratum.
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What about dimXG
µ (b)?

Theorem (GHKR + Viehmann)

If XG
µ (b) 6= ∅, then

dim XG
µ (b) = 〈ρ, µ− νb〉 −

1

2
(rkF G− rkF Jb).

We write defG(b) := rkF G− rkF Jb.
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Remarks

Jb(F ) = {g ∈ G(L) | g−1bσ(g) = b}.
Conjectured by Rapoport, who pointed out the similarity with Chai’s
conjecture.

In particular, if b = 1, get dim XG
µ (1) = 〈ρ, µ〉 (cf. GL2 example).

After some work, Chai’s conjecture takes the form surprising form

dim(Sb) = 〈ρ, µ + νb〉 −
1

2
(rkF G− rkF Jb),

where µ = (1n, 0n), a cocharacter for GSp2n. There is a geometric
reason for this similarity.

XG
µ (b) is conjectured to be equidimensional. This is proved when

b ∈ A(L) [GHKR] and when b is ”basic” [Hartl-Viehmann].
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ADLVs in the affine flag variety

Let I ⊂ G(L) be an Iwahori subgroup, and call G(L)/I the affine
flag variety.

I\G(L)/I = W̃ = X∗(A) o W .

For x ∈ W̃ and b ∈ G(L), define

XG
x (b) = {gI ∈ G(L)/I | g−1bσ(g) ∈ IxI}.

Questions: When are XG
x (b) 6= ∅? Are they equidimensional? Is

there a formula for the dimensions?

Much less is known, but progress has been made.

The following picture shows the dimensions of ADLVs for G = G2,
b = 1.
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ADLVs in the affine flag variety

Some results

Theorem (GHKR)

(i) There is an algorithm, in terms of foldings in Bruhat-Tits building of
G(L), to compute dim XG

x (b) for all G,x, and b.

(ii) There is a conjectural (non-algorithmic) description of when XG
x (b)

is empty, for b ”basic”, and we can prove emptiness occurs when
predicted.

(iii) There is a conjectural formula for x ”generic” and b ”basic” which is
supported by computer evidence: write x = w2ε

λw1w
−1
2 , for

wi ∈ W and λ ∈ X∗(A)dom. Conjecture:
Xx(b) 6= ∅ ⇔ w1 /∈

⋃
T(S WT , in which case

dim XG
x (b) =

1

2
(`(x) + `(w1)− defG(b)).
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