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1. Introduction

Let (G, X, K) be a Shimura datum with reflex field E. Choose a prime number p and a
prime ideal p of E lying over p. Suppose that Kp ⊂ G(Qp) is a parahoric subgroup. Also
assume that G splits over Qun

p , and hence that Ep is an unramified extension of Qp. Let SK

denote a model over OE,p of the corresponding Shimura variety. Then it is often the case that
SK has bad reduction. The singularities of the special fiber are very complicated in general,
and somehow must be understood in order to study the local zeta function of the Shimura
variety at p. Rapoport [13] has outlined a strategy to attack this problem. The first part is
to find a convenient way to express

tr(Frq ; RΨI
x0

(Ql)),

where RΨ(Ql) is the sheaf of nearby cycles on (SK)
Fq

, q = pj is such that Qpj contains

Ep, x0 ∈ SK(Fq), Frq is the geometric Frobenius on (SK)
Fq

, and I is the inertia subgroup

of Gal(Qp/Qp). (The study of this trace only directly relates to a semi-simplified version
of the local zeta function, but it is nevertheless a first step towards the usual local zeta
function.) The sheaf of nearby cycles can often be computed when one understands the
global geometry of the special fiber, but in practice the global geometry of the special fiber is
too complicated to be dealt with directly. To circumvent this problem Rapoport introduces
a “local model” M loc over OE,p and a procedure that attaches to x0 ∈ SK(Fq) a point

x in M loc(Fq). We consider now the special case where Kp is an Iwahori subgroup. The
local model then has a stratification indexed by certain elements of the extended affine Weyl
group of G (conjecturally the µ-admissible set; see definition in §2.1). Although the point
x is not uniquely determined by x0, it is contained in a well-defined stratum; we can thus
also use the symbol x to denote the element of the extended affine Weyl group corresponding
to this stratum. The local model at x is locally isomorphic to the special fiber at x0, so
by transport of structure we see that we need an expression for the trace of Frobenius on
RΨI

x(Ql). This should have a purely group-theoretic interpretation, if we are eventually going
to use the Arthur-Selberg trace formula to express the zeta function in terms of automorphic
L-functions.

Such an interpretation has been conjectured by R. Kottwitz. To give his prescription we
must fix an unramified extension F containing Ep and assume that G is quasisplit over F .
Associated to X is a minuscule cocharacter µ (defined up to conjugacy) of the group GEp

,

and by definition of E the conjugacy class of µ is defined over Ep. Because GF is quasisplit we
can consider µ as a well-defined element of X∗(A)/W0, where A is a maximal F -split torus of
GF and W0 is the relative Weyl group of GF (see Lemma 1.1.3 of [8]). Let q = pj denote the
cardinality of the residue field of F , and let zµ denote the Bernstein function corresponding
to µ, which is an element of the center of the Iwahori-Hecke algebra of the p-adic group G(F )

1



2 Thomas J. Haines

(see definition in §2). Then zµ is a linear combination (over Z[q1/2, q−1/2]) of the generators
Tw, where Tw denotes the characteristic function of the Iwahori double coset corresponding
to the element w of the extended affine Weyl group of GF . Denote the coefficient of Tw by
zµ(w). Then we have the following

Conjecture (Kottwitz): If Kp is an Iwahori subgroup and x is an Fq-rational point of the

local model M loc corresponding to the Shimura datum (G, X, K), then

tr(Frq ; RΨI
x(Ql)) = qdim(SK)/2zµ(x).

If qdim(SK)/2zµ has this property, then it follows that it is the correct “test function” for
the Shimura variety, meaning that it gives the function at the prime p which is “plugged
into” the twisted orbital integrals that come into the computation of the semi-simple local
zeta function when one attempts to use the Arthur-Selberg trace formula.

There is also a version of this conjecture for the general parahoric case: the local model then

has a stratification by certain “µ-admissible” elements of the double coset space WJ\W̃/WJ

(here WJ is a parabolic subgroup of the extended affine Weyl group W̃ ). In the conjecture
above the Bernstein function zµ needs to replaced with its image in the parahoric Hecke
algebra.

The main result of this paper (Theorem 4.3) is a formula for zµ where µ is any minuscule
coweight of any reduced root system. It applies to Hecke algebras with arbitrary parameters
(see definition in §2). For simplicity we state the result in the special case corresponding to
a split group (the parameter system is then given by L(s) = 1 for all s ∈ Sa; see notation in
§2).
Theorem 1.1. Let µ be a dominant minuscule coweight of a split connected reductive p-adic

group G with root system (X∗, X∗, R, Ř, Π). Let W̃ = X∗ o W denote the extended affine
Weyl group of G. Let zµ denote the Bernstein function corresponding to µ. Then

ql(aµ)/2zµ = εaµ

∑

x : x is µ-adm.

εxRx,at(x)(q)Tx,

where εy = (−1)l(y), x has decomposition x = wat(x) (w ∈ W , t(x) ∈ X∗), and Rx,at(x)(q) is

the R-polynomial attached to W̃ in Kazhdan-Lusztig theory (cf. §2).
In this paper we use Theorem 1.1 to prove Kottwitz’ conjecture for a certain class of

Shimura varieties with Iwahori type reduction. We examine Shimura varieties attached to
the group of unitary similitudes GU(1, d− 1) defined by an imaginary quadratic extension E
of Q in which the prime p splits (the “Drinfeld case”). In this case Rapoport gives formulae
for the trace of the Frobenius Frq on the nearby cycles on the corresponding local model ([13]
and [12]), the formulae being very explicit under some assumptions on the number q = pj

(Proposition 5.1 of §5). Under the same assumptions on q = pj the group GQ
pj

is split and

we can use Theorem 1.1 to give an explicit formula for the coefficients ql(aµ)/2zµ(x) (comp.
Proposition 5.2). Comparing the two explicit formulae, one sees that Kottwitz’ conjecture
holds in this case. (Theorem 1.1 is all that is needed for this particular application, because
the group in question is split. However, in cases where the group is quasisplit but nonsplit
we need to allow for arbitrary parameters and the more general Theorem 4.3 is necessary.)

More precisely, fix an integer d > 2 and let (D, ∗) denote a central simple algebra D
of dimension d2 over an imaginary quadratic extension E of Q, together with a positive
involution ∗ which induces the nontrivial automorphism on E. Suppose the prime p splits in
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E as the product p1p2, where p1 is the prime ideal of E distinguished in §5. Let G denote the
corresponding Q-group (defined in §5), and let K = KpKp, where Kp is an Iwahori subgroup
of G(Qp). Let X be chosen as in §5, so that GR is the group GU(1, d−1). With this choice of

X the corresponding G(Qp)-conjugacy class {µ} of cocharacters of G(Qp) can be “identified”

in a certain precise sense with the cocharacter (1, 0d−1) of Gld, if we assume that q = pj is
such that j · (inv(Dp1) ≡ 0 (mod d). Indeed, let F = Qpj , where j is chosen as above. Then
via the isomorphism of F -groups GF = Gld × Gm described in §5, we may represent {µ}
using the cocharacter µ = (1, 0d−1)t where t denotes the cocharacter x 7→ x in X∗(Gm) (see
§5).

Let SK denote a model over OEp1
of the Shimura variety determined by the datum

(G, X, K). A first step towards understanding the semi-simple local zeta function of SK

is provided by the following theorem.

Theorem 1.2. Let (G, X, K) denote the Shimura datum above, and let M loc denote the
corresponding local model. Let j be such that j · (inv(Dp1)) ≡ 0 (mod d). Then Kottwitz’

conjecture holds for M loc and q = pj.

Corollary 1.3. If Dp1 is a matrix algebra, then Kottwitz’ conjecture holds for M loc and any
q.

One can also use Theorem 1.1 to predict the trace of Frobenius on nearby cycles for the
local models attached to other Shimura varieties. When a calculation of this trace is possi-
ble, Kottwitz’ conjecture can be verified using a stratum-by-stratum comparison of explicit
formulae, as in Theorem 1.2. For example, consider the Shimura variety with Iwahori type
reduction attached to the group GU(2, 3) determined by an imaginary quadratic extension E
of Q in which the prime p splits. This comes from a central simple algebra D over E as above.
We again consider only j such that the condition in Theorem 1.2 holds. This means that
we are essentially dealing with the local model M loc attached to GL5 and µ = (1, 1, 0, 0, 0)

(see the proof of Theorem 1.2 in §5). Let τ ∈ W̃ denote element indexing the “most singular

stratum” of the local model; it turns out that at(τ) = a(0,0,0,1,1) = s3s4s2s3s1s2τ (here si

is the transposition (i i + 1), for 1 ≤ i ≤ 4). Then Theorem 1.1 and Kottwitz’ conjecture
predict that tr(Frq; RΨI

τ (Ql)) is

ετεaµRτ,s3s4s2s3s1s2τ (q) = (1 − q)4(1 + q2).

A calculation by U. Görtz [3] of the trace of Frobenius on nearby cycles for this “most singular
point” produced exactly this expression. Also, Görtz calculated the trace of Frobenius on
the nearby cycles for all 33 strata for the local model attached to Gl4 and µ = (1, 1, 0, 0).
Comparing the results with the formula for zµ in Theorem 1.1, he verifed that Kottwitz’
conjecture holds for the local model of the Shimura variety with Iwahori type reduction
attached to the group GU(2, 2) determined by an imaginary quadratic extension of Q in
which p splits.

Since this paper was written further progress has been reported in the study of nearby
cycles on local models of Shimura varieties, and in related matters. A. Beilinson and D.
Gaitsgory were motivated by Kottwitz’ conjecture to attempt to construct geometrically the
center of the Iwahori-Hecke algebra of a split group G, in the function field setting, via a
nearby cycle construction. Using Beilinson’s deformation of the affine Grassmanian of G to
the affine flag variety of G, D. Gaitsgory [2] proved that the nearby cycles functor RΨ takes
“spherical” perverse sheaves on the affine Grassmanian of G to central perverse sheaves on
the affine flag variety of G (with respect to convolution of equivariant perverse sheaves). This
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results in an analogue of Kottwitz’ conjecture which is valid for every split group G over a
local function field. The author and B.C. Ngô [5] applied similar ideas to prove Kottwitz’
conjecture for local models of Shimura varieties attached to GLd and GSp2d, yielding the
p-adic analogue of Gaitsgory’s theorem for these groups.

We now outline the contents of the paper. In §2, we give further notation and prove some
elementary lemmas. In §3 we present an efficient method of computing Bernstein functions for

minuscule coweights as linear combinations of the basis elements T̃w, w ∈ W̃ (or equivalently,
the elements Tw). In §4 we prove the main theorem (Theorem 4.3). Moreover we prove that
when µ is minuscule, the support of zµ is precisely the µ-admissible set (Proposition 4.6). In
§5 we discuss the Shimura varieties in the Drinfeld case, and deduce the truth of Kottwitz’
conjecture for the special case in Theorem 1.2 above, using Rapoport’s formulae (Proposition
5.1) and the explicit formula for zµ in this case (Proposition 5.2).

2. Notation

For the most part we will use the notation in [11], except that the affine Weyl groups and
Hecke algebras we consider will be “dual” to Lusztig’s.

2.1. The Affine Weyl Group of a Root System. Let (X∗, X∗, R, Ř, Π) be a (based)
root system, where Π denotes the simple positive roots. Let R+ (resp. R−) denote the set of
positive (resp. negative) roots; we often use α > 0 to denote α ∈ R+. We assume throughout
this paper that the root system is reduced.

Corresponding to α ∈ Π we have the simple reflection sα, acting on X∗ (resp. X∗) by
sα(x) = x − 〈α, x〉α̌ (resp. sα(y) = y − 〈y, α̌〉α). The Weyl group W0 is the subgroup of
GL(X∗) (or GL(X∗)) generated by S = {sα | α ∈ Π}. It is known that (W0, S) is a finite
Coxeter group.

Let � denote the partial order on X∗ (resp. X∗) defined by λ � µ ⇔ µ − λ is a linear
combination with ≥ 0 integer coefficients of elements of {α̌ | α ∈ Π} (resp.{α | α ∈ Π}) . Let
Πm denote the set of β ∈ R such that β is a minimal element of R ⊂ X∗ with respect to �.
If the root system is irreducible, Πm = {−α̃}, where α̃ is the unique highest root.

Let W̃ be the semidirect product W0nX∗ = {wax | w ∈ W0, x ∈ X∗} (a is a fixed symbol).

The multiplication is given by w′ax′

wax = w′waw−1(x′)+x. Define a function l : W̃ → Z by
the formula

l(wax) =
∑

α∈R+ : w(α)∈R−

|〈α, x〉 + 1| +
∑

α∈R+ : w(α)∈R+

|〈α, x〉|.

Define an action of W̃ on X∗×Z by wax(y, k) = (w(y), k−〈y, x〉). Let R̃ = R̃+∪R̃− ⊂ X∗×Z

be defined by

R̃+ = {(α, k) | α ∈ R, k > 0} ∪ {(α, 0) | α > 0},
R̃− = {(α, k) | α ∈ R, k < 0} ∪ {(α, 0) | α < 0}.

Let

Π̃ = {(α, 0) | α ∈ Π} ∪ {(α, 1) | α ∈ Πm} ⊂ R̃+,

Sa = {sα | α ∈ Π} ∪ {sαaα̌ | α ∈ Πm} ⊂ W̃ .

There is a bijection Π̃ ↔ Sa (A ↔ sA).
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Let

Xdom = {x ∈ X∗ | 〈α, x〉 ≥ 0, ∀α ∈ Π}
= {x ∈ X∗ | l(sαax) = l(ax) + 1, ∀α ∈ Π}.

Note that w ∈ W0, x ∈ Xdom ⇒ l(wax) = l(w) + l(ax).

Let Q̌ denote the subgroup of X∗ generated by Ř. Then the subgroup Wa = W0Q̌ of W̃ is
a Coxeter group with Sa the set of simple reflections, the length function being the restriction

of l. This subgroup is normal in W̃ and admits a complement Ω = {w ∈ W̃ | w(Π̃) = Π̃} =

{w ∈ W̃ | l(w) = 0}. It is known that Ω is an abelian group isomorphic to X∗/Q̌. Note that

the permutation action of Ω on the set Π̃ corresponds to the action of Ω on Sa by conjugation:

τsAτ−1 = sτ(A) for every τ ∈ Ω and A ∈ Π̃.

We use ≤ to denote the Bruhat order on W̃ . This is defined on the Coxeter group (Wa, Sa)

as usual, and it is then extended to W̃ by declaring xτ ≤ x′τ ′ (x, x′ ∈ Wa, τ, τ ′ ∈ Ω) if x ≤ x′

and τ = τ ′.

Definition 2.1. For µ ∈ Xdom, we say x ∈ W̃ is µ-admissible if x ≤ aw(µ) for some w ∈ W0.
The set of all such x’s is called the µ-admissible set.

2.2. The Hecke Algebra. Let B be the group with generators Tw, (w ∈ W̃ ) and relations

TwTw′ = Tww′ whenever l(ww′) = l(w) + l(w′).

We call B the braid group of W̃ . For any x ∈ X∗ we define an element T x = Tax1T−1
ax2 , where

x = x1 − x2 and x1, x2 ∈ Xdom. This is independent of the choice of the xi.
Fix a parameter set L : Sa → N for the root system. This means that L(s) = L(s′)

whenever s , s′ ∈ Sa are conjugate in W̃ . Equivalently, L is the restriction to Sa of a

function L′ : W̃ → N with L′(ww′) = L′(w) + L′(w′) whenever w , w′ ∈ W̃ satisfy l(ww′) =
l(w) + l(w′). We denote both functions simply by L. We also use to L to denote the unique
homomorphism L : B → Z such that L(Tw) = L(w).

Let v be an indeterminate (thought of as q1/2), and let Z′ = Z[v, v−1]. The Hecke algebra
H is by definition the quotient of the group algebra of B (over Z′) by the two sided ideal
generated by the elements

(Ts + 1)(Ts − v2L(s)), s ∈ Sa.

The image of Tw (resp. T x) in H is still denoted by Tw (resp. T x).

Remark 2.2. Let G be a split connected reductive group over a p-adic field F , with root
system (X∗, X∗, R, Ř, Π). Suppose q is the size of the residue field of F , and let v = q1/2.
Let L be the parameter set given by L(s) = 1 for every s ∈ Sa. Choose an Iwahori subgroup
I ⊂ G(F ) whose “reduction mod p” is the Borel corresponding to the choice of simple positive
roots Π. Define convolution in the algebra Cc(I\G(F )/I) using the Haar measure on G(F )

which gives I measure 1. Then there is a canonical isomorphism of Z[q1/2, q−1/2]-algebras

H ∼= Cc(I\G(F )/I).

Define for any w ∈ W̃ a renormalization T̃w = v−L(w)Tw. The elements Tw (resp. T̃w)

(w ∈ W̃ ) form a Z′-basis for H. For x ∈ X∗, define

Θx = v−L(T x)T x = v−L(x1)+L(x2)Tax1T−1
ax2 = T̃ax1 T̃−1

ax2 ,

where x = x1 − x2, xi ∈ Xdom. It is known that the elements ΘxTw (x ∈ X∗, w ∈ W0) form
a Z′-basis for H ([11], Prop. 3.7).



6 Thomas J. Haines

Definition 2.3. For each W0-orbit M in X∗ define the Bernstein function attached to M
by zM =

∑
λ∈M Θλ.

When the W0-orbit M contains the dominant element µ, this function will usually be denoted
by zµ.

The following theorem is due to Bernstein in the special case where L(s) is independent of
s and the roots generate a direct summand of X∗, and to Lusztig in general (see [11], Prop.
3.11):

Theorem 2.4. (Bernstein, Lusztig) Let Z(H) denote the center of H. Then Z(H) is the
free Z′-module with basis zM , where M runs over the W0-orbits in X∗.

Define for each s ∈ Sa an indeterminate Qs = v−L(s) − vL(s). With the normalizations
above, the usual relations in H can be written simply as

T̃sT̃w =

{
T̃sw, if l(sw) = l(w) + 1,

−QsT̃w + T̃sw, if l(sw) = l(w) − 1,

if w ∈ W̃ and s ∈ Sa (and similarly for T̃wT̃s). In particular, T̃−1
s = T̃s + Qs.

For any y ∈ W̃ , choose a reduced expression y = s1 · · · srτ, (si ∈ Sa, τ ∈ Ω). Then for

any x ∈ W̃ we can define a polynomial expression R̃x,y(QS) in variables QS = {Qs, s ∈ Sa},
by the formula

(1) T̃−1
y−1 =

∑

x∈fW

R̃x,y(QS)T̃x.

The coefficient of T̃x appearing in the above expression is a priori just an element of the ring
Z′ = Z[v, v−1]. However it is clear that we can also think of it as a polynomial expression in
the indeterminates Qs because of the identity

(2) T̃−1
y−1 = (T̃s1 + Qs1) · · · (T̃sr + Qsr)T̃τ .

The expression R̃x,y(QS), viewed as an element of Z′, does not depend on the choice of
reduced expression for y, although viewed formally as a polynomial in |Sa| variables, it does
depend on the choice of reduced expression. The fact that the indeterminates Qs are not
independent (indeed not even distinct) variables will not affect any of the arguments we make
using them. It will only be necessary sometimes to verify that some polynomial expressions
in QS are not zero in the ring Z′.

These R̃-functions are analogous to the R-polynomials introduced in [7]. These are defined
in the context of an affine Hecke algebra with trivial parameters, meaning that we take the

parameter set L given by L(w) = l(w), (w ∈ W̃ ). In this case set v = q1/2 and Q =

q−1/2 − q1/2 = Qs, (s ∈ Sa). Following [7] define Rx,y(q) by the equation

T−1
y−1 =

∑

x

εxεyq
−l(y)Rx,y(q)Tx,

where εx = (−1)l(x). Then we have

εxεyRx,y(q) = q(l(y)−l(x))/2R̃x,y(Q).

It is easy to prove the following facts.

Lemma 2.5. For x, y ∈ W̃ and s ∈ Sa we have
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(1) sx < x, sy < y ⇒ R̃x,y(QS) = R̃sx,sy(QS),

(2) x < sx, sy < y ⇒ R̃x,y(QS) = QsR̃x,sy(QS) + R̃sx,sy(QS),

(3) R̃x,y(QS) ∈ Z+[QS ],

(4) degQS
R̃x,y(QS) = l(y) − l(x) if x ≤ y,

(5) R̃x,y(QS) 6= 0 in Z′ ⇐⇒ x ≤ y.

Proof. The first two statements are consequences of the definition, and these immediately
imply (3) and (4) by induction on l(y). Finally (5) (⇒) is easy using the equation (2) above.
It remains to prove (5) (⇐). This is a consequence of (4) and the fact that no nontrivial
polynomial expression in the indeterminates Qs with nonnegative integer coefficients can be
0 in Z′ (multiply by a sufficiently high power of v to get a polynomial in v, and note that the
leading coefficient is nonzero). �

We write u < (v, w) < z for u, v, w, z ∈ W̃ when u < v < z and u < w < z (in the Bruhat
order). The first two statements of the lemma easily yield the following:

Corollary 2.6. For x, z ∈ W̃ and s ∈ Sa we have

(1) sxs < (sx, xs) < x, zs < (z, szs) < sz =⇒ R̃x,z(QS) = R̃sxs,szs(QS)−QsR̃xs,szs(QS),

(2) xs < (x, sxs) < sx, zs < (z, szs) < sz =⇒ R̃x,z(QS) = R̃sxs,szs(QS).

3. Computing Bernstein Functions for Minuscule Coweights

In this section we present an efficient method to compute the Bernstein function zµ as a

linear combination of the normalized basis elements T̃w in the case where µ is minuscule, i.e.,
〈α, µ〉 ∈ {−1, 0, 1}, ∀α ∈ R.

Throughout this section fix a dominant and minuscule coweight µ ∈ X∗. Let λ denote an
element in the W0-orbit of µ. Let µ− denote the unique antidominant coweight in W0(µ).
Because our root system is reduced we have λ � µ and so we can write µ − λ =

∑p
i=1 α̌i,

where αi ranges over a subset of the simple roots (possibly with repeats). In the case λ = µ−

we see that p = l(aµ) (let 2ρ be the sum of the positive roots, apply 〈2ρ, ·〉 to both sides, and
use 〈2ρ, α̌i〉 = 2). Thus for general λ we have p ≤ l(aµ).

In what follows we will write si in place of sαi
.

Lemma 3.1. For µ and λ as above, there exists a sequence of simple roots α1, α2, . . . , αp

such that

s1(µ) = µ − α̌1,

s2s1(µ) = µ − α̌1 − α̌2,

·
·

λ = sp · · · s1(µ) = µ − α̌1 − · · · − α̌p.

Proof. Use induction on p. If p = 0, then λ = µ and there is nothing to prove. If p = 1, write
λ = µ − α̌1. Then λ is not dominant, so there exists α ∈ Π such that 〈α, λ〉 = −1 (since λ is
minuscule). Thus sα(λ) = λ + α̌ and

α̌1 − α̌ = µ − sα(λ).

Because the right hand side is either 0 or a sum of positive coroots and α1 is a simple root
we must have α1 = α and µ = sα1(λ). It follows that λ = s1(µ) = µ − α̌1 as desired.
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Now suppose that p > 1 and the result holds for p − 1. Since µ − λ is a sum of p simple
coroots, λ is not dominant, so there exists α ∈ Π such that 〈α, λ〉 = −1. Thus sα(λ) = λ + α̌
and

µ − λ = (µ − sα(λ)) + α̌.

It follows that µ− sα(λ) is a sum of p− 1 simple coroots, so the induction hypothesis applied
to sα(λ) yields a sequence α1, . . . , αp−1 such that

s1(µ) = µ − α̌1,

·
·

sα(λ) = sp−1 · · · s1(µ) = µ − α̌1 − · · · − α̌p−1.

Now taking αp = α easily yields the desired result. �

Lemma 3.2. Let x ∈ X∗ be a (nonzero) coweight for which there exists a sequence of simple
roots α1, . . . , αp (0 ≤ p ≤ r = l(ax)) such that

s1(x) = x − α̌1,

·
·

sp · · · s1(x) = x − α̌1 − · · · − α̌p.

Then there exists a reduced expression for ax of the form

ax = t1 · · · tr−p(
τsp) · · · (τs1)τ,

where τ ∈ Ω is such that ax ∈ Waτ , and tj ∈ Sa, for 1 ≤ j ≤ r − p.

Proof. We use induction on p. If p = 1, then 〈α1, x〉 = 1, so that l(axs1) < l(ax). Then the
Exchange property of the Coxeter group (Wa, Sa) shows that axτ−1 has a reduced expression
ending with τs1, as desired.

Now suppose p > 1 and the result holds for p − 1. By the induction hypothesis s1a
xs1 =

as1(x) has a reduced expression of the form

s1a
xs1 = t1 · · · tr−p+1(

τsp) · · · (τs2)τ,

and thus

ax = s1t1 · · · tr−p+1(
τsp) · · · (τs2)(

τs1)τ.

This last expression becomes reduced upon omitting exactly two letters. We must omit the
first letter s1, for otherwise s1a

x < ax, contrary to 〈α1, x〉 = 1 > 0. If the other omitted
letter is one of the tj ’s, we are done. We need to show therefore that the other omitted letter
cannot be one of the τsi’s. Suppose it were. Then

ax = t1 · · · tr−p+1(
τsp) · · · ˆ(τsi) · · · (τs1)τ.

Comparing with the expression for as1(x) above it is easy to see

as1(x) = ax.s1 · · · sisi−1 · · · s2 ∈ X∗W0.

Since the sl terms are in W0, this implies s1(x) = x, a contradiction.
�

We need the following lemma, which is due to Bernstein and Lusztig:
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Lemma 3.3. (Bernstein, Lusztig) Let x ∈ X∗, let α ∈ Π, and write s = sα. Suppose that
〈α, x〉 = 1. Then

T̃−1
s ΘxT̃−1

s = Θs(x).

Proof. This is a consequence of (a dual version of) Proposition 3.6 of [11] when the parameter
set L : Sa → N is arbitrary (noting that 〈α, x〉 = 1 ⇒ α /∈ 2X∗). It is due to Bernstein (see
Lemma 4.4, [10]) in the case where L(s) = 1, ∀s ∈ Sa. �

Proposition 3.4. Let µ be a dominant and minuscule coweight, and let τ ∈ Ω be the unique
element such that aµ ∈ Waτ . Let λ ∈ W0(µ). Suppose µ − λ is a sum of p simple coroots
(0 ≤ p ≤ l(aµ) = r). Then there exists a sequence of simple roots α1, . . . , αp such that the
following hold (setting si = sαi

):

(1) 〈αi , si−1 · · · s1(µ) 〉 = 1, ∀1 ≤ i ≤ p,
(2) There is a reduced expression for aµ of the form aµ = t1 · · · tr−p(

τsp) · · · (τs1)τ ,

(3) There is a reduced expression for aλ of the form aλ = sp · · · s1t1 · · · tr−pτ ,

(4) Θλ = T̃−1
sp

· · · T̃−1
s1

T̃t1 · · · T̃tr−p T̃τ ,

where tj ∈ Sa, ∀j ∈ {1, 2, . . . , r − p}.

Proof. Lemma 3.1 and 3.2 applied to µ and λ immediately imply the existence of a sequence
α1, . . . , αp of simple roots such that (1) and (2) hold. But (3) follows from (2) and the fact
that sp · · · s1(µ) = λ. Note that (1) implies that the hypotheses of Lemma 3.3 are satisfied
for x = si−1 · · · s1(µ) and α = αi, ∀i. Therefore starting with the expression

Θµ = T̃t1 · · · T̃tr−p T̃τ sp · · · T̃τ s1 T̃τ

and applying Lemma 3.3 repeatedly yields (4). �

Corollary 3.5. With the hypotheses above, aµ− ∈ W0τ .

Proof. Take λ = µ−, so that p = r. Then the result is obvious from the reduced expression

for aµ−

given in the Proposition. �

In practice the sequence α1, . . . , αp for any λ is easily computed. The expansion of the

resulting expression for Θλ in terms of the basis {T̃w, w ∈ W̃} is also a straightforward

matter, using the relation T̃−1
s = T̃s +Qs. Summing over λ then yields the Bernstein function

zµ as a linear combination of the elements T̃w. One can then use this expression to write zµ

in terms of the usual basis elements Tw.

Example: The Bernstein function for G = GSp6, µ = (1, 1, 1, 0, 0, 0).

Identifying X∗ ⊗ R = R6 with X∗ ⊗ R using the standard inner product, we can write the
simple roots and coroots as follows: α1 = (1/2,−1/2, 0, 0, 1/2,−1/2), α̌1 = (1,−1, 0, 0, 1,−1)
α2 = (0, 1/2,−1/2, 1/2,−1/2, 0), α̌2 = (0, 1,−1, 1,−1, 0), α3 = α̌3 = (0, 0, 1,−1, 0, 0).
Write si instead of sαi

, and let s0 = (1, 0, 0, 0, 0,−1)(1 6) denote the simple affine reflection.
Note that aµ = s0s1s0s2s1s0τ is a reduced expression, where τ ∈ Ω permutes the simple

affine roots by interchanging the subscripts 0 ↔ 3 and 1 ↔ 2.
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Consider the sequence of simple roots α3, α2, α1, α3, α2, α3. This satisfies (1) in Proposition
3.4, and we see that

Θ(1,1,1,0,0,0) = T̃0T̃1T̃0T̃2T̃1T̃0T̃τ ,

Θ(1,1,0,1,0,0) = T̃−1
3 T̃0T̃1T̃0T̃2T̃1T̃τ ,

Θ(1,0,1,0,1,0) = T̃−1
2 T̃−1

3 T̃0T̃1T̃0T̃2T̃τ ,

Θ(0,1,1,0,0,1) = T̃−1
1 T̃−1

2 T̃−1
3 T̃0T̃1T̃0T̃τ ,

Θ(0,1,0,1,0,1) = T̃−1
3 T̃−1

1 T̃−1
2 T̃−1

3 T̃0T̃1T̃τ ,

Θ(0,0,1,0,1,1) = T̃−1
2 T̃−1

3 T̃−1
1 T̃−1

2 T̃−1
3 T̃0T̃τ ,

Θ(0,0,0,1,1,1) = T̃−1
3 T̃−1

2 T̃−1
3 T̃−1

1 T̃−1
2 T̃−1

3 T̃τ ,

where we write T̃i instead of T̃si
for every si ∈ Sa. The missing term Θ(1,0,0,1,1,0) can be

computed using a slightly different sequence. Let zµ(x) denote the coefficient of Tx in the
expression for zµ. We find that zµ(x) is 0 unless x is in the µ-admissible set (a set with 79
elements) and that for µ-admissible x the coefficient is as follows:

ql(µ)/2zµ(x) =





(1 − q)2(1 − q + q2 − q3 + q4), if l(x) = 0,

(1 − q)3(1 + q2), if l(x) = 1,

(1 − q)2(1 − q + q2), if l(x) = 2,

(1 − q)(1 − q + q2), if x ∈ S1,

(1 − q)3, if x ∈ S2,

(1 − q)l(µ)−l(x), if l(x) > 3.

Here S1 and S2 are the following sets of µ-admissible elements of length three:

S1 = {s321τ, s232τ, s123τ, s210τ, s101τ, s012τ},
S2 = {s323τ, s312τ, s212τ, s213τ, s230τ, s310τ, s320τ, s120τ, s301τ, s201τ, s101τ},

where the symbol sijk stands for the product sisjsk.

4. A Formula for Bernstein Functions in the Minuscule Case

In this section we present a formula for zµ in the case where µ is minuscule. First we need
some preparation.

For any x ∈ W̃ , there is a unique expression x = w.at(x), where w ∈ W0 and t(x) ∈ X∗.
It is obvious that if α ∈ Π and s = sα, then t(sx) = t(x) and t(xs) = t(sxs) = s(t(x)). We
need the following further properties of t(x):

Lemma 4.1. Let x = w.at(x) ∈ W̃ as above and let s = sα for α ∈ Π. Then

(1) xs < x ⇔ 〈α, t(x)〉 > 0 or (〈α, t(x)〉 = 0 & ws < w),
(2) x < xs ⇔ 〈α, t(x)〉 < 0 or (〈α, t(x)〉 = 0 & w < ws),
(3) sx < sxs ⇔ 〈α, t(x)〉 < 0 or (〈α, t(x)〉 = 0 & sw < sws),
(4) sxs < sx ⇔ 〈α, t(x)〉 > 0 or (〈α, t(x)〉 = 0 & sws < sw).

Proof. This can be deduced from Proposition 1.28 of [6]. Alternatively, one notes that in the

notation of §2.1, if A = (β, k) ∈ R̃+ and y ∈ W̃ , we have y−1(β, k) ∈ R̃− ⇔ sAy ≤ y. Apply
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this with A = (α, 0) and y = x−1 and use the definition of the action of W̃ on R̃ given in
§2.1. �

Lemma 4.2. Let µ be dominant and minuscule. Then any µ-admissible element x has the
property that t(x) ∈ W0(µ).

Proof. Recall that the Bruhat ordering on W̃ descends to give an order on W0\W̃/W0 and
that for λ and µ dominant we have

W0a
λW0 ≤ W0a

µW0 ⇐⇒ λ � µ.

Now write t(x) = w(λ), where λ is dominant and w ∈ W0. Then using the hypothesis on x we

have W0a
λW0 = W0a

t(x)W0 = W0xW0 ≤ W0a
µW0, so that λ � µ. But µ (being minuscule)

is minimal with respect to �, and so λ = µ. Therefore t(x) = w(µ) ∈ W0(µ). �

Theorem 4.3. Let µ be a dominant minuscule coweight. Then

zµ =
∑

x : x is µ−adm.

R̃x,at(x)(QS)T̃x.

This will follow immediately if we establish that for λ ∈ W0(µ), we have

Θλ =
∑

x

R̃x,aλ(QS)T̃x,

where x runs over elements in the µ-admissible set such that t(x) = λ (using Lemma 4.2,
which asserts that each t(x) must be equal to some λ ∈ W0(µ)). But the only elements x
giving a nonzero contribution to the above sum are those for which x ≤ aλ (by Lemma 2.5
(5)), and so the condition that x be µ-admissible is redundant. Therefore we need to prove
the following proposition:

Proposition 4.4. Let µ be minuscule and dominant and suppose λ ∈ W0(µ). Then

Θλ =
∑

x : t(x)=λ

R̃x,aλ(QS)T̃x.

Proof. Suppose that µ − λ is a sum of p simple coroots (0 ≤ p ≤ r = l(aµ)). We proceed by

downwards induction on p. First assume p = r. Then λ = µ− and in view of Θµ− = T̃−1

a−µ−

(since −µ− is dominant) and equation (1), the statement to be proved is
∑

x

R̃
x,aµ− (QS)T̃x =

∑

x : t(x)=µ−

R̃
x,aµ− (QS)T̃x.

Taking into account Lemma 2.5 (5) we need only show that x ≤ aµ− ⇒ t(x) = µ−. But this

is clear because aµ− ∈ W0τ (Corollary 3.5) implies that x ∈ W0τ = W0a
µ−

, and so t(x) = µ−.
Now assume p < r and the result holds for p + 1. Since λ is not antidominant, there exists

s = sα (α ∈ Π) such that 〈α, λ〉 = 1. Thus s(λ) = λ − α̌ ≺ λ and hence the induction

hypothesis applies to s(λ); we multiply the resulting equality for s(λ) on both sides by T̃s to
get

T̃sΘs(λ)T̃s =
∑

y : t(y)=s(λ)

R̃y,as(λ)(QS)T̃sT̃yT̃s.

Since 〈α, λ〉 = 1, Lemma 3.3 implies that the left hand side is Θλ. Therefore we must show
that the right hand side is ∑

x : t(x)=λ

R̃x,aλ(QS)T̃x.
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Now for every x such that t(x) = λ we have 〈α, t(x)〉 = 〈α, λ〉 = 1, hence by Lemma 4.1
we have xs < x and sxs < sx , so either xs < (x, sxs) < sx, or sxs < (xs, sx) < x. Similarly,
for y such that t(y) = s(λ) we have 〈α, t(y)〉 = 〈α, s(λ)〉 = −1, hence by Lemma 4.1 we have
y < ys and sy < sys, so either y < (ys, sy) < sys, or sy < (y, sys) < ys. Furthermore note
that for such y we have

T̃sT̃yT̃s =

{
T̃sys, if y < (ys, sy) < sys,

−QsT̃ys + T̃sys, if sy < (y, sys) < ys.

Therefore we need to prove that the expression

(3) ∑

y : t(y)=s(λ)
y<(ys,sy)<sys

R̃y,as(λ)(QS)T̃sys+
∑

y : t(y)=s(λ)
sy<(y,sys)<ys

R̃y,as(λ)(QS)(−QsT̃ys)+
∑

y : t(y)=s(λ)
sy<(y,sys)<ys

R̃y,as(λ)(QS)T̃sys

is equal to

(4)
∑

x : t(x)=λ
sxs<(xs,sx)<x

R̃x,aλ(QS)T̃x +
∑

x : t(x)=λ
xs<(x,sxs)<sx

R̃x,aλ(QS)T̃x.

In the first and third sums in (3), replace y with sxs. In the second sum replace y with
xs. Then (3) becomes

(5) ∑

x : t(x)=λ
sxs<(sx,xs)<x

R̃sxs,as(λ)(QS)T̃x+
∑

x : t(x)=λ
sxs<(xs,sx)<x

R̃xs,as(λ)(QS)(−QsT̃x)+
∑

x : t(x)=λ
xs<(sxs,x)<sx

R̃sxs,as(λ)(QS)T̃x

Note that 〈α, λ〉 = 1 implies aλ satisfies aλs < (aλ, saλs) < saλ, by Lemma 4.1. Fur-

thermore as(λ) = saλs. Thus Corollary 2.6 with z = aλ shows that (5) is indeed (4). The
proposition follows, and thus Theorem 4.3 is proved. �

Corollary 4.5. Let µ be dominant and minuscule, let s ∈ Sa, x ∈ W̃ , and τ ∈ Ω. Then

(1) If l(sxs) = l(x), and x is µ-admissible, then R̃x,at(x)(QS) = R̃sxs,at(sxs)(QS),

(2) If l(sxs) = l(x) − 2 and x is µ-admissible, then R̃x,at(x)(QS) = R̃sxs,at(sxs)(QS) −
QsR̃xs,at(xs)(QS),

(3) If x is µ-admissible, then R̃x,at(x)(QS) = R̃
τxτ−1,at(τxτ−1)(QS).

Proof. These follow directly from the conditions on central elements of H proved in §3 of
[4]. �

For φ =
∑

x ax(QS)T̃x ∈ H define supp(φ) = {x | ax(QS) 6= 0}. It is obvious from Theorem
4.3 that supp(zµ) is a subset of the µ-admissible set. We can now prove that these sets are
in fact equal in this case.

Proposition 4.6. Let µ be minuscule and dominant. Then

supp(zµ) = {x ∈ W̃ | x is µ-admissible}.
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Proof. The left hand side is clearly contained in the right hand side, by Theorem 4.3. To
prove the other inclusion it is enough to prove (by Lemma 2.5 (5)) that if x is µ-admissible,

then x ≤ at(x). By Lemma 4.2 it is enough to prove, for every λ ∈ W0(µ), the statement

Hyp(λ): x is µ-admissible and t(x) = λ ⇒ x ≤ aλ.

Suppose µ− λ is a sum of p simple coroots. We prove the statement Hyp(λ) by induction
on p.

Suppose first that p = 0. Then λ = µ and it is enough to show that if x is µ-admissible
and t(x) = µ, then x = aµ. Write x = waµ for w ∈ W0. Then l(x) = l(w) + l(aµ) (see §2.1)
and so x can be µ-admissible only if w = 1, i.e., x = aµ.

Now suppose that p > 0 and that Hyp(λ′) is true for p − 1. Since λ is not dominant
there exists s = sα (α ∈ Π) such that 〈α, λ〉 = −1. Now suppose x is µ-admissible and
t(x) = λ. Then 〈α, t(x)〉 < 0 so Lemma 4.1 implies x < xs and sx < sxs, so that either (I)
x < (xs, sx) < sxs, or (II) sx < (x, sxs) < xs.

Consider case (I). It follows from Corollary 4.6 of [4] that sx and xs are both µ-admissible.
But also t(xs) = s(λ) = λ+ α̌ � λ, so the induction hypothesis applied to s(λ) and xs shows

that xs ≤ at(xs) and so R̃xs,at(xs)(QS) 6= 0 (Lemma 2.5 (5)). On the other hand, Corollary

4.5 (1) above (with xs for x) then implies R̃sx,at(sx)(QS) 6= 0, so again using Lemma 2.5 (5)

we see x < sx ≤ at(sx) = at(x) = aλ, as desired.
Finally consider (II). Since l(sxs) = l(x), sxs is µ-admissible (see Lemma 4.5 of [4]). Since

t(sxs) = s(λ) the induction hypothesis applied to s(λ) and sxs yields sxs ≤ as(λ) = at(sxs).
The same argument as in Case (I) applies (using Corollary 4.5 (1) and Lemma 2.5 (5)) to

give first R̃x,at(x)(QS) 6= 0 and then x ≤ at(x) = aλ as desired. �

The following answers a question of Rapoport affirmatively.

Proposition 4.7. If λ′ and λ are distinct elements of W0(µ), then supp(Θλ′)∩supp(Θλ) = ∅.
Proof. It follows from Proposition 4.4 that supp(Θλ) ⊂ {x | t(x) = λ} for any λ ∈ W0(µ).
This immediately implies the result. �

Remark 4.8. One can show using the example of Gl3, µ = (2, 1, 0) that this “Disjointness
Property” is not true if one removes the hypothesis that µ be minuscule.

5. The Bernstein Function in the Drinfeld Case

In this section we explain how to use Theorem 4.3 to prove Theorem 1.2. Roughly speaking
the method is to compare the formula in Theorem 4.3 for GLd and µ = (1, 0d−1) with
Rapoport’s formula for the trace of Frobenius on nearby cycles in the Drinfeld case (see
Proposition 5.1).

First we recall the setup. Fix a positive integer d > 2 and a prime number p. Let E
be an imaginary quadratic extension of Q such that p decomposes as p1p2 in OE . We fix
embeddings σ : E ↪→ Q ⊂ C and φ : Q ↪→ Qp such that φ ◦ σ determines the place p1 of

E. Let (D, ∗) be a central simple algebra over E of dimension d2 together with a positive
involution * which induces the nontrivial automorphism on E. (Thus ∗ is necessarily of the

second type since E is imaginary). Fix an isomporphism D ⊗Q R
v−→ Md(C) such that *

is carried over to the standard involution A 7→ A
t

on Md(C). Let G be the Q-group whose
points in any commutative Q-algebra R are given by

G(R) = {x ∈ D ⊗Q R | xx∗ ∈ R×}.
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Choose i =
√
−1 ∈ C and let h0 : C → D ⊗Q R = Md(C) be given by

h0(a + ib) = diag(a + ib, a − ib, . . . , a − ib).

The restriction of h0 to C× gives a homomorphism

h : RC/R(Gm) → GR.

Let X denote the G(R)-conjugacy class of h. Let OD be a ∗-stable order in D which is a

maximal order at p. Let K = KpKp be a compact open subgroup which leaves OD ⊗ Ẑ

invariant (acting by multiplication on the right), where Kp is a sufficiently small subgroup
of G(Ap

f ) and where Kp is an Iwahori subgroup of G(Qp). Note that if Dpi
is a division

algebra (i = 1, 2), then Kp is the unique maximal compact subgroup. The triple (G, X, K)
is a Shimura datum with reflex field E (see [9]) giving rise to a quasi-projective scheme
SK over OE,p1

(see [1]). The homomorphism h gives rise to a G(Q)-conjugacy class {µ} of
cocharacters µ : (Gm)

Q
→ G

Q
, and {µ} is defined over the field E.

Next we want to study the group G at the prime p. We will henceforth denote the group
GQp simply by G. Moreover from now on we will view {µ} as a G(Qp)-conjugacy class of

cocharacters of G
Qp

, via the choice of embedding φ : Q ↪→ Qp made above. Note that

D⊗Qp = Dp1 ×Dp2 and that Dp1

v−→ Dop
p2

via ∗. For any algebra R over the field Qp = Ep1

we can therefore identify G(R) with the group

{(x1, x2) ∈ (Dp1 ⊗ R)× × (Dp2 ⊗ R)× |x1 = cx−1
2 , for some c ∈ R×}.

Therefore there is an isomorphism of Qp-groups G ∼= D×
p1

× Gm given by (x1, x2) 7→ (x1, c).

Let H denote the Qp-group D×
p1

.
Now fix an unramified extension F = Qpj of Ep1 = Qp such that j ·(inv(Dp1)) ≡ 0 (mod d).

Then HF = Gld and GF = Gld × Gm. Under these identifications we get isomorphisms on

the level of affine Weyl groups: W̃ (GF ) = W̃ (Gld) × W̃ (Gm), where W̃ (Gld) = Zd o Sd ,

W0(GF ) = Sd, and W̃ (Gm) = X∗(Gm). Furthermore we can identify the conjugacy class of
µ with the Sd-orbit of (((1, 0d−1), 1), t) ∈ (Zd o Sd) o tZ. Here t denotes the element x 7→ x
in X∗(Gm). We will abuse notation and denote the element (1, 0d−1)t by µ.

Let M loc denote the local model attached to the datum (G, X, K) as in [13]. The following
theorem follows from an explicit calculation of nearby cycles on M loc:

Proposition 5.1. (Rapoport) Let q = pj be such that j · (inv(Dp1)) ≡ 0 (mod d). Let
y ∈ M loc(Fq). Then

tr(Frq; RΨI
y (Ql)) = (1 − q)|Sy |−1,

where Sy denotes the set of strata of M loc

Fp
that contain the point y.

Proof. For the case where D is a central division algebra over E, this is proved in Theorem
3.12 of [13]. The proof there works in the case we consider as well. �

As a consequence of Theorem 4.3 (or Theorem 1.1) we also have the following explicit
formula for the Bernstein function for Gld and the coweight (1, 0d−1).

Proposition 5.2. Let H = Gld(F ) and ν = (1, 0d−1). Let zν denote the corresponding

Bernstein function. For x ∈ W̃ (H) let zν(x) denote the coefficient of Tx in the expression
for element zν . Then

ql(aν)/2zν(x) =

{
0, if x is not ν-admissible,

(1 − q)l(aν)−l(x), if x is ν-admissible.
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Proof. Because H = Gld is split, the parameters of the corresponding affine Hecke algebra
are trivial: L(s) = 1, for every s ∈ Sa (cf. §2). Therefore for each s ∈ Sa we have Qs = Q,

where Q = q−1/2 − q1/2. Now fix x ∈ W̃ (H), which we assume is ν-admissible (the other case

being trivial). Note that l(at(x)) = l(aν) by Lemma 4.2. Using the identity q1/2Q = 1 − q

and recalling that T̃x = q−l(x)/2Tx, we see by Theorem 4.3 that it is enough to show

Ql(at(x))−l(x) = R̃x,at(x)(Q).

Now if one numbers the simple affine reflections for Wa(Gld) in the standard way (s0 =
(1, 0, . . . , 0,−1)(1d), s1 = (12), . . . , sd−1 = (d − 1, d)), then it is easy to show that aν =

s0sd−1 · · · s2τ , where τ = (1, 0d−1)c ∈ W̃ (H) and c = (12 . . . d) ∈ Sd = W0. In particular the
simple reflections in any reduced expression for aν are pairwise distinct. Since Int(τ) acts

transitively on W0(ν), the same is true of at(x) = t1 · · · td−1τ . We have

T̃−1
(at(x))−1 =

∑

y∈fW

R̃y,at(x)(Q)T̃y

= (T̃t1 + Q) · · · (T̃td−1
+ Q)T̃τ .

Because the tj ’s are pairwise distinct, any two different subsets {j1, . . . jr} and {j′1, . . . j′r′}
yield distinct elements tj1 · · · tjrτ and tj′1 · · · tj′r′ τ , and moreover these expressions are reduced.

Taking into account these remarks, the proposition follows. �

We conclude with the proof of Kottwitz’ conjecture in the Drinfeld case, for those q = pj

where j is such that j · (inv(Dp1)) ≡ 0 (mod d).

Proof of Theorem 1.2: We first make the following remarks:

1. Let F = Qpj . Then GF = Gld × Gm and the cocharacter µ = (1, 0d−1)t = νt of GF gives

rise via Bernstein’s construction (§2) to the function zµ = zν ⊗Tt ∈ Z(H(Gld))⊗Z[T±
t ]. Note

that zµ (resp. zν) can be viewed as an element of the Iwahori-Hecke algebra of G(F ) (resp.

Gld(F )), by Remark 2.2. By definition of the Bruhat order (§2), an element y ∈ W̃ (GF ) is in
the µ-admissible set if and only if it is of the form y = xt, where x is an ν-admissible element

of W̃ (Gld). Furthermore we have l(y) = l(x) and zµ(y) = zν(x) if y = xt.

2. The strata of M loc in the Drinfeld case are indexed by elements of the form y = xt ∈
W̃ (GF ) = W̃ (Gld) o tZ, where y (resp. x) is µ-admissible (resp. ν-admissible).

3. If y = xt is a µ-admissible, then

|Sy| − 1 = l(aµ) − l(y) = l(aν) − l(x),

in the notation of Proposition 5.1.

The equality in Theorem 1.2 now follows easily by combining these three remarks with Propo-
sitions 5.1 and 5.2.
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