
INTERTWINERS FOR UNRAMIFIED GROUPS

THOMAS J. HAINES

1. Introduction

In this note we generalize the algebraic approach to intertwiners given in [HKP],
from split groups to unramified groups. Actually, it is perfectly clear that the meth-
ods of the current note extend to arbitrary non-split groups, but we have limited
our discussion to the unramified case because some things become slightly more
concrete in that situation. We give some of the standard applications as in [HKP]
(such as Bernstein’s description of the center of the Iwahori-Hecke algebra). We
also provide a criterion for the non-vanishing of intertwining operators, in section
9.

The results of this note are used in [H].

2. Preliminaries

2.1. Basic notation. Let F denote a p-adic field. Let O denote the ring of integers
in F , and π ∈ O a uniformizer. Let q = pr denote the cardinality of the residue
field of F . Fix an algebraic closure F for F , and let L denote the completion of
the maximal unramified extension of F inside F . Let σ ∈ Aut(L/F ) denote the
Frobenius automorphism of L over F .

We let G denote a connected reductive group which is defined and unramified
over F . Sometimes we use the symbol G to denote the group G(F ) of F -points.
Let A denote a maximal F -split subtorus, and set T := CentG(A), a maximal torus
defined over F . Let N = NormG(A). We use W to denote the (relative) Weyl
group W := N(F )/T (F ).

We consider the Bruhat-Tits building B(G) for G(F ). Fix once and for all an
alcove a, which we can assume belongs to the apartment corresponding to A. Let
I denote the Iwahori subgroup of G(F ) corresponding to a. Fix a hyperspecial
vertex a0 in the closure of a, with corresponding hyperspecial maximal compact
subgroup K ⊃ I, and designate it as the origin in the aforementioned apartment;
this identifies the apartment with the vector space V := X∗(A)R.

We can embed X∗(A) into A(F ) in two natural ways. Our convention is to
identify µ ∈ X∗(A) with πµ := µ(π) ∈ A(F ).

Let B(T ) denote the set of Borel subgroups B = TU which contain T and are
defined over F . The set B(T ) is a torsor for the finite Weyl group W (for w ∈ W
and B ∈ B(T ), let wB or wB denote wBw−1). For each B = TU ∈ B(T ), define
the Weyl chamber CU in V , and the notion of B-positive root, as follows. Let Tb

denote the unique maximal compact subgroup of T (F ). The chamber CU is the
unique one with vertex a0 such that TbU is the union of the fixers of all “quartiers”
x + CU (x ∈ V ) in the direction of CU . Furthermore, a B-positive root is one that
appears in Lie(B). Equivalently, a root α is B-positive if and only if it takes positive
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values on the chamber CU , where B = TU is the unique element of B(T ) which is
opposite to B.

The alcove a belongs to a unique Weyl chamber having vertex a0, which we
may write in the form CU0

for a unique Borel B0 = TU0 ∈ B(T ). Thus, the roots

α ∈ Lie(B0) are positive on CU0
, and a coweight λ belonging to the closure of CU0

is B0-dominant.
Except in a few instances where B denotes an arbitrary element of B(T ), the

notation B = TU will always mean the opposite Borel B0. Also, unless otherwise
noted C denotes CU = CU0

, the “dominant” Weyl chamber.
Note that by our conventions, the “reduction modulo π” of I is B. More precisely,

we have B ∩ I = B ∩ K.

2.2. Example of SL2. Our conventions amount to the following for the group SL2.
Let A = T denote the diagonal torus. The base alcove a is the unit interval [0, 1] in
the real line (which is identified with the apartment for A). The Iwahori subgroup
I fixing a is the one fixing the homothety classes of the lattices O⊕O and πO⊕O,
that is,

I =

[
O× πO
O O×

]
∩ SL2(F ).

Furthermore, K is the group SL2(O). Also, B0 is the group of “upper triangular”
matrices in SL2, and B is the group of “lower triangular” matrices.

2.3. Extended affine Weyl group. In Bruhat-Tits theory is defined a homomor-
phism ν : N(F ) → V o W , which is normalized such that ν(πµ) = −µ (see [Tits]).

Its kernel is Tb. Via ν the extended affine Weyl group W̃ := N(F )/Tb can be viewed
as a group of affine-linear transformations of V . It splits as a semi-direct product

W̃ ∼= Λ o W,

where Λ is the group of translations isomorphic via ν to T (F )/Tb. There is a natural
inclusion of lattices X∗(A) ↪→ Λ. In fact Lemma 2.3.1 below shows that X∗(A) = Λ
(for another proof of this, see [Bo], 9.5).

In [Ko97] Kottwitz defined a surjective homomorphism

ωG : G(L)³ X∗(Z(Ĝ)Γ0)

where Γ0 := Gal(L/L) denotes the inertia group. The homomorphisms ωG vary
with G in a functorial manner. Let G(L)1 denote the kernel of ωG.

Since G is unramified, T necessarily splits over L, and thus the Kottwitz homo-
morphism takes the simpler form

ωT : T (L)³ X∗(T ).

[To see that T splits over L, let S ⊇ A be the L-split component of T . Note that
S is a maximal L-split torus in G, since any larger L-split torus S ′ ⊇ S contains A
and hence belongs to T , hence to S. Since G splits over L, there exists a maximal
torus T ′ ⊂ G which is defined and split over L. By a standard result, S and T ′

are conjugate by an element of G(L), hence dim(S) = dim(T ′) = dim(T ), and thus
S = T .]

Lemma 2.3.1. For G unramified over F , we have

(i) Tb = T (F ) ∩ T (L)1;
(ii) T (F )/(T (F ) ∩ T (L)1) ∼= X∗(A) via ωT .
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In particular, the inclusion X∗(A) ↪→ Λ is an isomorphism, and W̃ ∼= X∗(A) o W .

Proof. There is an inclusion i : X∗(T ) ↪→ X∗(T )R. By [Ko97], (7.4.5), there is a
commutative diagram with exact rows

0 // T (L)1 // T (L)
i◦ωT // X∗(T )R

0 // Tb
// T (F )

−ν //

OO

X∗(A)R

OO

where the vertical arrows are injective. This shows that i ◦ ωT and −ν agree as
maps T (F ) → V , proving part (i) and the equality of the images in V of −ν and
ωT |T (F ). Furthermore, consider the exact sequence

0 // T (L)1 ∩ T (F ) // T (F )
ωT // X∗(A) // 0

resulting from taking σ-invariants of

0 // T (L)1 // T (L)
ωT // X∗(T ) // 0,

and using the fact that H1(〈σ〉, T (L)1) = 0 (cf. [Ko97], (7.6.1)). We see that
ωT |T (F ) has image X∗(A), i.e. X∗(A) = Λ. ¤

2.4. Bruhat orders and length function. When we speak of the Bruhat order

on W or on W̃ , we will always mean the Bruhat order defined relative to the

reflections through the walls of C resp. a. Also, the length function ` on W̃ is
defined in terms of the reflections through the walls of a.

2.5. On Bruhat-Tits and Iwasawa decompositions. Over L, our group is split
and we have the usual Bruhat-Tits and Iwasawa decompositions

G(L) =
∐

w∈fW (L)

I(L)wI(L) =
∐

w∈fW (L)

U(L)wI(L).

Taking fixed points under σ, these yield the corresponding decompositions over
F :

(2.5.1) G(F ) =
∐

w∈fW

IwI =
∐

w∈fW

UwI.

3. Affine roots and root subgroups

Let Φ = Φ(G,A) denote the set of relative roots for G and the F -torus A. Let
Φaff denote the Bruhat-Tits affine roots (as defined in [Tits], §1.4-1.6). Let Σ denote
the canonical finite reduced root system associated to Φaff and the vertex a0 (the
pair (Φ,Σ) forms an “echelonnage” in the sense of [BT1], §1.4). Each root a ∈ Σ is
a positive scalar multiple of a unique non-divisible root in Φ. Let Σaff denote the
affine root system

Σaff = {a + k | a ∈ Σ, k ∈ Z}.

The basic property defining Σ is that the hyperplanes in X∗(A)R defined by α = 0
for α ∈ Φaff are precisely the hyperplanes α = 0, for α ∈ Σaff . In fact, for each
affine root a′ + k′ ∈ Φaff (a′ ∈ Φ, k′ ∈ R), there is a unique a + k ∈ Σaff (a ∈ Σ,
k ∈ Z), such that a + k is a positive real multiple of a′ + k′.
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Letting Φ+
0 denote the B0-positive roots in Φ, we get a corresponding set of

positive roots Σ+
0 ⊂ Σ. Let ∆0 denote the set of simple roots in Σ+

0 . Similarly, let
∆ denote the set of simple roots in the set of B-positive roots Σ+.

To each non-divisible root a′ ∈ Φ (corresponding to a ∈ Σ) there is a unipotent
subgroup Ua′(F ) equipped with a filtration which is used to define the set Φaff (see
[Tits], §1.4). For α := a + k ∈ Σaff , there is a subgroup Uα ⊂ Ua′(F ). The family
{Ua+k} possesses the following properties:

(1) Ua′(F ) is the union of the subgroups Ua+k, for k ∈ Z;
(2) Uα+1 ( Uα;
(3) U−α − U−α+1 ⊂ Uαν−1(sα)Uα = UαtkasaTbUα, if α = a + k ∈ Σaff .

Here ν : N(F ) ³ W̃ ∼= Λ o W is the homomorphism of Bruhat-Tits (cf. [Tits],
§1). (In particular, ν(πλ) = −λ ∈ X∗(A) ∼= Λ.) Moreover, for α = a + k ∈ Σaff ,

the element tα ∈ A(F ) is defined in the following subsection (for α = a it is πa∨

;
see below and compare with the element aα of [Cas80]).

For the proof of the key property (3), we refer to [Mac], Lemma (2.6.6) and
[BT1], Lemme (6.3.3). See also the examples in subsection 3.2 below.

3.1. Definition of tα and in particular of an element a∨ ∈ X∗(A). Via the
Bruhat-Tits homomorphism ν, the group T (F )/Tb is identified with a group of
translations Λ acting on the vector space X∗(A)R. In fact the elements of Λ belong
to the lattice of coweights P∨(Σ) associated to the root system Σ, and as we saw in
Lemma 2.3.1 Λ also coincides in the unramified case with the group of translations
by elements of X∗(A). For α ∈ Σaff , the element

sα−1 ◦ sα

is a translation by a coroot for Σ, hence it belongs to the coroot lattice Q∨(Σ) ⊂
P∨(Σ). The image of the Bruhat-Tits homomorphism contains every affine re-
flection associated to Σ (and consequently all translations by coroots). Therefore
sα−1◦sα can be lifted to a unique coset tα ∈ T (F )/Tb such that −ν(tα) = sα−1◦sα.
Thus tα can be viewed as an element in T (F ) uniquely determined up to Tb.
By Lemma 2.3.1, in the unramified case we may also view tα as an element in
A/AO. Therefore, for a ∈ Σ we may write ta = πa∨

for some unique cocharacter
a∨ ∈ X∗(A). In fact the notation is not accidental: the element a∨ is precisely the
coroot a∨ ∈ Q∨(Σ) corresponding to the root a ∈ Σ.

In the sequel, we will sometimes denote the element ta by πa∨

.

For every α := a + k ∈ Σaff and l ∈ Z, we have

tαUα+lt
−1
α = Uα+l+2.

Note also that for any w ∈ W , we have

wtαw−1 = twα,

where wα is defined by w(a + k) := a ◦ w−1 + k.

For each α ∈ Σaff , let
qα = [Uα−1 : Uα].

It is clear that qα is always the same as qα+2, but it is not necessarily the same
as qα+1. Macdonald [Mac] defines a root system Σ1 with Σ ⊆ Σ1 ⊆ Σ ∪ 1

2Σ, where
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for a ∈ Σ, the element a/2 lies in Σ1 if and only if qa+1 6= qa. For every a ∈ Σ, he
defines qa/2 = qa+1/qa. Then:

(a) For a ∈ Σ, we have [Ua+1 : Ua+m+1] = q
[m/2]
a/2 qm

a ;

(b) For a ∈ ∆, we have [IsaI : I] = qa/2qa ([Mac] 2.7.4, 3.1.6);
(c) If G has semi-simple rank 1, and a ∈ ∆, then

δB(ta) = [Ua : taUat−1
a ]−1 = q−1

a/2q
−2
a .

3.2. Examples of the constructions above.

Example: SL2. If a is the unique B0-positive root a = e1 − e2, and α = −a + 1
(the simple affine root), then sα−1◦sα is the translation by −a∨ = (−a)∨, where a∨

is the coroot associated to a, and so t−a+1 = π(−a)∨ , according to our conventions.

More generally, for any a ∈ Σ, we have ta+k = πa∨

, for any k ∈ Z. The identity (3)
above for α = a + k (a ∈ ∆0) corresponds to the following matrix identity: given
u ∈ O× and any k ∈ Z, we have

[
1 0

π−ku 1

]
=

[
1 πka
0 1

] [
πkα 0
0 π−kα−1

] [
0 −1
1 0

] [
1 πkb
0 1

]
,

by taking α = a = b = u−1.

Example: Quasi-split SU3 for an unramified quadratic extension E/F . Let a1 ∈
Φ+

0 be the unique non-divisible B0-positive root, so that 2a1 is also a B0-positive
root. Let a ∈ ∆0 be the corresponding positive root of Σ. Then since the simple
affine roots are {a1,−2a1 + 1}, we see that in fact a = 2a1 and that sa−1 ◦ sa =
t(2a1)∨ . So, in this case a∨ = (2a1)

∨ = a∨
1 /2. Concretely, a∨ is the cocharacter in

X∗(A) given by the formula for x ∈ F×

a∨(x) =




x 0 0
0 1 0
0 0 x−1


 ,

and a∨
1 (x) = a∨(x2). Furthermore, if the cardinality of OF /πOF is q, then qa = q,

qa+1 = q3, and qa/2 = q2. For all this, see [Tits], §1.15.
Let x 7→ x̄ denote the generator of Gal(E/F ). Then given an integer k, a unit

u ∈ O×
E and an element c ∈ E such that −cc̄ = π−k(u + ū), the relation (3) for

α = a + k (a ∈ ∆0) corresponds to the matrix identity:



1 0 0
c 1 0

π−ku −c̄ 1


 =




1 a πkv
0 1 −ā
0 0 1






πkα 0 0
0 β 0
0 0 π−kᾱ−1






0 0 1
0 −1 0
1 0 0






1 b πkw
0 1 −b̄
0 0 1


 ,

where α = ū−1, β = ūu−1, v = w = u−1, a = −πk c̄ū−1, and b = −πk c̄u−1.

4. Hecke algebras and the universal model for unramified principal

series

4.1. Hecke algebras. Consider the Iwahori-Hecke algebra H := Cc(I\G/I), where
convolution is defined using the Haar measure dg which gives I measure 1. Consider
also the spherical Hecke algebra HK := Cc(K\G/K), and the finite Hecke algebra
Hf := Cc(I\K/I). As a C-vector space H has a basis given by the characteristic

functions Tw = 1IwI , where w ∈ W̃ .
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The Iwahori-Hecke algebra of the torus A is the ring R := Cc(A(F )/AO), where
convolution is defined using the Haar measure da on A(F ) which gives AO measure
1. By using the valuation map ν the ring R is identified with the group algebra
C[X∗(A)].

Now for any B = TU ∈ B(T ), and any t ∈ T (F ), we denote by δB(t) the
normalized absolute value of the determinant of the adjoint action of t on Lie(U).

4.2. The universal model M. Write B = TU as before. Let M = MB be defined
as the (R,H)-bimodule

M = Cc(AOU\G/I) = Cc(TbU\G/I).

The subscript “c” means that we consider functions supported on only finitely many
double cosets. As a complex vector space, M has a basis consisting of the functions

vx := 1AOUxI (x ∈ W̃ ).
It is clear that H acts on the right on M by right convolutions. One proves as

in [HKP] Lemma 1.6.1 that M is free of rank 1 as an H-module, with canonical
generator v1 (use (2.5.1)). Furthermore, R acts on the left on M by normalized left
convolutions. More precisely, letting f ∈ R, we define the left action of f on vx by
the integral

f · vx(g) =

∫

A

δ
1/2
B (a)f(a)vx(a−1g) da.

In other words, if λ ∈ X∗(A) and if πλ is regarded as both an element in A/AO

and as the characteristic function on A/AO for the subset πλ, then

(4.2.1) πλ · vx = δ
1/2
B (πλ)vtλx,

where tλ is the translation element of W̃ corresponding to λ ∈ X∗(A). Clearly this
applies in particular to the element λ = a∨ we attached to a ∈ Σ.

5. Intertwiners for nonstandard models

5.1. Definition and basic properties. In this section we follow closely the con-
struction of intertwiners given in [HKP], §1.10 (the difference being that [HKP]
only treated the intertwiners for standard models attached to split groups ). As in
loc. cit., we let J be a set of coroots a∨ ∈ Q∨(Σ) ⊂ X∗(A) which belong to some
positive subsystem of coroots. Denote by C[J ] the C-subalgebra of R generated by

J and by Ĉ[J ] the completion of C[J ] with respect to the (maximal) ideal generated

by J . Let RJ denote the R-algebra Ĉ[J ] ⊗C[J] R, a completion of R that can be
viewed as the convolution algebra of complex valued functions on X∗(A) supported
on a finite union of sets of the form λ + CJ , where CJ is the submonoid of X∗(A)
consisting of all non-negative integral linear combinations of elements in J .

Given B = TU ∈ B(T ) and J as above, we denote by MB,J the module
RJ ⊗R Cc(AOU\G/I), which can be viewed as the set of functions f on AOU\G/I
satisfying the following support condition: there exists a finite union S of sets of
the form λ + CJ such that the support of f is contained in the union of the sets
AOUπνK for ν ∈ S. Clearly MB,J is a left RJ -module and a right H-module. We
will often write MJ in place of MB,J when B is understood.

Now let w denote a fixed element of W as well as its lift to an element of
N(F ) ∩ K. Let J denote the set of coroots a∨ ∈ Q∨(Σ) which are B-positive and
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wB-negative. Then as in loc. cit., we define an intertwiner

Iw : MB,w−1J → MB,J

by the integral

(5.1.1) Iw(ϕ)(g) =

∫

Uw

ϕ(w−1ug) du,

where Uw denotes U ∩ wUw−1. The Haar measure du on Uw is normalized such
that Uw ∩ K has measure 1. Here we view the elements ϕ as functions (as above).
As in loc. cit. Lemma 1.10.1, one proves the convergence of the integral defining
Iw(ϕ)(g), and the fact that Iw(ϕ) ∈ MJ . (The proof of the latter is very similar to
the argument in section 5.2 below.)

We remark that in defining Iw, we may replace the set J with any larger set of
coroots that is still contained in a positive subsystem, for example the set of all
B-positive coroots.

Moreover, if w = w1w2 where `(w) = `(w1) + `(w2) and if J is chosen as above,
then the composition Iw1

◦ Iw2
is defined. The following properties are immediate.

Lemma 5.1.1. We have

(i) Iw ◦ πµ = πwµ ◦ Iw for each µ ∈ X∗(A);
(ii) Iw1w2

= Iw1
◦ Iw2

if `(w1w2) = `(w1) + `(w2);
(iii) Iw is a right H-module homomorphism.

Now suppose that B1 = TU1 and B2 = TU2 are two elements of the set B(T ),
and that B2 = vB1 for v ∈ W . Suppose we have chosen the sets J1 and J2

such that J2 = vJ1. Given a function ϕ on G, define the function L(v)ϕ by
L(v)ϕ(g) := ϕ(v−1g). The following diagram commutes:

(5.1.2) MB2,w−1j2

L(v−1)//

Iw

²²

MB1,v−1w−1J2

I
v−1wv

²²
MB2,J2

MB1,J1
.

L(v)oo

We also have the following relation for any v, w ∈ W and any B ∈ B(T ):

(5.1.3) L(v)vB
w = vvB

vw .

Because of (5.1.2), there is no loss in generality in studying only the standard
intertwiners, i.e. those for which U = U 0. That is what we will do, and so from
now on all statements about intertwiners refer to the standard ones. We leave it to
the reader to derive the analogous statements about the nonstandard intertwiners
using (5.1.2).

For this standard situation B = B0, we have the following three useful equalities.
They are proved the same way as in [HKP] (using the Iwahori factorization and
along the way I ∩ B = K ∩ B and I ∩ B ⊂ wIw−1).

v1Tw = vw, for every w ∈ W ,(5.1.4)

vπµTw = vπµw, for every w ∈ W and µ ∈ X∗(A),(5.1.5)

v1Tπµ = vπµ , for µ ∈ X∗(A) B-dominant.(5.1.6)
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5.2. On the support of Iw(v1). In this subsection we give some necessary con-

ditions for an element πλv ∈ W̃ to be in the support of Iw(v1). First we define a
relation x ⇀ y on W which is reflexive and transitive (but not anti-symmetric), and
which depends on our choice of Weyl chamber C. Given x ∈ W , let S(x) denote the
set of simple reflections in the set {sa | a ∈ ∆} which appear in some (equivalently,
all) reduced expressions for x. Then we write x ⇀ y if and only if S(x) ⊆ S(y).

Secondly, we recall the definition of the retraction functions rB (for any B ∈
B(T )): if g = uπµk in the Iwasawa decomposition G = UAK, then we set rB(g) :=
µ. Note that the Iwasawa decomposition which a priori takes the form G = UTK
agrees with the one we used, since A(F )/AO = T (F )/Tb (Lemma 2.3.1) and Tb ⊂ K.

The basic property of the family of retractions {rB}B∈B(T ) is that for any g ∈ G
and B1, B2 ∈ B(T ), the difference rB1

(g)− rB2
(g) is a sum of coroots a∨ ∈ Q∨(Σ)

which are B1-positive and B2-negative.
One needs to check this only for adjacent Borels in B(T ). In the split case, a

simple computation in SL2 does the job1.
Recall that we are currently assuming B = B0, so that J can be taken as the

set of coroots a∨ such that a∨ is B-positive (i.e. B0-negative) and wB-negative (i.e.
wB0-positive).

Lemma 5.2.1. If Iw(v1)(π
λv) 6= 0, then λ is a sum of elements of J , and v ⇀ w.

In particular, if a ∈ ∆ and Isa
(v1)(π

λv) 6= 0, then λ = ka∨ for some k ∈ Z≥0, and
v ∈ {1, sa}.

Proof. The nonvanishing of Iw(v1)(π
µv) implies that we may write g := uπµv =

u′wi for some u ∈ Uw, u′ ∈ wU , and i ∈ I. It follows that µ = rB(g) − rwB(g) is a
sum of coroots which are B-positive and wB-negative.

Next, let M ⊃ T denote the Levi subgroup corresponding to the set of simple
positive roots a ∈ ∆ such that sa ∈ S(w). Note that this is a Levi subgroup of a
parabolic subgroup which contains B, and that Uw ⊂ M .

We see that gv−1 = uπµ ∈ Bv−1 vI. Since uπµ ∈ M , then using the Iwasawa
decomposition for that group we see that uπµ ∈ (B ∩ M)wM ( vI ∩ M), for some
wM in the Weyl group for M . Comparing the two Iwasawa decompositions we
see v−1 = wM ∈ M . But since the Weyl group of M is generated by the simple
reflections sa ∈ S(w), we see finally that v ⇀ w. ¤

6. Formula for Isa
(v1)

Here we again fix B = TU ∈ B(T ) to be the opposite Borel B0. Let J denote
the set of B-positive coroots a∨ ∈ Q∨(Σ).

For a ∈ Σ+, we define an element ca ∈ RJ by

ca =
(1 − q

−1/2
a/2 q−1

a πa∨

)(1 + q
−1/2
a/2 πa∨

)

1 − π2a∨
.

(In a similar way we may define ca for any a ∈ Σ, but we have to choose J appro-
priately to ensure that ca ∈ RJ .) Also, for w ∈ W , define

cw :=
∏

a∈Σw

ca,

1The same proof in the unramified case works, and in the end requires also a simple computa-

tion in the group SU3.
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where Σw = {a ∈ Σ | a is B-positive and w−1a is B-negative}.

Theorem 6.0.2. Let a ∈ ∆. We have the following equality in MB,J :

Isa
(v1) = (qa/2qa)−1vsa

+ (ca − 1) · v1

Note that this implies that (1 − π2a∨

)Isa
takes M into itself.

7. Proof of Theorem 6.0.2

The proof below is the result of combining the approach of [HKP] with some
ideas of Casselman [Cas80].

7.1. Reduction to semi-simple rank 1. The calculation of Isa
(v1) immediately

reduces from the group G to the Levi subgroup corresponding to a ∈ ∆, by Lemma
5.2.1.

7.2. Proof in the case of semi-simple rank 1. Now we assume G has semi-
simple rank 1. Let a′ denote the unique non-divisible B-positive (thus B0-negative)
root in Φ, and let a ∈ ∆ be the corresponding simple B-positive root in Σ.

By Lemma 5.2.1, we can write Isa
(v1) as a sum

Isa
(v1) =

∑

k,w

J(k,w) vtka∨w,

where w ∈ {1, sa} and k ≥ 0. We need to find all the coefficients J(k,w).
First consider the case where k = 0. Then J(0, 1) 6= 0 implies that we can

solve the equation usa = ui, where u ∈ U , u ∈ U , and i ∈ I. Remembering that
U = Ua′(F ) and U = U−a′(F ), we may find a very B0-dominant (regular) element
λ ∈ X∗(A) such that πλuπ−λ ∈ I. Then we see that IπλsaI meets UπλI, and thus
that tλ ≤ tλsa in the Bruhat order determined by I. But this is impossible, since
`(tλsa) = `(tλ) − 1 for regular B0-dominant λ. Thus J(0, 1) = 0.

Next we examine J(0, sa). We need to determine for which u ∈ Usa
= U we

have sausa ∈ UI. Using the Iwahori decomposition I = (U ∩ I) · (T ∩ I) · (U ∩ I),
we see that sausa ∈ UI iff sausa ∈ U ∩ I = U−a+1. This happens iff u ∈ Ua+1.
So J(0, sa) = measdu(Ua+1) = [Ua : Ua+1]

−1 since measdu(Ua) = 1 by definition
(recall U ∩ I = U ∩ K). So J(0, sa) = q−1

a+1 = (qa/2qa)−1.

Next we consider the case k > 0. Suppose w = sa. Then J(k, sa) 6= 0 iff there

exists u ∈ U with sauπka∨

sa ∈ UI. We can then write uπ−ka∨

= ui, for some
u ∈ U , u ∈ U , and i ∈ I. This is also π−ka∨

u′ = ui for some u′ ∈ U . We write ui
in the form u+ · t0 · u− for unique u+ ∈ U , t0 ∈ T ∩ I and u− ∈ U ∩ I. Since the

factors in U ·T ·U are uniquely determined, we must have π−ka∨

∈ T ∩ I. But this
contradicts k > 0. Hence J(k, sa) = 0.

Finally consider w = 1. For u ∈ U , we need to determine when sauπka∨

∈ UI.
Suppose u 6= 1. Then there is a unique integer l such that u ∈ Ua+l − Ua+l+1 ⊂
U−a−lπ

la∨

TbsaU−a−l. We may write u = u′
−a−lπ

la∨

t0sau−a−l, where t0 ∈ Tb. Then
we have for each u ∈ Ua+l − Ua+l+1:

sauπka∨

∈ UI ⇔ ua−lπ
−la∨

t′0u−a−lπ
ka∨

∈ UI

⇔ ua−lπ
−(l−k)a∨

t′0u
′
−a+2k−l ∈ UI,
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where ua−l := sau′
−a−lsa, t′0 := sat0sa, and u′

−a+2k−l := π−ka∨

u−a−lπ
ka∨

, the
latter being in U−a+2k−l. Using the decomposition of UI as above, we see that this
holds if and only if l = k. (The “only if” if clear. To check the “if”, note that we
just need to see that u′

−a+2k−l ∈ I. But l = k implies that this element belongs to
U−a+k ⊂ I, as desired.)

In particular, we see that

J(k, 1) = measdu(Ua+k − Ua+k+1).

Now for each k ≥ 0, we have

measdu(Ua+k) = q
−[ k+1

2
]

a/2 q−k
a .

Therefore,

J(k, sa) = q
−[ k+1

2
]

a/2 q−k
a − q

−[ k+2

2
]

a/2 q−(k+1)
a

= q
−k/2
a/2 q−k

a

(
q
−[ k+1

2
]+ k

2

a/2 − q
−[ k+2

2
]+ k

2

a/2 q−1
a

)

= δB(πa∨

)k/2

{
1 − q−1

a/2q
−1
a , if k is even

q
−1/2
a/2 − q

−1/2
a/2 q−1

a , if k is odd.

Thus we get

Isa
(v1) = (qa/2qa)−1vsa

+

∞∑

k=1

δB(πa∨

)k/2

{
1 − q−1

a/2q
−1
a , if k is even

q
−1/2
a/2 − q

−1/2
a/2 q−1

a , if k is odd
· vtka∨

.

That is,

Isa
(v1) = (qa/2qa)−1vsa

+
( (1 − q

−1/2
a/2 q−1

a πa∨

)(1 + q
−1/2
a/2 πa∨

)

1 − π2a∨
− 1

)
· v1.

This completes the proof of the main theorem in the case of G semi-simple rank 1,
thus also in general.

Corollary 7.2.1. We have Isa
(v1 + vsa

) = ca · (v1 + vsa
).

Proof. Let q(w) := [IwI : I]. Use the main theorem combined with vsa
= v1Tsa

,
q(sa) = qa/2qa, and T 2

sa
= (q(sa) − 1)Tsa

+ q(sa)T1. ¤

Corollary 7.2.2. We have Iw(1AOUK) = cw 1AOUK .

8. Sketch of proof of Bernstein isomorphism for unramified groups

We may now define an embedding R ↪→ H by sending πµ ∈ R to the element
Θµ ∈ H which is characterized by the identity

(8.0.1) πµv1 = v1Θµ.

(Often we abuse notation and write πµ instead of Θµ in the sequel.) Our aim is to
show that RW maps onto the center Z(H) of H. We follow closely the argument
for split groups given in [HKP].

For each a ∈ Σ, let da denote the denominator of ca. If qa/2 = 1, then da =

1 − πa∨

. If qa/2 6= 1, then da = 1 − π2a∨

. For each w ∈ W , define

dw :=
∏

a∈Σw

da.
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We define the intertwiners without denominators

Jw := dwIw.

We have the relation

(8.0.2) Jw ◦ πµ = πwµ ◦ Jw.

For any reduced expression w = s1 · · · sr, where each si ∈ {sa | a ∈ ∆}, we see that

Jw = Js1
· · · Jsr

,

and hence Jw maps M to itself (since by Theorem 6.0.2 this holds for each Jsi
).

Thus each Jw can be represented by an element of H. In the case of w = sa,
Theorem 6.0.2 gives us

(8.0.3) Jsa
= q(sa)−1daTsa

+ da(ca − 1).

Using this together with (8.0.2) in the case w = sa =: s, we recover Bernstein’s
relation

(8.0.4) Tsπ
µ − πsµTs = q(sa)(ca − 1)(πsµ − πµ).

Here we are writing πµ in place of its image Θµ under our embedding R ↪→ H.
An elementary computation (done by writing out J2

sa
v1 and simplifying), yields

the relation

(8.0.5) J2
sa

= dacad−ac−a ∈ R.

Note that we can already see that RW maps into Z(H): if r ∈ RW , then (8.0.2)
shows that r commutes with Jsa

, and hence with daTsa
(use (8.0.3) and note that

r clearly commutes with da(ca − 1) ∈ R). But then since H is torsion-free as an
R-module, we see that r commutes with each Tsa

as well, and so r ∈ Z(H).
Using this remark, we define the normalized intertwiners. Let L = Frac(R), so

that LW = Frac(RW ). We consider the module Mgen := L ⊗R M = LW ⊗RW M,
which is an (L,Hgen)-module, where Hgen := LW⊗RW H. Let Kw be the intertwiner
on Mgen defined by

(8.0.6) Kw :=
1

cw
Iw =

1

dwcw
Jw.

By (8.0.5) we see that K2
sa

= 1, and we see from this and Lemma 5.1.1 that

Kw1w2
= Kw1

Kw2

for every w1, w2 ∈ W . Thus, w 7→ Kw defines a group homomorphism W → H×
gen

and thus an algebra homomorphism from the twisted group algebra L[W ] to Hgen.
Then exactly as in [HKP], Lemma 2.3.1, we conclude that RW maps onto the center
of H.

9. Descent of intertwiners from universal to specific unramified

principal series

The main goal of this section is to provide a non-vanishing criterion for intertwin-
ing operators. The strength of the algebraic approach to intertwiners is apparent
here: it works perfectly well for arbitrary unramified characters. In most other
approaches, one first develops the theory of intertwiners for regular characters, and
then proves by analytic continuation that they may be defined for certain other
characters (depending on w). But then it seems more difficult to analyze when the
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resulting intertwiners are not identically zero. Below, we give a simple criterion
which applies to the intertwiners without denominators.

9.1. Rough description of Iw on M. Fix w ∈ W . Let J denote the set of coroots
a∨ which are B-positive and wB-negative. Set q(w) := [IwI : I] and note that

(9.1.1) q(w1w2) = q(w1)q(w2)

whenever `(w1w2) = `(w1) + `(w2).

Lemma 9.1.1. We have the following rough description of Iw(v1) as an element
in MB,J :

(9.1.2) Iw(v1) = q(w)−1vw +
∑

w′,a∨,k

aw′,a∨,k vtka∨w′ ,

where w′ ∈ W satisfies w′ < w in the Bruhat order on W , the coroots a∨ range
over the set J , the integers k are non-negative, and the scalars aw′,a∨,k are complex
numbers.

Proof. This follows easily by induction on `(w), taking into account Theorem 6.0.2,
the equation (9.1.1), and the Bernstein relation (8.0.4). ¤

In particular, we see that Jw(v1)(w) 6= 0, so that Jw is never identically zero on
M.

9.2. Criterion for nonvanishing of J̃w on iGB(χ). Let iGB(χ−1
univ) denote the in-

duced representation whose elements consist of the locally-constant R-valued func-
tions φ on G satisfying

φ(aug) = δB(a)1/2 · a−1 · φ(g)

for a ∈ A, u ∈ U , and g ∈ G. The group G acts on iGB(χ−1
univ) by right translations.

There is a canonical H-equivariant isomorphism M = iGB(χ−1
univ)

I , which is given

by associating to ϕ ∈ M the element φ ∈ iGB(χ−1
univ)

I defined by

(9.2.1) φ(g) =
∑

a∈A/AO

δ
−1/2
B (a)ϕ(ag) · a.

Now let χ be an unramified character of T (F ) (that is, trivial on Tb = T (F ) ∩
T (L)1). It can be viewed as a homomorphism from A/AO = X∗(A) to C×; thus it
determines a unique C-algebra homomorphism χ : R → C. Let iGB(χ) denote the
(normalized) unramified principal series representation. Using χ to extend scalars,
we have a canonical identification

C ⊗R M = iGB(χ−1)I .

As in (9.2.1), we can make this explicit: we associate to 1 ⊗ ϕ the element φ ∈
iGB(χ−1)I defined by the formula (for g ∈ G)

(9.2.2) φ(g) =
∑

a∈A/AO

δ
−1/2
B (a)χ(a)ϕ(ag).

In the following proposition, χ and ξ are unramified characters of T (F ), and w ∈
W is an element of the Weyl group such that wχ = ξ (where wχ(t) := χ(w−1tw)).
Note that the intertwiner without denominator Jw : M → M descends to an H-
module homomorphism

(9.2.3) 1 ⊗ Jw : C ⊗R,χ M → C ⊗R, ξ M.
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Via (9.2.2), this determines the descended intertwiner J̃w : iGB(χ−1)I → iGB(ξ−1)I .
Explicitly, we have for φ ∈ iGB(χ−1)I corresponding to ϕ ∈ M

(9.2.4) J̃wφ(g) =
∑

a∈A/AO

δ
−1/2
B (a) wχ(a) Jwϕ(ag).

Recall that dw denotes the denominator of cw. Thanks to the previous subsec-
tion, it is easy to understand when 1 ⊗ Jw is identically zero: this happens if and
only if ξ(dw) = 0. Therefore we derive the following criterion for the nonvanishing

of J̃w.

Proposition 9.2.1. The descended intertwiner J̃w : iGB(χ−1)I → iGB(ξ−1)I is non-
zero if and only if ξ(dw) 6= 0.

The following shows that we can easily arrange for J̃w to be non-zero.

Proposition 9.2.2. If w is a minimal element (in the Bruhat order) such that
wχ = ξ, then ξ(dw) 6= 0.

Proof. It is enough to show that for a ∈ Σw, we have ξ(πa∨

) 6= 1 in case qa/2 = 1,

and ξ(π2a∨

) 6= 1 in case qa/2 6= 1. Let us check only the second case (the first is

similar, and easier). Assume that ξ(π2a∨

) = 1. Note that qa/2 6= 1 implies that
a ∈ 2X∗(A) (in fact for the example of G = SU3 explained in subsection 3.2, we
see that a = 2a1, where a1 is the unique nondivisible B-positive root). This implies
that for each λ ∈ X∗(A), the pairing 〈a, λ〉 is an even integer. It follows that
saξ = ξ. Indeed, for each λ ∈ X∗(A), we have

saξ(πλ) = ξ(πsaλ)

= ξ(πλ)ξ(π2a∨

)−〈a,λ〉/2

= ξ(πλ).

But now we have sawχ = ξ. This violates the minimality of w: since a ∈ Σw,
we have w−1a is B-negative and so saw < w in the Bruhat order on W . This
completes the proof that ξ(dw) 6= 0. ¤

We finish with a related result.. For τ ∈ W , consider the unique function φτ ∈
iGB(ξ−1)I which is supported on the set BτI and satisfies φτ (τ) = 1. The functions
φτ (τ ∈ W ) form a C-vector space basis for iGB(χ−1)I . Via (9.2.2), φτ corresponds
to the function 1 ⊗ ϕτ ∈ C ⊗R M where ϕτ := 1AOUτI = vτ .

Proposition 9.2.3. For τ, τ ′ ∈ W , we have J̃w(φτ )(τ ′) 6= 0 only if

w−1Uwτ ′ ∩ BτI 6= ∅.

Proof. This follows immediately from (9.2.4) and the integral formula defining
Iw(ϕτ )(aτ ′) for a ∈ A. ¤
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