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Abstract

We study the Jordan-Hölder series for nearby cycles on certain Shimura
varieties and Rapoport-Zink local models, and on finite-dimensional pieces
of Beilinson’s deformation of the affine Grassmannian to the affine flag va-
riety (and their p-adic analogues). We give a formula for the multiplicities
of irreducible constituents in terms of certain cohomology groups, and we
also provide an algorithm to compute multiplicities, in terms of the affine
Hecke algebra.
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1 Introduction

This article has several aims. The initial motivation was our desire to under-
stand, as explicitly as possible, the irreducible constituents of the nearby cycles
sheaf RΨ on the reduction modulo p of a Shimura variety with Iwahori-level
structure at a fixed prime p. In some sense, the complexity of RΨ is a measure
of the singularities in the reduction modulo p. Moreover, we were motivated by
the role RΨ plays in the computation of the semi-simple local zeta function at
p for such a Shimura variety, cf. [RZ1], [HN1].

Via the relationship between the Shimura variety and its Rapoport-Zink lo-
cal model [RZ2], one can translate the problem into that of understanding
the nearby cycles on a local model. The latter can be embedded as a finite-
dimensional piece of a Zp-ind-scheme M which is a deformation of the affine
Grassmannian GrassQp to the affine flag variety F lFp for the underlying p-adic
group G (M exists at least if G is either GLn or GSp2n; see [HN1] and section
8). A very similar deformation FlX over a smooth curve X (due to Beilinson)
exists for any group G in the function field setting, and has been extensively
studied by Gaitsgory [Ga].

The “maximal parahoric” subgroup G(O) in the loop group of G acts on Grass,
the generic fiber of the deformation M or FlX . Fixing a dominant coweight µ of
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2 1 INTRODUCTION

G, one may therefore consider nearby cycles RΨ = RΨ(ICµ), taken with respect
to the deformation, where ICµ is the intersection complex on the closure Qµ of
the G(O)-orbit in Grass indexed by µ. Letting B denote the standard Iwahori
subgroup of G(O), one may show that RΨ is a B-equivariant perverse sheaf
on the affine flag variety, with certain additional properties (e.g., it belongs to
the category PB

q (F l,Qℓ) of section 4). Thus, quite generally, we were led to the
problem of understanding the Jordan-Hölder series for objects F of the category
PB
q (F l,Qℓ). It turns out that the only irreducible objects in this category are

Tate-twists of intersection complexes on finite-dimensional Schubert varieties
Bw in F l (they are indexed by elements w in the extended affine Weyl group

W̃ for G; we denote such intersection complexes by ICw). Thus, we may define
non-negative “multiplicities” m(F , w, i) by the identity in PB

q (F l,Qℓ)

Fss =
⊕

w∈fW

⊕

i∈Z

ICw(−i)⊕m(F ,w,i).

Our main theorem is the following cohomological interpretation for the integers
m(F , w, i) for sheaves F which satisfy a somewhat technical hypothesis (Prop-
erty (P) of section 4.3). This property holds for all the nearby cycles we consider,
and also for a much larger class of objects (those with a suitable filtration by
Wakimoto sheaves; see section 7).

Theorem 1.1 Suppose F ∈ PB
q (F l,Qℓ) satisfies property (P) for the integer

d. Then for each w ∈ W̃ ,

∑

i

m(F , w, i)qi = (−q)dTr(Frq, H
•
c (F l,DF ⊗ IC(Bw))).

Here DF denotes the Verdier dual of F ; there is also a “dual” formulation (see
Theorem 4.7) in which F appears rather than DF . We introduce and study the
intersection complex IC(Bw) appearing here in section 3. In a certain sense, it
is the intersection complex for an orbit Bw for the “opposite” Iwahori subgroup
B−. Such orbits are infinite-dimensional, and so it is necessary to construct
IC(Bw) by pull-back from certain finite-dimensional quotients (introduced by
Faltings [F]) of open sets Ω ⊂ F l. The basic properties of IC(Bw) play a key
role in the proof. The other main ingredient is the cohomological interpreta-
tion of inverse Kazhdan-Lusztig polynomials, announced in [KL2]. In fact, the
Kazhdan-Lusztig theorem can be seen as a special case of our main theorem
(see section 4.5). Since no proof of the Kazhdan-Lusztig theorem in exactly
our setting has appeared in the literature, we provide a proof for this result
in section 3. Here again we make essential use of our sheaf IC(Bw) and of the
quotients of Faltings [F] to pass from ind-schemes to ordinary finite-dimensional
schemes.

The main theorem was discovered in the attempt to find a conceptual expla-
nation for the following remarkable fact (Cor. 6.3): Let Mµ denote the scheme-

theoretic closure in our deformation of Qµ. Let τ denote the element of W̃



3

indexing the unique dimension zero Iwahori-orbit in the special fiber of Mµ

(i.e., the “most singular point”). Then we have

Corollary 1.2 For RΨ = RΨ(ICµ), the multiplicity m(RΨ, τ, i) is the 2i-th
intersection Betti number for Qµ.

This fact, noticed after several computer-aided calculations using the algorithm
described below, gave us the first hint that multiplicity functions have a coho-
mological interpretation.

It is clear that knowing the multiplicities m(F , w, i) for every w and every i is
equivalent to knowing an explicit formula for the trace function Tr(Frq,F) as
an element in the Iwahori-Hecke algebra (see section 4.2). On the other hand,
the Kottwitz conjecture (proved in [Ga] and [HN1], cf. section 2.7) identifies the
semi-simple trace function Trss(Frq, RΨ(ICµ)) as an explicit sum of functions
Θλ, each of which can be computed (with a computer program, see sections
7,9). Thus, there is an algorithm to compute the multiplicities m(RΨ, w, i)
in any given case. (Actually, to justify the algorithm, one has to know that
Trss(Frq, RΨ) = Tr(Frq, RΨ); see comments below.) Similarly, the algorithm
works to compute the numbers m(F , w, i) whenever F has a suitable filtration
by Wakimoto sheaves, cf. section 7. In section 9, we give the results of several
such computer-aided calculations, and we give explanations for some empirical
observations we made.

Another consequence of the Kottwitz conjecture is that the functions
Trss(Frq, RΨ(ICµ)) form a basis for the center Z(H) of the Iwahori-Hecke al-
gebra for G, as µ ranges over dominant coweights. In terms of the standard
generators Tx = char(BxB) (x ∈ W̃ ) for H, we have the identity

Trss(Frq, RΨ) =
∑

x


∑

w≥x

(
∑

i

m(RΨ, w, i)qi εwPx,w

)
 Tx,

where ≤ is the Bruhat order on W̃ and Px,w are the Kazhdan-Lusztig polyno-
mials [KL1], cf. section 4.2. Our results on m(RΨ, w, i) therefore give us both a
conceptual and an algorithmic way to make this formula explicit, and this works
for any group G. Other approaches to computing elements in Z(H) explicitly
in terms of the Tx-basis were given previously in [H1],[H3], [HP], and [S].

Other aims of the paper were to provide proofs of several necessary results of
a foundational nature, some of which are very general and might be useful in
other contexts. Here is a list of the highlights:

• A study of categories of B-equivariant perverse sheaves on F l; section 4;

• For finite-type schemes X over a trait (S, s, η), the canonical decomposi-
tion of the category P (X ×s η,Qℓ) of middle perverse sheaves on Xs̄ endowed
with a compatible continuous action of Gal(η̄/η), into “unipotent” and “non-
unipotent” subcategories; section 5;
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• The proof of Gaitsgory’s theorem that our sheaves RΨ are unipotent (in the
above sense), and the consequence that Trss(Frq, RΨ) = Tr(Frq, RΨ), alluded
to above; section 5;

• If X is finite-type over S, an unequal characteristic Henselian trait, and Xη

is smooth, then the nearby cycles sheaf RΨX(Qℓ) is mixed; section 10;

• If X as above is proper, the existence of the weight spectral sequence; section
8.

Returning now to the situation of Shimura varieties Sh considered in section
8, the Shimura datum (G,X) provides us with a minuscule coweight µ of GQp ,

and the model Mµ above coincides with the Rapoport-Zink local model Mloc,
so the above results apply to give the Jordan-Hölder series for RΨSh. The irre-
ducible constituents are Tate-twists of intersection complexes ICSh,w relative to
a stratification

∐
Shw on the special fiber ShFp , induced by the B-orbit strati-

fication on Mµ (see [GN]), indexed by the subset Adm(µ) of section 2.4 1. If Sh
is proper over the ring of integers OE of the reflex field E, then the weight spec-
tral sequence WE

•,• ⇒ H•(Sh
Qp
,Qℓ[ℓ(µ)]) exists (by virtue of the Appendix)

and its E1-term can be made somewhat explicit. We have the following result
(see section 8 for details).

Theorem 1.3 (a) In the category P (Sh×s η,Qℓ), we have

RΨss
Sh(Qℓ[ℓ(µ)]) =

⊕

w∈Adm(µ)

ℓ(µ)−ℓ(w)⊕

i=0

ICSh,w(−i)⊕m(RΨMµ ,w,i).

(b) Assume Sh is proper over OE. Then there is an isomorphism of Qℓ-spaces

WE
pq
1 =

⊕

w∈Adm(µ)
ℓ(w)+2j=−p

IHp+q+ℓ(w)(Shw,Qℓ)
⊕m(RΨMµ ,w,j).

The multiplicity functions
∑

im(RΨ(ICµ), w, i)q
i appear to carry fundamental

information. In all the cases we computed, they are actually polynomials in
q of degree exactly ℓ(µ) − ℓ(w) (and they vanish if w /∈ Adm(µ)). It is per-
haps striking that we do not know how to prove the polynomial nature of the
multiplicity function in general. It can be proved when µ is either minuscule
or a coweight for GLn, by using the existence of minimal expressions for the
functions Θλ that arise in the Kottwitz conjecture, see section 9. We provide a
possible geometrical approach in Part II of the Appendix (section 10).2

1Recall that Sh is usually geometrically disconnected. However the various connected com-
ponents carry the “same” stratification, induced in each case by that on Mµ. To be precise, in
all statements the symbol ICSh,w should be interpreted as the direct sum, over all geometric
connected components, of the intersection complexes indexed by w on the various components.
In particular this applies to the results in section 8.

2After this article was submitted, we proved in the most general case that the multiplicity
functions are polynomials in q having degree at most ℓ(µ) − ℓ(w), see [GH].
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2 Notation and preliminaries

2.1 Galois structures on derived categories

As usual, p will denote a fixed prime number, and q will always denote a power
of p. We will work over Henselian traits (S, s, η) of residue characteristic p.
These will usually be of the form S = Spec(Fp[[t]]) (the function field setting),
or S = Spec(Zp) (the p-adic setting). We choose a separable closure η̄ of η
and define the Galois group Γ = Gal(η̄/η) and the inertia subgroup Γ0 =
ker[Gal(η̄/η) → Gal(s̄/s)], where s̄ is the residue field of the normalization S̄
of S in η̄.

Suppose the residue field k(s) has cardinality q. Any element of Γ which lifts the
inverse Frobq of the topological generator a 7→ aq of Gal(s̄/s) will be called a
geometric Frobenius and will be denoted by Frq. We will often use the same sym-
bol Frq to denote the Frobenius automorphism idX0 ×Frobq : X0×Spec(Fq)→
X0 × Spec(Fq) for an Fq-scheme X0. For the most part, we leave it to context
to dictate what is meant by the symbol Frq in each situation.

Let X be a scheme of finite type over a finite (or algebraically closed) field k.
(The following also works if we assume that k is the fraction field of a discrete
valuation ring R with finite residue field, and that X is finite-type over R, cf.
[Ma].) Denote by k an algebraic closure of k, and by Xk the base change.

We denote by Db
c(X,Qℓ) the ’derived’ category of Qℓ-sheaves on X. Note that

this is not actually the derived category of the category of Qℓ-sheaves, but is
defined via a limit process. See [BBD] 2.2.14 or [Weil2] 1.1.2 for more details; see
also section 5. Nevertheless, Db

c(X,Qℓ) is a triangulated category which admits
the usual functorial formalism, and which can be equipped with a ’natural’
t-structure having as its core the category of Qℓ-sheaves. If f : X −→ Y is
a morphism of schemes of finite type over k, we denote by f∗, f! the derived
functors Db

c(X,Qℓ) −→ Db
c(Y,Qℓ).

We will denote by P (X,Qℓ) the full subcategory of Db
c(X,Qℓ) consisting of

middle perverse sheaves. See [BBD] or [KW] for a detailed discussion of this
notion.

Now let X be a scheme of finite type over s. The absolute Galois group Gal(η/η)
acts on Xs̄ through its quotient Gal(s/s).

Definition 2.1 (cf. [SGA 7], exp. XIII)

(1) The category Db
c(X ×s η,Qℓ) is the category of sheaves F ∈ Db

c(Xs̄,Qℓ)
together with a continuous action of Gal(η/η) which is compatible with the
action on Xs̄. (Continuity is tested on cohomology sheaves: see section 5.)

(2) Similarly, P (X ×s η,Qℓ) denotes the category of perverse sheaves F in
P (Xs̄,Qℓ) together with a continuous action of Gal(η/η) which is com-
patible with the action on Xs̄.



6 2 NOTATION AND PRELIMINARIES

Analogously, assuming k(s) has cardinality q, we let Db,Weil
c (X,Qℓ) denote the

category of pairs (F , F ∗
q ) where F belongs to Db

c(Xs̄,Qℓ), and F ∗
q : Fr∗qF →̃ F

is an isomorphism in that category. The definition of PWeil(X,Qℓ) is similar.

Any choice of geometric Frobenius Frq ∈ Γ gives rise naturally to a functor

Db
c(X ×s η,Qℓ) −→ Db,Weil

c (X,Qℓ).

This induces an analogous functor on the categories of perverse sheaves.

We also have a natural functor

P (Xs,Qℓ) −→ PWeil(X,Qℓ), F0 7→ (F , F ∗
q ),

which is a full embedding, and its essential image is a subcategory which is
stable under extensions and subquotients; see [BBD], Prop. 5.1.2. In particular,
a Weil perverse sheaf which has a filtration such that the graded pieces are all
defined over s, lies in the essential image of this functor.

2.2 The affine Grassmannian and flag variety

We briefly recall the definition of the affine Grassmannian Grass, and the affine
flag variety F l.
We fix a field k and suppose G is a split connected reductive group over k. Fix a
maximal torus T and a Borel subgroup B containing T . Let Λ+ ⊂ X∗(T ) denote
the set of B-dominant integral coweights for G. By W we denote the finite Weyl
group NG(T )/T , by Waff the affine Weyl group, and by W̃ the extended affine
Weyl group NG(T )/TO, where O = k[[t]].

Consider G(k((t))) as an ind-scheme over k. Denote by B ⊂ G(k((t))) the
standard Iwahori subgroup, i. e. the inverse image of B under the projection
G(k[[t]]) −→ G(k).

The affine Grassmannian Grass (over the field k) is the quotient (of fpqc-
sheaves) G(k((t)))/G(k[[t]]); it is an ind-scheme. If G = GLn and R is a k-
algebra, Grass(R) is the set of all R[[t]]-lattices in R((t))n. If G = GSp2n, it is
the set of lattices in R((t))2n which are self-dual up to an element in R[[t]]×. In
the same way, one can construct the affine Grassmannian over Z. By the Cartan
decomposition we have a stratification into G(k[[t]])-orbits:

Grass =
∐

µ∈Λ+

G(k[[t]])µG(k[[t]])/G(k[[t]]).

Here we embed X∗(T ) into G(k((t))) by the rule µ 7→ µ(t) ∈ T (k((t))). We will
denote the G(k[[t]])-orbit of µ simply by Qµ in the sequel. The closure relations
are determined by the standard partial order on dominant coweights: Qλ ⊂ Qµ
if and only if µ− λ is a sum of B-positive coroots.

The affine flag variety F l over k is the quotient G(k((t)))/B; it is an ind-scheme,
too. As before, we have a modular interpretation: e.g., for GLn, F l(R) is the
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space of complete lattice chains in R((t))n. The Iwahori group B acts on F l, and
we get a decomposition

F l =
∐

w∈fW

BwB/B.

Here we embed W̃ = X∗(T ) ⋊ W into G(k((t))) by using the aforementioned
embedding of X∗(T ), and by choosing a representative for w ∈W = NG(T )/T
in the group NG(T )∩G(k[[t]]). We write Bw = BwB/B; Bw is called the Schubert
cell associated to w. Its closure, which we denote by Bw, is a finite-dimensional
projective variety, and is called a Schubert variety. We have

Bw =
∐

v≤w
Bv.

Here ≤ denotes the Bruhat order on W̃ determined by the affine reflections Saff

through the walls of the opposite base alcove, i.e., the alcove w0(A), where w0

is the longest element in W and A ⊂ X∗(T )⊗R is the unique alcove in the B-
dominant chamber whose closure contains the origin. With our normalization
of the embedding of X∗(T ) into G(k((t))), the alcove fixed by the Iwahori B is
w0(A), see [IM] or [HKP].

The length function ℓ : W̃ → Z≥0 used thoughout this paper is always defined
with respect to the Coxeter system (Waff , Saff). Thus, Bw is an affine space
isomorphic to Aℓ(w). Also, we will often write ℓ(µ) instead of ℓ(tµ), where tµ is

the translation element in W̃ corresponding to µ ∈ X∗(T ).

The analogue of the unipotent radical N− of the opposite Borel B− in the
finite-dimensional case, is the subgroup N− ⊂ G(k((t))) which is by definition
the inverse image of N− under the projection G(k[t−1]) −→ G(k). We can then
decompose F l into N− orbits:

F l =
∐

w∈fW

N−wB/B.

We write Bw = N−wB/B. This is an ind-scheme of ’finite codimension’. More
precisely, Bw ∩Bv 6= ∅ if and only if w ≤ v, and in this case the intersection has
dimension ℓ(v)− ℓ(w); cf. [F]. We denote the closure of Bw by Bw; then

Bw =
∐

v≥w
Bv.

2.3 Intersection complexes

Let X be a finite-type reduced and geometrically irreducible scheme over a
finite field k (or, we may assume k is algebraically closed, or that X is finite-
type over a discrete valuation ring with finite residue field and with fraction
field k). For any open immersion j : U → X of a smooth irreducible dense
open subset, we define IC(X) = j!∗(Qℓ), where j!∗ is the Goresky-MacPherson-
Deligne extension functor (for the middle perversity), cf. [GM], [BBD]. The



8 2 NOTATION AND PRELIMINARIES

shift IC(X)[dim(X)] is an irreducible perverse sheaf on X, independent of the
choice of U . If X is not reduced, we set IC(X) := IC(Xred).

The intersection cohomology groups ofX are given by IH i(X) = H i(X, IC(X))
(similarly for compact supports).

We fix a choice of
√
q ∈ Qℓ, needed to define Tate-twists on the categories

Db,Weil
c (X,Qℓ) and PWeil(X,Qℓ). It is known that IC(X)[dim(X)](dim(X)

2 ) is a
self-dual pure perverse sheaf of weight zero.

For w ∈ W̃ we have the locally closed immersion jw : Bw →֒ F l. We define the
perverse sheaf ICw = IC(Bw̄)[ℓ(w)]. For µ ∈ Λ+, the perverse sheaf ICµ on
Grass has a similar definition. Note that there is no Tate-twist in these defini-
tions. This turns out to be the most suitable normalization for our purposes.

2.4 Deformations of the affine Grassmannian to the flag variety

Suppose G = GLn or GSp2n, and S = Spec(Zp). There is a deformation from
GrassQp to F lFp , i.e. an ind-scheme M over Zp with generic fibre GrassQp and
special fibre F lFp . The second author and Ngô [HN1] defined such a deformation
as a union

M =
⋃

µ∈Λ+

Mµ,

where Mµ is a finite-dimensional projective Zp-scheme with generic fiber Qµ,Qp

and special fiber ∐

w∈Adm(µ)

Bw,Fp .

Here Adm(µ) is by definition the following finite subset of W̃ :

Adm(µ) = {x ∈ W̃ | x ≤ tλ, for some λ ∈Wµ};

we refer to [HN2] for further information about this subset. The model Mµ is
defined in terms of lattice chains, so this construction works only for G = GLn
or GSp2n. It is conceivable, however, that other groups can be handled by using
a Plücker description of Grass and F l, cf. [H2].

In the function field case, suppose G is an arbitrary connected reductive group
over k = Fp and suppose X is a smooth curve over k. Then a deformation FlX
has been constructed by Beilinson; see [Ga]. For a distinguished point x0 ∈ X,
FlX is an ind-scheme over X whose fiber over x 6= x0 is isomorphic to the
product Grassk × G/B, and whose fiber over x0 is isomorphic to the affine
flag variety F lk. This deformation also has a modular interpretation, this time
in terms of G-bundles on X. We get a deformation over S = Spec(k[[t]]) by
base-changing with a formal neighborhood of x0 ∈ X.

In either the function-field or the p-adic setting, let Grass denote the “con-
stant” deformation of the affine Grassmannian, i.e., we consider the base change
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GrassZ × S. The modular interpretations of M and FlX allow us to define a
projective morphism of ind-schemes

π : M → Grass

over S (similarly for FlX). In the GLn case for example, π sends a lattice chain
L0 ⊂ L1 ⊂ · · · in M to the lattice L0 in Grass. Often, we will use the same
letter π to denote the morphism on the special fibers, where it is just the usual
projection of ind-schemes G(k((t)))/B → G(k((t)))/G(k[[t]]).

In the sequel, when we use the symbol F l to denote the affine flag variety, we
are often thinking of it as the special fiber of one of the deformations above.
Occasionally, we even write F l for the deformation itself.

2.5 Nearby cycles

Let X denote a finite-type scheme over S. For F ∈ Db
c(Xη,Qℓ), we define the

nearby cycles sheaf to be the object in Db
c(X ×s η,Qℓ) given by

RΨX(F) = ī∗Rj̄∗(Fη̄),

where ī : Xs̄ →֒ XS̄ and j̄ : Xη̄ →֒ XS̄ are the closed and open immersions of
the geometric special and generic fibers of X/S, and Fη̄ is the pull-back of F
to Xη̄. It is known that the functor RΨX preserves perversity, cf. [I].

2.6 Equivariant sheaves

Consider the affine flag variety F l over Fp. By definition, a (mixed) perverse
sheaf on F l is a (mixed) perverse sheaf which is supported on some finite-
dimensional part.

Definition 2.2 Denote by a : B × F l −→ F l the action of the Iwahori group,
by i : F l −→ B ×F l the zero section, and by p2 : B ×F l −→ F l the projection.
A perverse sheaf F is B-equivariant if there exists an isomorphism ϕ : a∗F −→
p∗2F , such that

i) ϕ is rigidified along the zero section: i∗ϕ = idF ,

ii) ϕ satisfies the cocycle condition: (m× idF l)∗(ϕ) = p∗23(ϕ) ◦ (idB×a)∗(ϕ) on
B×B×F l, where m : B×B −→ B is the multiplication map (cf. [KW] III.15).

Note that since by definition all perverse sheaves on F l are supported on finite-
dimensional subschemes of the affine flag variety, and since the Iwahori subgroup
acts through a finite quotient on these subschemes (if they are suitably chosen),
the fact that we deal with ind-schemes does not pose any problems at this point.

Remark. As Kiehl and Weissauer explain in [KW] III.15, in our situation the
conditions i) and ii) in the definition are automatically satisfied; more precisely,
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given any isomorphism a∗F −→ p∗2F , one can change it into a rigidified isomor-
phism, and every rigidified isomorphism satisfies the cocycle condition. (Here we
use that the Iwahori acts through geometrically connected quotients on suitable
finite pieces of the affine flag variety.)

Similarly, on the affine Grassmannian we have an action of the maximal para-
horic subgroup K = G(O), where O = Zp in the unequal characteristic case,
and O = Fp[[t]] in the function field case.

Proposition 2.3 If F is a K-equivariant perverse sheaf on Grass, then its
sheaf of nearby cycles RΨ(F) is B-equivariant.

Proof. In the function field case, this is [Ga] Prop. 4; for the unequal character-
istic case see [HN1] §4. �

We denote by PB(F l,Qℓ) the category of B-equivariant perverse sheaves on
F l/Fp. Later on (section 4) we will consider B-equivariant perverse sheaves
which have Galois structure compatible with the group action. We postpone
the discussion of those sheaves to that section.

We note that the intersection complexes ICµ on Grass are G(O)-equivariant,
and the intersection complexes ICw on F l are B-equivariant.

2.7 The Kottwitz conjecture

For any F ∈ Db
c(F l ×s η,Qℓ), one can define its semi-simple trace function

x 7→ Trss(Frq,Fx),

for any x ∈ F l(Fq); cf. [HN1]. Here Frq ∈ Γ denotes an arbitrary geometric
Frobenius (the semi-simple trace is independent of the choice). If F is a suitably
B-equivariant object (e.g., an object of PB(F l ×s η,Qℓ), cf. section 4.1), then
this function defines an element in the Iwahori-Hecke algebra

H = Cc(B\G(Fq((t)))/B)

of B-bi-invariant compactly-supported Qℓ-valued functions on G(Fq((t))). (Re-
mark: in the sequel, we will often conflate the notions of Iwahori-Hecke algebras
and affine Hecke algebras without lingering on the difference.)

In the p-adic setting, fix a dominant coweight µ for the group G = GLn or
GSp2n, and the associated model Mµ from [HN1]. For the nearby cycles sheaf
RΨ := RΨMµ(ICµ), the Kottwitz conjecture is the following equality of func-
tions in the Iwahori-Hecke algebra for G:

Trss(Frq, RΨ) = εµq
1/2
µ

∑

λ≤µ
mµ(λ)zλ.

Here, εµ = (−1)ℓ(µ), qµ = qℓ(µ), λ ranges over dominant coweights preceding µ
in the usual partial order, mµ(λ) is the multiplicity of λ in the character of the
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dual group having highest weight µ, and zλ is the Bernstein function attached
to λ. More precisely zλ =

∑
λ∈Wµ Θλ, where Θλ is the function T̃tλ1

T̃−1
tλ2

; here

λ = λ1 − λ2 and λi is dominant, and T̃x := q
−1/2
x Tx for x ∈ W̃ . The symbol Tx

denotes the generator char(BxB) in the Iwahori-Hecke algebra.

This formula was proved in [HN1] in the situation at hand. In the function
field case, the analogous formula holds. In that analogue, ICµ is replaced with
the exterior product ICµ ⊠ δ on Grass×G/B, where δ is the skyscraper sheaf
supported at the base point of G/B. This is a consequence of Gaitsgory’s work
[Ga], and holds for any connected reductive group G.

We make extensive use of this formula, in particular in the computation of the
examples in section 9, and in the proof that RΨ satisfies the property (P) (cf.
section 6).

3 Inverse Kazhdan-Lusztig polynomials

3.1 The sheaf IC(Bv)

Let us recall some of the notation introduced above. Let k = F̄p. We denote by B
the Iwahori subgroup of G(k((t))), i.e. the inverse image of the fixed Borel group
B under the projection G(k[[t]]) −→ G. By N− we denote the inverse image of
the unipotent radical of the opposite Borel under the projection G(k[t−1]) −→
G. Furthermore, let N−(n) be the inverse image of T (k[t−1]/t−n) under the
projection N− −→ G(k[t−1]/t−n) (cf. [F]). Note that Lie(N−) is generated by
the negative affine roots (recall we embed X∗(T ) →֒ T (k((t))) by λ 7→ λ(t)).

For elements w and y in the extended affine Weyl group W̃ , we denote by By the
B-orbit of y, by Bw the N−-orbit of w, by Bw its closure, by Bwy the intersection
By ∩Bw, and by Bwy the intersection By ∩Bw. Recall the basic fact (cf. [F]) that

Bwy 6= ∅ ⇔ w ≤ y in the Bruhat order on W̃ .

Further, we define the opposite Iwahori subgroup B− to be the inverse image
of the opposite Borel subgroup B− under the projection G(k[t−1]) → G(k).

Note that N− ⊳ B− and B− = N− · (B− ∩ T (k((t)))). Hence for any w ∈ W̃ ,
N−w∗ = B−w∗, where ∗ denotes the base point in F l.
Fix w ∈ W̃ such that Adm(µ) ⊆ {v | v ≤ w}.
Let Ω =

⋃
v≤w vN−∗. This is an open subset of F l.

Lemma 3.1 We have Ω =
∐
v≤w Bv. Thus for y ≤ w we have By ⊆ Ω.

Proof. We define

N−
w = N− ∩ wN−w−1

N+
w = N+ ∩ wN−w−1.



12 3 INVERSE KAZHDAN-LUSZTIG POLYNOMIALS

Here N+ denotes the preimage of N under the projection G(k[[t]]) → G(k);
Lie(N+) is generated by the positive affine roots.

We then have
N− ∼= N−

w ×
∏

a<0
w−1(α)>0

Uα,

and

N+
w =

∏

α>0
w−1(α)<0

Uα = w



∏

α<0
w(α)>0

Uα


w−1.

Furthermore, it is easy to see that Bw = N+
w w∗ and Bw = N−

w w∗.
From the above we have

vN− = vN−
v−1 · (v−1N+

v v) = N−
v N+

v v.

Thus clearly
Bv = N−

v v∗ ⊆ vN−∗,
so ∐

v≤w
Bv ⊆

⋃

v≤w
vN− ∗ .

On the other hand, N+
v v = Bv ⊆

∐
v′≤v Bv

′
, hence N−

v N+
v v ⊆

∐
v′≤v Bv

′
and

thus ⋃

v≤w
vN−∗ ⊆

∐

v≤w
Bv.

�

For n sufficiently large, the quotient N−(n)\Ω exists; cf. [F] (choose n large
enough so that N−(n) ⊂ N−

v , for every v ≤ w). The reason is that we have a
product decomposition

vN−∗ = N−
v N+

v v∗ ∼= N−(n)× Aa × Ab,

where b = dim(N+
v ) = ℓ(v), and a is the number of affine roots in N−

v which are
not in N−(n); cf. [F]. Thus we see that more precisely, the quotient N−(n)\Ω
can be covered by affine spaces, and in particular is smooth.

In the following discussion, we often tacitly identify By = N+
y y, By = N−

y y and
By × By = N−

y N+
y y = yN−∗. We have a commutative diagram (v ≤ y ≤ w)

Bvy
∼=

��

�

�

// By
∼=

��

�

�

// By × By

��

�

�

// Ω

π

��

π(Bvy) �

�

// π(By) �

�

// N−(n)\By × By �

�

// N−(n)\Ω.

Note that
π(Bvy ∩ Ω) = π(By) ∩ π(Bv ∩ Ω).
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Furthermore π(Bv ∩ Ω) is isomorphic to an affine space (thus in particular is
smooth), and its codimension in N−(n)\Ω is ℓ(v). Finally, we have

N−(n)\(By × By) = (N−(n)\By)× By =: Ay

and this is an open subset of N−(n)\Ω, and Ay∩π(Bv∩Ω) = (N−(n)\By)×Bvy
is an open subset of π(Bv ∩ Ω).

By taking the quotient of the morphism N− × Ω −→ Ω × Ω, (g, x) 7→ (x, gx)
giving the action of N− on Ω, we get the groupoid

N−(n)\N− ×N−(n) Ω −→ N−(n)\Ω×N−(n)\Ω

(cf. [F]).

Proposition 3.2 This is a smooth groupoid, i.e. the maps N−(n)\N−×N−(n)

Ω −→ N−(n)\Ω, (g, x) 7→ x, and N−(n)\N−×N−(n)Ω −→ N−(n)\Ω, (g, x) 7→
gx, are smooth.

Proof. Consider the maps

φ1, φ2 : N− × Ω −→ Ω, (g, x) 7→ x, resp. (g, x) 7→ gx.

These are formally smooth maps since N− is formally smooth. They induce
maps

ψ1, ψ2 : N−(n)\N− ×N−(n) Ω −→ N−(n)\Ω,
where ψ1(g, x) = x, ψ2(g, x) = gx.

We must show that ψ1 and ψ2 are smooth. We have a commutative diagram

N− × Ω
φ,fs

//

fs
��

Ω

fs
��

N−(n)\N− ×N−(n) Ω
ψ

// N−(n)\Ω

where φ is either φ1 or φ2, ψ is the corresponding map and ’fs’ means that we
already know that this morphism is formally smooth.

Since N−(n)\N−×N−(n) Ω −→ N−(n)\Ω is a morphism of finite type between
Noetherian schemes (over Fp), in order to prove that it is smooth, it is sufficient
to show the infinitesimal lifting criterion for local Artin rings with residue class
field Fp. (see [SGA 1], Exp. III Thm. 3.1).

So let A be a local Artin ring with residue field Fp, let I ⊂ A be a nilpotent
ideal, and look at a diagram

SpecA/I //

��

N−(n)\N− ×N−(n) Ω

��

SpecA // N−(n)\Ω.
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We have to find a morphism SpecA −→ N−(n)\N−×N−(n) Ω which makes the
diagram commutative.

Since the morphism N−×Ω −→ N−(n)\N−×N−(n)Ω is surjective on Fp-valued
points, we can extend the previous diagram to a diagram

Spec Fp //

��

N− × Ω

ξ
��

SpecA/I //

��

N−(n)\N− ×N−(n) Ω

ψ

��

SpecA // N−(n)\Ω.

Now since ξ is formally smooth, we can insert a map SpecA/I −→ N−×Ω into
the diagram. Then we get a map SpecA −→ N− × Ω, since the composition
ψξ is formally smooth. Now we can define the map we are looking for as the
composition of this map with ξ.

Thus we see that ψ1 and ψ2 are indeed smooth. �

From the Proposition, we immediately get the following corollary which will be
used in the proof of the theorem of Kazhdan and Lusztig.

Corollary 3.3 Let v ≤ z ≤ w. For all z′ ∈ Bz(Fq),

ICz′(π(Bv ∩ Ω)) ∼= ICz(π(Bv ∩ Ω)).

Proof. By pull-back the maps ψ1 and ψ2 in the Proposition induce smooth maps

ψ1, ψ2 : N−(n)\N− ×N−(n) (Bv ∩ Ω) −→ π(Bv ∩ Ω),

where ψ1(g, x) = x, ψ2(g, x) = gx.

Now choose g ∈ N− such that gz = z′. The point (g, z) maps to z resp. z′ under
ψ1 resp. ψ2. Since both these maps are smooth, the corollary follows. �

However, we can even say more: The sheaf IC(π(Bv ∩ Ω)) on π(Bv ∩ Ω) ⊆
N−(n)\Ω is equivariant under the above groupoid (our definition of equivari-
ance obviously makes sense in this context). Namely, we have

ψ∗
1IC(π(Bv ∩ Ω)) ∼= IC(N−(n)\N− ×N−(n) (Bv ∩ Ω)) ∼= ψ∗

2IC(π(Bv ∩ Ω)),

since ψ1 and ψ2 are both smooth. We can choose an isomorphism which is
rigidified along the zero section, and since N−(n)\N− is connected such an
isomorphism will automatically satisfy the cocycle condition.

Thus the pull-back of the sheaf IC(π(Bv ∩Ω)) to Ω is equivariant with respect
to the action of N−.
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We can now define the intersection complex IC(Bv) of the anti-cell Bv. Since
Bv is just an ind-scheme, it is not a priori clear how to make sense of that.
However, by looking at the quotients N−(n)\Ω, we can define a sheaf on F l
which merits the name IC(Bv).
The pull-back of the sheaf IC(π(Bv ∩Ω)) to Ω is independent of n: in fact, let
n′ > n, and consider the diagram

Ω
π //

π′

$$I
I

I
I

I
I

I
I

I
I N−(n)\Ω

ψ

wwppppppppppp

N−(n′)\Ω.

The map ψ is an AN -bundle (for suitable N), and π(Bv∩Ω) = ψ−1(π′(Bv∩Ω)).
Thus the pull-back of IC(π′(Bv∩Ω)) along ψ is just IC(π(Bv∩Ω)). This means
that the pull-back of IC(π(Bv∩Ω)) to Ω is independent of n. Since it is obviously
compatible with enlarging Ω, we indeed get a sheaf on F l, which we denote by
IC(Bv).
We will only ever need to work with the restriction of IC(Bv) to finite-
dimensional subschemes of F l. In particular we do not really need to define
this sheaf on F l — we could always work on a suitable quotient N−(n)\Ω.

We will need the following property of IC(Bv). When restricted to an intersec-
tion Bvy , we get the intersection complex of that space:

IC(Bv)|Bv
y

= IC(Bvy).

This follows from

Proposition 3.4 We have

IC(π(Bv ∩ Ω))|π(Bv
y) = IC(Bvy).

Proof. This follows immediately from the fact that Ay ∩ π(Bv ∩ Ω) =
(N−(n)\By)×Bvy is an open subset of π(Bv ∩Ω) and that N−(n)\By is just an
affine space. �

3.2 The theorem of Kazhdan and Lusztig

We start with two lemmas, and then prove the theorem of Kazhdan and Lusztig.

Lemma 3.5 We have

#Bzy(Fq) = Rz,y(q).

Proof. See [Had], section 2. �
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Lemma 3.6 On Ay, which is isomorphic to an affine space AN , we have a
Gm-action given by

λ · (z1, . . . , zN ) = (λa1z1, . . . , λ
aN zN ),

for certain ai > 0, which preserves π(Bv ∩ Ω) ∩ Ay and π(Bv ∩ By).

Proof. We decompose Ay = N−(n)\By × By, and we will define Gm-actions
on the two factors separately. With respect to this decomposition, we have
π(Bv ∩Ω) ∩Ay = N−(n)\By ×Bv ∩ By and π(Bv ∩ By) = {y} × Bv ∩ By. Thus
the Gm-action on the first factor must just be a contracting Gm-action which
fixes the origin.

To define the action on the second factor, consider the action of the torus
T (k) on By. Obviously it fixes Bv ∩ By, so we only have to find a cocharacter
φ : Gm −→ T such that the induced Gm-action is contracting.

This is possible because the set of finite roots α such that for some n, the affine
root (α, n) ’occurs’ in By is the union of the sets

{α > 0 | 〈α, λ〉 ≤ 0, and ỹα < 0 if 〈α, λ〉 = 0}

and
{α < 0 | 〈α, λ〉 ≤ −1, and ỹα < 0 if 〈α, λ〉 = −1},

where y−1 = ỹtλ, ỹ ∈ W , λ ∈ X∗(T ). We may put φ = −mλ − ỹ−1ρ∨ for any
sufficiently large integer m. �

Theorem 3.7 (Interpretation of inverse Kazhdan-Lusztig polynomials. ([KL2],
Prop. 5.7))

Let v ≤ y. Then IH i(Bvy) = 0 for i odd, and

Qv,y(q) =
∑

i≥0

dim IH2i(Bvy)qi = Tr(Frq, IH
•(Bvy)).

Remark. This result is stated in [KL2] as a proposition which ’should not be
difficult to prove’.

Kashiwara and Tanisaki give a proof of the analog of this result in the setting
of mixed Hodge modules in [KT], Thm. 6.6.4; in particular they work over the
complex numbers.

Proof. Given the lemmas above, the theorem is proved much in the same way as
Theorem 4.2 in [KL2] which gives an analogous interpretation for the Kazhdan-
Lusztig polynomials in the finite dimensional case.

Choose Ω =
⋃
v≤w vN−∗ sufficiently large, and denote the projection Ω −→

N−(n)\Ω by π as before.

We write B?
? as an abbreviation for π(B?

? ∩ Ω). Note that Bv
y
∼= Bvy . Denote by

H i(Bv) the i-th cohomology sheaf of IC(Bv), and by H i
z (Bv) its stalk in a

point z.
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First of all, Lemma 4.5a) in [KL2] together with Lemma 3.6, the fact that
By ×Bv

y is open in Bv, and the fact that By is just an affine space, yield that
IH i(Bv

y )
∼= H i

y (Bv). In the sequel we will thus always work with H i
y (Bv).

For z ≥ v consider the property

P(z): For any z′ ∈ Bz(Fq), we have H i
z′(B

v) = 0 for odd i, and for even i all
eigenvalues of Frq on H i

z′(B
v) are equal to qi/2.

Obviously P(v) is true. Now fix y > v and assume that P(z) holds for all
v ≤ z < y. We want to show that this implies P(y).

By assumption (Bv ∩ Ay)−By is very pure. Since

(Bv ∩ Ay)−By ∼= By × (Bv
y − {y})

and By is smooth, we see that Bv
y − {y} is very pure. Thus by Lemma 3.6 and

Lemma 4.5b) in [KL2], Bv
y is very pure. This implies that Bv ∩Ay is very pure.

Now the Lefschetz trace formula implies (use Lemma 3.5 and Lemma 3.3)

Tr(Frq, IH
•
c (B

v ∩ Ay))
=

∑

v≤z≤y

∑

z′∈(Bz∩Ay)(Fq)

Tr(Frq,H
•
z′ (B

v))

=
∑

v≤z≤y
qdimBy

Rz,y(q)Tr(Frq,H
•
z (Bv)).

By Poincaré duality we have

Tr(Frq, IH
•
c (B

v ∩ Ay)) = qdim(Bv∩Ay)Tr(Fr−1
q , IH•(Bv ∩ Ay)),

and [KL2], Lemma 4.5 gives us

Tr(Fr−1
q , IH•(Bv ∩ Ay)) = Tr(Fr−1

q ,H •
y (Bv)).

Altogether, we now get

qℓ(y)−ℓ(v)Tr(Fr−1
q ,H •

y (Bv)) =
∑

v≤z≤y
Rz,yTr(Frq,H

•
z (Bv)). (1)

This equation is completely analogous to (4.6.4) in [KL2], and exactly the same
arguments as in loc. cit. now yield that, ∀i,

Tr(Frq,H
i
y (Bv)) ∈ Z[q],

which implies that P(y) holds. This proves the second equality in the statement
of the theorem.

Furthermore, since the inverse Kazhdan-Lusztig polynomials are characterized
by

Qv,v = 1, qℓ(y)−ℓ(v)Qv,y(q−1) =
∑

v≤z≤y
Rz,yQv,z,

degQv,y ≤ (l(y)− l(v)− 1)/2, (v < y)

we also get the first equality in the statement of the theorem from equation (1).
�
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4 The main theorem

4.1 Decomposition of B-equivariant sheaves

We begin with a discussion of the categories of perverse sheaves to which our
results apply. We will denote by P (F l×sη,Qℓ) the full subcategory of Db

c(F l×s
η,Qℓ) consisting of middle perverse sheaves endowed with a compatible action
of the Galois group Γ = Gal(η̄/η). (For the precise meaning of “compatible”, see
section 5.1). We let PB(F l×sη,Qℓ) denote the full subcategory of B-equivariant
objects of P (F l×sη,Qℓ): these are perverse sheaves on F ls̄ which are equivariant
for Γ and B, in a compatible way.

Similarly, we let PWeil(F l,Qℓ) denote the category of pairs (F , F ∗
q ) where F is a

perverse sheaf on F ls̄ and F ∗
q : Fr∗qF→̃F is an isomorphism of perverse sheaves

(a Weil structure on F). Further, let PB
Weil(F l,Qℓ) denote the full subcategory

of B-equivariant objects of PWeil(F l,Qℓ): the B-equivariance of F is assumed
compatible with F ∗

q .

Lemma 4.1 The subcategory PB
Weil(F l,Qℓ) of P (F l,Qℓ) is stable under for-

mation of kernels and cokernels. Objects in this subcategory have finite length.
The irreducible objects are intersection complexes of the form IC(L)[ℓ(w)] =
j!∗L[ℓ(w)], where j : Bw → F l is the locally closed immersion of an Iwahori-
orbit Bw in F l, and L is a B-equivariant (thus geometrically constant) irre-
ducible Weil sheaf on Bw.

Proof. The statements concerning kernels and cokernels, and finite length, are
clear. We prove that all the irreducible subquotients of F ∈ PB

Weil(F l,Qℓ) taken
in this category are of the required form IC(L)[ℓ(w)], by Noetherian induc-
tion on supp(F). Indeed, we may find an open immersion j : Bw → supp(F)
such that j∗F is a (necessarily B-equivariant) Weil-sheaf on Bw (up to a shift
by ℓ(w)). Now the kernel and cokernel of the adjunction map j!j

∗F → F be-
long to PB

Weil(F l,Qℓ) and are supported on proper closed B-invariant subsets
of supp(F). Further, the kernel of the canonical surjection j!j

∗F → j!∗j∗F also
has this property. Since for the action of B on the orbit Bw, the stabilizer of
any point is geometrically connected, any B-equivariant Weil sheaf on Bw is
geometrically just a constant sheaf.

The fact that the subquotients of F have the required form is a consequence
of these remarks. (Note that j! etc. denotes the derived functor here. We have
used the fact that the morphism j is affine to ensure that j! preserves perversity
and that j!∗ is a quotient of j!.)

It also follows from this that the irreducible objects of PB
Weil(F l,Qℓ) are of the

stated form. �

Corollary 4.2 Objects in PB
Weil(F l,Qℓ) are mixed.
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Now consider a Weil-perverse sheaf F ∈ PB
Weil(F l,Qℓ) such that for all x ∈

F l(Fq), we have Tr(Frq,Fx) ∈ Z[q1/2, q−1/2]. We will denote the full subcate-
gory of those sheaves by PB√

q(F l,Qℓ). Similarly, let PB
q (F l,Qℓ) denote the full

subcategory of sheaves such that Tr(Frq,Fx) ∈ Z[q, q−1] for all x ∈ F l(Fq).
The category PB√

q(F l,Qℓ) gives rise via the sheaf-function dictionary precisely

to elements in the Iwahori-Hecke algebra (for this reason it is sometimes called
the Hecke category).

Lemma 4.3 The subcategory PB
q (F l,Qℓ) in PB

Weil(F l,Qℓ) is stable under ex-
tensions, quotients, and subquotients, and under Verdier duality. The irreducible
objects of PB

q (F l,Qℓ) are of the form ICw(i), for w ∈ W̃ , i ∈ Z.

Proof. The statements concerning extensions, quotients, and Verdier duality
are clear. Let F ∈ PB

q (F l,Qℓ). We prove all of its irreducible subquotients in

the category PB
Weil(F l,Qℓ) are of the form ICw(i), by Noetherian induction on

supp(F). Replacing F by its semi-simplification, we may assume F is semi-
simple. Choose an open immersion j : Bw → supp(F), such that j∗F [−ℓ(w)] is
a (geometrically constant) Weil sheaf L. By hypothesis, Tr(Frq,Lw) ∈ Z[q, q−1].
The linear independence of characters shows that the eigenvalues of Frobenius
on Lw are of form qi, for various integers i, in other words, L is a sum of Weil
sheaves on Bw of the form Qℓ(i), i ∈ Z. By the previous Lemma, the intersection
complex IC(L)[ℓ(w)] is a subquotient of F in the category PB

Weil(F l,Qℓ). The
quotient F/IC(L[ℓ(w)]) belongs to PB

q (F l,Qℓ) (because by Kazhdan-Lusztig

[KL2], IC(L[ℓ(w)]) ∈ PB
q (F l,Qℓ)), and has support a proper closed subset of

supp(F). Applying the induction hypothesis to this quotient proves that all the
irreducible subquotients of F have the required form.

The fact that the subcategory PB
q (F l,Qℓ) of PB

Weil(F l,Qℓ) is closed under for-
mation of subobjects follows. �

Corollary 4.4 Let F be an object of PB
q (F l,Qℓ). Then the constituents of the

Jordan-Hölder series of F have the form ICw(−i), w ∈ W̃ , i ∈ Z. Each of them
appears with a certain multiplicity, which we denote by m(F , w, i).

4.2 Relation to the Hecke algebra

Denote by H =
⊕

w∈fW
Z[q−1/2, q1/2]Tw the Iwahori-Hecke algebra associated

to G.

As usual, we write qw = qℓ(w), εw = (−1)ℓ(w).

A perverse sheaf F ∈ PB√
q(F l,Qℓ) gives rise to a function Tr(Frq,F) =∑

w Tr(Frq,Fw)Tw ∈ H, and we have a sheaf-function dictionary à la
Grothendieck.

On the other hand, Kazhdan and Lusztig have defined a different basis Cw of
H. We slightly change the normalization, and work with elements C ′′

w instead.
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They are related to the Cw resp. to the elements C ′
w sometimes appearing in

the literature as follows. By definition, C ′′
w is the function Tr(Frq, IC(Bw)[ℓ(w)]).

Also by definition, C ′
w = Tr(Frq, IC(Bw)(ℓ(w)/2)), so we have C ′′

w = εwq
1/2
w C ′

w.
But we also have σ(Cw) = εwC

′
w, where σ is the involution of the Hecke algebra

given by q 7→ q−1, Tw 7→ εwq
−1
w Tw. Thus C ′′

w = q
1/2
w σ(Cw). The base change

matrix giving the relation between the Tw and the C ′′
w is given by Kazhdan-

Lusztig polynomials resp. inverse Kazhdan-Lusztig polynomials:

Tw =
∑

x

εwQx,wC
′′
x ,

C ′′
w =

∑

x

εwPx,wTx.

Now if F ∈ PB
q (F l,Qℓ), the multiplicities m(F , w, i) defined above are just the

coefficients of Tr(Frq,F) with respect to the basis C ′′
w:

Tr(Frq,F) =
∑

w

(
∑

i

m(F , w, i)qi
)
C ′′
w.

Thus, knowing the function for F explicitly is equivalent to knowing all the
multiplicities m(F , w, i) for F .

For later use note that the identity C ′′
w = q−1

w C ′′
w, together with the fact that

Verdier duality descends to the Kazhdan-Lusztig involution on the Iwahori-
Hecke algebra, gives the following identity.

Lemma 4.5 We write m(F , w) =
∑

im(F , w, i)qi for F ∈ PB
q (F l,Qℓ). Then

m(DF , w) = q−1
w m(F , w).

4.3 The property (P)

We say that a sheaf F ∈ PB√
q(F l,Qℓ) satisfies the property (P) (for “palin-

dromic”), if for all y ∈ F l(Fq) we have

Tr(Frq, DFy) = εdεyq
−dq−1

y Tr(Frq, DFy),

for some d ∈ Z (setting εd = (−1)d). Here DF denotes the Verdier dual of F ,
and h 7→ h̄ is the involution of Z[q1/2, q−1/2] determined by q1/2 7→ q−1/2.

In other words, we have

Tr(Frq, DF) =
∑

y

εdεyq
−dq−1

y Tr(Frq, DFy)Ty

in the Iwahori-Hecke algebra. By applying Verdier duality (i.e. by applying the
Kazhdan-Lusztig involution ·) and using the definition T y = T−1

y−1 , we get

Tr(Fr,F) =
∑

x


∑

y≥x
εdq

dTr(Frq, DFy)εxRx,y(q)


Tx.
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Therefore we see that property (P) implies

Tr(Frq,Fx) = εdq
d
∑

y≥x
εxTr(Frq, DFy)Rx,y(q).

Remark. We will see in section 6 that RΨ satisfies (P). More generally, the
notion of Wakimoto sheaf allows us to define a much larger class of sheaves
that satisfy (P); cf. section 7.

Arguing as above, it is easy to see from the definitions that property (P) is
stable under Verdier duality.

Lemma 4.6 A sheaf F ∈ PB√
q(F l,Qℓ) satisfies (P) for an integer d if and only

if DF satisfies (P) for −d.

Proof. Use the identities

Tr(Frq,Fx) =
∑

x≤y
εxεyq

−1
y Rx,yTr(Frq, DFy)

Tr(Frq,Fx) =
∑

x≤y
qxRx,yTr(Frq, DFy).

�

4.4 Cohomological interpretation of the multiplicities

In this section we will give a cohomological interpretation of the multiplicities
associated to a sheaf F which satisfies the property (P). This can be seen
as a generalization of the theorem of Kazhdan and Lusztig which gives an
interpretation of the inverse Kazhdan-Lusztig polynomials (Theorem 3.7). Their
theorem is the key ingredient of the proof.

Theorem 4.7 Suppose that F ∈ PB
q (F l,Qℓ) satisfies (P). Then

∑

i

m(F , w, i)qi = εdq
dTr(Frq, H

•
c (F l,DF ⊗ IC(Bw)))

= εdq
d−ℓ(w)Tr(Frq, H

•
c (F l,F ⊗ IC(Bw))∨).

Here, V ∨ = Hom(V,Qℓ) for a Qℓ-space V .

Proof. Using the definition of the multiplicities and the fact that F satisfies (P),
we have

∑

i

m(F , w, i)qi =
∑

w≤x
εxTr(Frq,Fx)Qw,x

=
∑

w≤x

∑

x≤y
εdq

dTr(Frq, (DF)y)Qw,xRx,y.
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Rearranging this and using the formula
∑

w≤x≤y Qw,xRx,y = qyq
−1
w Qw,y(q

−1),
we get

∑

i

m(F , w, i)qi = εdq
d
∑

w≤y
Tr(Frq, (DF)y)

∑

w≤x≤y
Qw,xRx,y

= εdq
d
∑

w≤y
(qyq

−1
w Qw,y(q

−1))Tr(Frq, (DF)y).

By using the Poincaré dual of Theorem 3.7, we see that

qyq
−1
w Qw,y(q

−1) = Tr(Frq, IH
•
c (By ∩ Bw)).

Thus we get
∑

i

m(F , w, i)qi

= εdq
d
∑

w≤y
Tr(Frq, IH

•
c (By ∩ Bw))Tr(Frq, (DF)y)

= εdq
d
∑

w≤y
Tr(Frq, H

•
c (By ∩ Bw, IC(By ∩ Bw)⊗DF|By∩Bw))

= εdq
dTr(Frq, H

•
c (F l, IC(Bw)⊗DF))),

taking Proposition 3.4 into account. This proves the first equality of the theo-
rem.

The second equality can be proved by applying the first equality to the sheaf
DF in place of F (cf. Lemma 4.6), and by using Lemma 4.5. �

Remark. It is clear from the proof of the theorem that we could replace the
condition that F satisfies (P) by the following: Let F̃ be a B-equivariant sheaf
such that for all y

Tr(Frq, DFy) = εyq
−1
y Tr(Frq, F̃y).

Then ∑

i

m(F , w, i)qi = Tr(Frq, H
•
c (F l, F̃ ⊗ IC(Bw))).

4.5 The Kazhdan-Lusztig theorem as a consequence of the main
theorem

Fix y ∈ W̃ , and consider the sheaf F = jy!Qℓ[ℓ(y)]. This belongs to PB
q (F l,Qℓ),

and satisfies property (P) with d = ℓ(y). We may therefore apply the second
equality of Theorem 4.7 to this sheaf. Using the projection formula for jy!, we
have

εyqyq
−1
w Tr(Frq, H

•
c (F l,F ⊗ IC(Bw))∨) = qyq

−1
w Tr(Frq, H

•
c (F l, jy!(j∗yIC(Bw)))∨)

= qyq
−1
w Tr(Frq, H

•
c (Bw̄y , IC(Bwy ))∨)

= qyq
−1
w Tr(Fr−1

q , H•
c (Bw̄y , IC(Bwy )))

= Tr(Frq, IH
•(Bwy )),
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where the last equality follows from Poincaré duality. Since
∑
m(F , w, i)qi =

Qw,y(q), this is just one version of the theorem of Kazhdan and Lusztig (The-
orem 3.7). (Taking into account the very-purity of Bwy , one can recover the full
statement of that theorem.)

4.6 Consequences

4.6.1 w ∈ (W̃/W )min

Denote by π : F l −→ Grass the projection. The map π is smooth and proper
as a morphism of ind-schemes. We denote the projection W̃ −→ W̃/W by π,
too.

If w ∈ (W̃/W )min, we have Bw = π−1(Qπ(w)), and so IC(Bw̄) = π∗IC(Qπ(w)).

Here Qπ(w) is the closure of the N−-orbit of π(w) in the affine Grassmannian
for G.

Thus in this case we can simplify the formula in the theorem by considering the
push-forward to Grass and applying the projection formula. We get

∑

i

m(F , w, i)qi = εdq
dTr(Frq, H

•
c (F l,DF ⊗ IC(Bw)))

= εdq
dTr(Frq, H

•
c (Grass, (π∗DF)⊗ IC(Qπ(w)))).

We remark that this formula simplifies further in the case F = RΨ; see section
6.3.

5 The inertia action on RΨ

Elaborating an argument due to Gaitsgory [Ga], in this section we prove that
RΨ carries a purely unipotent action of the inertia group. This has two impor-
tant consequences. First, it implies that the Jordan-Hölder series for RΨ in the
category PB(F l ×s η,Qℓ) is determined by that of its image in the category
PB

Weil(F l,Qℓ) (and that the choice of lift of Frobenius is immaterial for the lat-
ter). Secondly, it shows that the semi-simple trace of Frobenius and the usual
trace of Frobenius agree on these nearby cycles, so that the Kottwitz conjecture
can effectively be used to derive information about the Jordan-Hölder series in
this latter category. (See sections 6,7 and 9.)

5.1 Unipotent/non-unipotent decompositions

Let (S, η, s) be a Henselian trait, and let (S̄, η̄, s̄) be the trait constructed by
letting η̄ be a separable closure of η, S̄ the normalization of S in η̄, and s̄ the
corresponding closed point. We assume the residue field k(s) = Fq, q a power
of a prime p. Write Γ = Gal(η̄/η), Γs = Gal(s̄/s), and let Γ0 denote the inertia
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subgroup, i.e., the kernel of the canonical homomorphism Γ → Γs. For a fixed
prime l 6= p, there is a canonical surjective homomorphism

tl : Γ0 → Zl(1).

Let Ql-Mod denote the category of finite dimensional Ql-vector spaces. We
consider the abelian category Rep(Γ,Ql) of continuous finite-dimensional l-adic
representations (ρ, V )

ρ : Γ→ GL(V ).

By a theorem of Grothendieck (cf. [ST]), the restricted representation ρ(Γ0)
is quasi-unipotent i.e., there exists a finite-index subgroup Γ1 of Γ0 which acts
unipotently on V . There exists then a unique nilpotent morphism, the logarithm
of the unipotent part of ρ

N : V (1)→ V

characterized by the following property: for all g ∈ Γ1, we have

ρ(g) = exp(Ntl(g)).

We make a choice of geometric Frobenius Φ lifting the automorphism a 7→ a1/q

with respect to the homomorphism Gal(η̄/η) → Gal(s̄/s). Then ρ uniquely
determines a representation ρ̃ : 〈Φ〉⋉ Γ0 → GL(V ), trivial on some finite-index
subgroup Γ1 of Γ0, by the formula

ρ(Φnσ) = ρ̃(Φnσ)exp(Ntl(σ))

for n ∈ Z and σ ∈ Γ0 (cf. [Del]); moreover we have the relation
ρ̃(Φnσ)Nρ̃(Φnσ)−1 = q−nN .

We can define an idempotent endomorphism γ = γV ∈ EndQℓ
(V ) by

γ = |Γ0/Γ1|−1
∑

g∈Γ0/Γ1

ρ̃(g).

Clearly this is independent of the choice of coset representatives for Γ0/Γ1 as
well as the choice of finite-index subgroup Γ1 ⊂ Γ0 on which ρ̃ is trivial. Using
this it is easy to see that γ commutes with ρ̃(〈Φ〉⋉ Γ0) and N , hence also with
ρ(Γ). We obviously have

γ2 = γ.

We note that if f : V →W is a morphism in Rep(Γ,Ql), then f ◦ γV = γW ◦ f .

We define the unipotent and non-unipotent subrepresentations of V as follows:
V un (resp. V non−un) is the largest Γ-subrepresentation such that, as a repre-
sentation of Γ0, all of its irreducible subquotients are trivial (resp. non-trivial).
It is easy to see that these exist, and that V un ∩ V non−un = (0).

We denote by Rep(Γ,Ql)
un (resp. Rep(Γ,Ql)

non−un) the maximal full subcat-
egory of Rep(Γ,Ql) whose objects are all unipotent (resp. non-unipotent).
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Lemma 5.1 (1) For every l-adic representation (ρ, V ) of Γ, there is a canon-
ical decomposition

V = V un ⊕ V non−un.

Moreover, any morphism f : V → W in Rep(Γ,Ql) decomposes canoni-
cally as f = fun ⊕ fnon−un : V un ⊕ V non−un → W un ⊕Wnon−un. This
gives rise to a decomposition of abelian categories

Rep(Γ,Ql) = Rep(Γ,Ql)
un ⊕ Rep(Γ,Ql)

non−un.

(2) The endomorphism γ is ρ(Γ)-equivariant. Furthermore, we have V un =
ker(1− γ) = im(γ) and V non−un = ker(γ) = im(1− γ).

(3) V is unipotent (resp. non-unipotent) if and only if 1− γ (resp. γ) acts by
zero on V .

Proof. (1). We only need to show that V has some decomposition V = V1⊕ V2,
where V1 is unipotent and V2 is non-unipotent.

Since the restriction of ρ̃ to Γ0 is semi-simple, we may consider the decomposi-
tion of V according to its isotypical components:

V =
⊕

τ

Vτ .

For any fixed σ, the automorphism exp(Ntl(σ)) commutes with every ρ̃(σ′), σ′ ∈
Γ0, hence preserves each component Vτ . Thus ρ(σ) preserves each component Vτ ,
for σ ∈ Γ0. On the other hand, it is easily seen that ρ(Φ) preserves the isotypical
component VI corresponding to the trivial representation, while permuting the
components Vτ with τ 6= I. Since the Weil group 〈Φ〉 ⋉ Γ0 is dense in Γ, it
follows that V1 = VI and V2 =

⊕
τ 6=I Vτ have the required properties.

(2). We have already noted that γ is ρ(Γ)-equivariant. The exact sequence

0 // V ρ̃(Γ0)
i // V

p
// V/V ρ̃(Γ0) // 0

splits in the category of ρ(Γ)-modules; in fact we have γ◦i = id and p◦(1−γ) =
id. This shows that

V un = V ρ̃(Γ0) = im(γ)

V non−un ∼= V/V ρ̃(Γ0) ∼= ker(γ).

(3). This follows from (2). �

Let π1 denote a pro-finite group (e.g. the algebraic fundamental group of a
locally Noetherian scheme at a geometric point). Let Rep(Γ, π1,Ql) denote the
category whose objects V are Ql-modules equipped with continuous commuting
actions of π1 and Γ and whose morphisms are compatible with the actions.
Then Lemma 5.1 implies that this category decomposes into unipotent and
non-unipotent subcategories.
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Lemma 5.2 There is a canonical decomposition of abelian categories

Rep(Γ, π1,Ql) = Rep(Γ, π1,Ql)
un ⊕ Rep(Γ, π1,Ql)

non−un.

Similarly, there is a decomposition

Rep(Γ0, π1,Ql) = Rep(Γ0, π1,Ql)
un ⊕ Rep(Γ0, π1,Ql)

non−un,

and the restriction functor Rep(Γ, π1,Ql)→ Rep(Γ0, π1,Ql) is compatible with
the decompositions. �

LetX denote a locally Noetherian scheme. Let LS(X,Ql) denote the category of
locally constant and constructible Ql-sheaves on X, i.e., the l-adic local systems
on X (see [SGA 5], Ex. VI §1.4). An object in this category is a surjective
projective system F = (Fn)n∈N where Fn is a finite and locally constant Z/lnZ-
sheaf on Xét. If X is connected, then by loc.cit. §1.4.2, there is an equivalence
of categories

LS(X,Ql) ∼= Rep(π1(X, a),Ql),

given by the functor Fa : (Fn)n 7→ lim←−(Fn)a ⊗Zℓ
Qℓ, where Ga is the fiber of a

sheaf G at a geometric point a of X. (The choice of a is essentially irrelevant,
since X is connected.)

Now suppose X is a scheme of finite-type over s = Spec(Fq), and denote the
geometric special fiber by Xs̄ = X ⊗Fq F̄q. If Xs̄ is connected, we denote its
fundamental group by π̄1 = π1(Xs̄).

We will define several categories attached to X/s.

- LS(X ×s η,Ql) : objects are objects in LS(Xs̄,Ql) equipped with a con-
tinuous action of Γ compatible with the action of Γ on Xs̄ (the quotient
Γs of Γ acts on Xs̄ by transport of structure). In other words, (Fn)n is
an object of this category if for each g ∈ Γ there is an isomorphism of
projective systems

φg : ḡ∗Fn ∼= Fn
such that φgh = φg ◦ ḡ∗(φh). Here ḡ denotes the image of g under the
projection Γ → Γs. (Note: The “continuity” condition is that for each
quasi-compact étale morphism U → Xs and corresponding base change
Ū → Xs̄, the action of Γ on the (finite) set Fn(Ū) is continous for each n
(cf. [SGA 7], Ex. XIII).)

Let LS(X×s ηnr,Ql) denote the category consisting of local systems with
an action of Γ0 rather than a compatible action of the group Γ. If Xs̄ is
connected, then taking stalks G 7→ Ga gives an equivalence of categories

LS(X ×s ηnr,Ql) ∼= Rep(Γ0, π̄1,Ql).

(Remark: This means that to define the notions of unipotent and non-
unipotent for objects on the left hand side, we should consider their stalks,
where such notions are already defined; cf. Lemma 5.2.)
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- Shc(X ×s η,Ql) : Let Shc(Xs̄,Ql) denote the abelian category consisting
of Ql-sheaves (Fn)n on Xs̄ where each Fn is finite and constructible.

We define Shc(X×sη,Ql): the objects are objects of Shc(Xs̄,Ql) equipped
with a continuous action of Γ, compatible with the action of Γ on Xs̄, in
the sense defined above. The morphisms are compatible with the action
of Γ. Continuity has the same meaning as in LS(X ×s η,Ql) above.

The category Shc(X×sηnr,Ql) is defined analogously to LS(X×sηnr,Ql).

- P (X ×s η,Ql) : the objects are middle perverse sheaves on Xs̄ equipped
with a continuous action of Γ compatible with its action on Xs̄. (Here
continuity is tested on cohomology sheaves.) Morphisms are compatible
with the action of Γ. This category is naturally a full subcategory of the
category Db

c(X ×s η,Ql) defined below.

The category P (X×s ηnr,Ql) is defined analogously to LS(X×s ηnr,Ql).

- Db
c(X ×s η,Ql) : the objects are objects of the “derived” category

Db
c(Xs̄,Ql) equipped with a continuous action of Γ compatible with its

action on Xs̄. (Continuity is tested on the cohomology sheaves.) The mor-
phisms are compatible with the action of Γ.

The category Db
c(X ×s ηnr,Ql) is analogous to LS(X ×s ηnr,Ql).

The following lemma extends certain properties of Rep(Γ0,Ql) to each of the
analogous categories above.

Lemma 5.3 Let M be an object of one of the categories LS(X ×s ηnr,Ql),
Shc(X ×s ηnr,Ql), or Db

c(X ×s ηnr, Ql). Then

(1) The action of ρ(Γ0) on M is quasi-unipotent: there exists a finite-index
subgroup Γ1 ⊂ Γ0 such that (ρ(g) − 1) acts nilpotently on M , for every
g ∈ Γ1.

(2) There is a unique nilpotent morphism N : M(1) → M characterized by
the equality

ρ(g) = exp(Ntl(g))

for every g ∈ Γ1.

(3) There is a unique homomorphism ρ̃ : Γ0 → Aut(M) which satisfies

(a) ρ(σ) = ρ̃(σ)exp(Ntl(σ)), for σ ∈ Γ0,

(b) ρ̃ is trivial on a finite-index subgroup of Γ0,

(c) ρ̃(σ)Nρ̃(σ)−1 = N , for σ ∈ Γ0.

This is closely related to the next result, whose proof works along the same
lines. To state it we need a suitable notion of “unipotent” and “non-unipotent”
object for the categories above.
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Definition 5.4 (1) Let M be an object of LS(X×sη,Ql) or Shc(X×sη,Ql).
We say M is unipotent (resp. non-unipotent) if for every geometric point
x̄ ∈ Xs(F̄q), the stalk Mx̄ is a unipotent (resp. non-unipotent) object of
Rep(Γ0,Ql).

(2) Let M be an object of P (X×sη,Ql) or Db
c(X×sη,Ql). We say M is unipo-

tent (resp. non-unipotent) if every cohomology sheaf HiM is a unipotent
(resp. non-unipotent) object of Shc(X ×s η,Ql).

Remark: In the same way we can define the notions of unipotent and non-
unipotent for objects of LS(X ×s ηnr,Ql), Shc(X ×s ηnr,Ql), etc. It is clear
that M ∈ LS(X×sη,Ql) etc. is unipotent (resp. non-unipotent) if and only if it
has unipotent (resp. non-unipotent) image under the forgetful functor LS(X×s
η,Ql)→ LS(X ×s ηnr,Ql) etc.

Lemma 5.5 (1) Let C be one of the categories LS(X ×s ηnr,Ql), Shc(X ×s
ηnr,Ql), or Db

c(X ×s ηnr,Ql). Let M be an object of C. Define the idem-
potent γ = γM ∈ EndC(M) by

γ = |Γ0/Γ1|−1
∑

g∈Γ0/Γ1

ρ̃(g)

where ρ̃ is as above and Γ1 ⊂ Γ0 is any finite-index subgroup of Γ0 on
which ρ̃ is trivial. Then M is unipotent (resp. non-unipotent) if and only
if 1− γM (resp. γM ) acts by zero on M .

(2) If M is an object of one of the abelian categories LS(X ×s ηnr,Ql),
Shc(X ×s ηnr,Ql), or P (X ×s ηnr,Ql) then the canonical decomposition

M = ker(1− γM )⊕ ker(γM )

is a canonical decomposition of M into unipotent and non-unipotent direct
factors. The same holds for the categories LS(X×sη,Qℓ), Shc(X×sη,Qℓ),
and P (X ×s η,Qℓ).

Proof of Lemmas 5.3 and 5.5.

To begin, we assume M ∈ Db
c(X ×s ηnr,Ql), the most general category in

Lemma 5.3.

Once it is known that ρ(Γ0) acts quasi-unipotently on M , the existence and
uniqueness of N follow in general from the same argument used in the category
Rep(Γ0,Ql). Indeed, let Pl = ker(tl) and let Γ1 ⊂ Γ0 denote a finite-index
subgroup such that ρ(Γ1) acts unipotently on M . One shows that ρ(Γ1 ∩Pl) =
idM (this can be tested on cohomology stalks, effectively reducing to the case
M ∈ Rep(Γ0,Ql) where it is already known), and thence that ρ|Γ1 factors
through tl; then define N : M(1)→M by Ntl(σ) = log(ρ(σ)) for all σ ∈ Γ1.

Moreover, given N we then define ρ̃ by the equality

ρ̃(σ) = ρ(σ)exp(−Ntl(σ))
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for σ ∈ Γ0. The identities proving that ρ̃ is a homomorphism and the equality
in Lemma 5.3 (3(c)) reduce to the case M ∈ Rep(Γ0,Ql). Indeed, passing
to cohomology sheaves, we may assume M ∈ Shc(X ×s ηnr,Ql). Then the
constructibility of M allows us to view M as the result of “gluing” a local
system on an open subscheme with a constructible sheaf supported on a proper
closed subscheme (for the precise statement of gluing, see for example [Mi], II
§3). By Noetherian induction therefore, we may assume M ∈ LS(X×s ηnr,Ql).
Passing to the finitely many connected components of X, we are reduced to
M ∈ Rep(Γ0, π̄1,Ql), where the desired identities are already known.

To prove that ρ̃ is trivial on a finite-index subgroup Γ1 ⊂ Γ0, one uses the
same reduction steps, keeping in mind that for M ∈ Shc(X ×s ηnr,Ql), there
is a finite stratification Xi (i ∈ I) of X by locally closed subschemes Xi such
that M |Xi ∈ LS(Xi ×s ηnr,Ql), and each Xi has only finitely many connected
components.

To show that ρ(Γ0) acts quasi-unipotently on M is similar. This completes the
proof of Lemma 5.3.

Now again suppose M is an object of Db
c(X ×s ηnr,Ql). We wish to prove M is

unipotent (resp. non-unipotent) if and only if 1 − γM (resp. γM ) acts by zero
on M . Passing to cohomology sheaves and using the obvious identity

γHiM = Hi(γM )

we can assume M ∈ Shc(X ×s ηnr,Ql). Taking stalks and using the identity

γi∗x̄M = i∗x̄(γM ),

where ix̄ : x̄ → Xs is the embedding of a geometric point in Xs(F̄q), we can
assume that M ∈ Rep(Γ0,Ql), where the result follows from Lemma 5.1. This
proves Lemma 5.5 part (1).

Concerning part (2), if M belongs to one of the abelian categories LS(X ×s
ηnr,Ql), Shc(X ×s ηnr,Ql), or P (X ×s ηnr,Ql), then the idempotent endomor-
phism γM gives rise to the required decomposition. This proves part (2), and
thus Lemma 5.5. �

Remark: If C is one of the categories in Lemma 5.5 (2), there is a decomposition
of abelian categories

C = Cun ⊕ Cnon−un,

and we denote the corresponding components of an object M by Mun and
Mnon−un.

This argument does not prove that the category Db
c(X ×s ηnr,Ql) decomposes

in a like manner: since it is not abelian, we cannot even define the kernel and
image of γM for a general object M .
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5.2 Permanence properties of unipotence and non-unipotence

Suppose f : X → Y is a finite-type morphism of finite-type S-schemes. This
gives rise to the “derived” functors f! : Db

c(X ×s ηnr,Ql) → Db
c(Y ×s ηnr,Ql)

and f∗ : Db
c(Y ×s ηnr,Ql)→ Db

c(X ×s ηnr,Ql).

Lemma 5.6 (1) Let M ∈ Db
c(X ×s ηnr,Ql) be unipotent (resp. non-

unipotent). Then f!M ∈ Db
c(Y ×s ηnr,Ql) is unipotent (resp. non-

unipotent).

(2) Let M ′ ∈ Db
c(Y ×s ηnr,Ql), and suppose fs̄ : Xs̄ → Ys̄ is surjective. Then

M ′ is unipotent (resp. non-unipotent) if and only if f∗M ′ is unipotent
(resp. non-unipotent).

Proof. (1). By the local-global spectral sequence

Hp(f!HqM)⇒ Hp+qf!M

we are reduced to the case M ∈ Shc(X ×s ηnr,Ql). Taking cohomology stalks
we know that f!M is unipotent if and only if for every ȳ ∈ Ys(F̄q), and every
i, 1 − γ acts by zero on H i

c(f
−1(ȳ),M). But as M is unipotent, 1 − γ acts by

zero on M , hence on the cohomology group with coefficients in M as well. The
non-unipotent case is similar.

(2). This is straightforward. �

5.3 Unipotence/non-unipotence of products and convolutions

The following facts follow easily from Lemmas 5.5 and 5.6.

Let F and G be objects of Db
c(X ×s η,Ql) and suppose that F is unipotent.

Then (F ⊠ G)non−un = F ⊠ Gnon−un.
Now let B denote the Iwahori-group scheme acting on the affine flag variety F l =
G(F̄p((t)))/B. If the objects F and G above are B-equivariant perverse sheaves
on F l, then we may define their twisted product F⊠̃G and their convolution
product F ⋆s G (cf. [HN1]). Still under the assumption F = Fun, one can prove
first (F⊠̃G)non−un = F⊠̃Gnon−un, and then (F ⋆s G)non−un = F ⋆s Gnon−un.

5.4 RΨ = RΨun

First, we remark that in the above discussion in 5.1-5.3, we can without any
problems replace Qℓ by a finite extension, and can then also pass to the 2-
inductive limit of the categories Db

c(X,E), E/Qℓ finite. Thus all the statements
above hold for Qℓ-adic sheaves as well.

We now come back to the affine flag variety. Fix a dominant coweight µ and let
RΨ = RΨ(IC(Qµ)[ℓ(µ)]) ∈ PB(F l ×s η,Qℓ).
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Theorem 5.7 (Gaitsgory) The action of Γ0 on the sheaf RΨ of nearby cycles
is purely unipotent.

Proof. Because RΨ = RΨun⊕RΨnon−un it suffices to prove that RΨnon−un = 0.

Note thatRΨnon−un is a B-equivariant object of P (F l×sη,Ql) (for equivariance,
use Lemma 5.6). By using 5.3 we see that, as for RΨ itself, RΨnon−un is central
with respect to convolution of Iwahori-equivariant perverse sheaves on the affine
flag variety. To show it is zero, it suffices to show that its semi-simple trace
function τRΨnon−un : x 7→ Trss(Frq, RΨnon−un

x ), an element in Z(HI), vanishes.

Now consider the projection π : F l→ Grass. Because the semi-simple trace pro-
vides a good sheaf-function dictionary in the sense of Grothendieck (cf. [HN1],
Proposition 10), the semi-simple trace function Trss(Frq, π∗(RΨnon−un)) corre-
sponds to summing Trss(Frq, RΨnon−un) along the fibers of π, i. e., we have the
following equality of functions in the spherical Hecke algebra HK :

Trss(Frq, π∗(RΨnon−un)) = Trss(Frq, RΨnon−un) ⋆ IK .

By a theorem of Bernstein (cf. [L2]), − ⋆ IK : Z(HI)→̃HK is an isomorphism,
so it suffices to prove π∗(RΨnon−un) = 0. But by Lemma 5.6 we have

π∗(RΨnon−un) = (π∗RΨ)non−un = (Aµ,s)non−un = 0.

Here Aµ is the “constant” intersection complex IC(Qµ)[ℓ(µ)] on the “constant
family” Grass, hence it has trivial inertia action. We are done.

5.5 Semi-simple trace vs. usual trace

Proposition 5.8 The trace and the semi-simple trace on RΨ coincide:

Trss(Frq, RΨ) = Tr(Frq, RΨss).

Here, on the left hand side RΨ is regarded as an object of the category PB(F l×s
η,Qℓ), and the semi-simple trace is defined as in [HN1]. On the right hand side,
Frq represents a choice of lift of geometric Frobenius, and RΨss denotes the
semi-simplification of RΨ when regarded as an object of PB

Weil(F l,Qℓ) (via that
choice of lift).

Proof. It suffices to find a Galois-invariant filtration on RΨ such that Γ0 acts
trivially on the subquotients. Since Γ0 acts unipotently on RΨ by 5.4, such a
filtration is given by the kernels of powers of the operator N :

F iRΨ = kerN i.
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5.6 A different proof

Here is a sketch of a different argument for the result above: after fixing a Weil
sheaf structure on RΨ, the usual trace of Frobenius satisfies the same sheaf-
function dictionary as the semi-simple trace: the same proof as for semi-simple
trace shows that the usual trace yields a central function in the Iwahori-Hecke
algebra, characterized by

Tr(Frq, RΨ) ⋆ IK = Tr(Frq, IC(Qµ)[ℓ(µ)]).

It follows from this that it coincides with the semi-simple trace function. This
in turn implies that the action of inertia on RΨ must be purely unipotent.
To prove the last statement, it is enough to show that RΨ admits a filtration
such that the inertia group Γ0 acts trivially on the graded pieces. Consider the
filtration

F iRΨ = kerN i,

where N is the logarithm of the unipotent part of the local monodromy, as
before. The inertia group acts on the F i/F i−1 through a finite quotient, so the
definition of semi-simple trace and the above remarks yields

Tr(Frq, (
⊕

F i/F i−1)Γ0) = Trss(Frq, RΨ) = Tr(Frq, RΨ) = Tr(Frq,
⊕

F i/F i−1).

Thus the function of the (necessarily perverse) quotient
(
⊕
F i/F i−1)/(

⊕
F i/F i−1)Γ0 is zero, so we have (

⊕
F i/F i−1)Γ0 =

⊕
F i/F i−1.

(We have used the fact that if F ∈ P (F l ×s η,Qℓ) carries a finite action of
inertia, then FΓ0 = im(γF ), hence is also perverse.)

6 Applying the theorem to RΨ

Fix a dominant coweight µ and write RΨ = RΨ(IC(Qµ)[ℓ(µ)]) ∈ PB(F l ×s
η,Qℓ).

6.1 RΨ as a Weil sheaf

Fixing a lift Frq ∈ Γ of the inverse of the Frobenius morphism enables us to view
RΨ as a Weil-perverse sheaf. Since it is also a B-equivariant perverse sheaf, it
is a mixed Weil-perverse sheaf (this also follows from the Appendix, Theorem
10.6).

The Kottwitz conjecture holds for RΨ (see section 2.7), so

Tr(Frq, RΨ) = εµq
1/2
µ

∑

λ≤µ
mµ(λ)zλ.

In particular, Tr(Frq, RΨx) ∈ Z[q, q−1], so we can consider RΨ as an object of
PB
q (F l,Qℓ).
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We will show that the nearby cycles sheaf satisfies the property (P), and hence
we can apply Theorem 4.7, and get some information on the Jordan-Hölder
series of RΨ as a Weil sheaf.

But furthermore, we know that the inertia group Γ0 acts purely unipotently
on RΨ, so in this case, we get a stronger independence statement with respect
to the choice of the lift Frq. Namely, we can regard the sheaves ICw(−i), with
trivial Γ0-action, as objects of P (F l×sη,Qℓ), and then the Jordan-Hölder series
of RΨ ∈ P (F l ×s η,Qℓ) is ’the same’ as that of RΨ as a Weil-perverse sheaf.

6.2 RΨ and property (P)

To show that RΨ satisfies the property (P), we need to prove

Tr(Frq, RΨx) = εxεµqxq
−1
µ Tr(Frq, RΨx),

because DRΨ = RΨ(ℓ(tµ)), i.e. Tr(Frq, DRΨ) = q−1
µ Tr(Frq, RΨ).

Note the following general lemma. We write Q = q−1/2 − q1/2.

Lemma 6.1 Let f ∈ Z[q, q−1], α ∈ 1
2Z such that f = qαR(Q) for some R ∈

Z[Q]. Then all Q-powers occurring in R have the parity of 2α, and f(q−1) =
(−1)2αq−2αf(q). �

Recalling that zλ =
∑

ν∈W (λ) Θν and the fact that Θν = T̃ν1 T̃
−1
ν2 , where ν1−ν2 =

ν and νi is dominant, we see (using the Kottwitz conjecture) that

RΨ(x) = εµq
1/2
µ q−1/2

x R(Q),

where R ∈ N[Q]. Thus we can apply the lemma with α = (ℓ(µ)− ℓ(x))/2, and
get that RΨ satisfies (P).

6.3 Consequences of the theorem for RΨ

Since RΨ is self-dual up to a Tate twist, from Theorem 4.7 we get

Corollary 6.2 We have
∑

i

m(RΨ, w, i)qi = εµTr(Frq, H
•
c (F l, RΨ⊗ IC(Bw))).

In particular, by setting w = τ , the unique element of length 0 in the support
of RΨ, we get by using the projection formula for π : F l→ Grass that

∑

i

m(RΨ, τ, i)qi = εµTr(Frq, H
•
c (F l, RΨ))

= εµTr(Frq, H
•
c (Grass, π∗RΨ))

= εµTr(Frq, H
•
c (Grass, IC(Qµ)[ℓ(µ)]))

=
∑

i

dim IH2i(Qµ,Qℓ)q
i.
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Corollary 6.3 The multiplicity m(RΨ, τ, i) is the 2i-th intersection Betti num-
ber of Q̄µ.

Remark. This corollary was initially noticed as a purely empirical fact with the
aid of a computer program, and it was the starting point of this work: the effort
to explain it conceptually lead to the discovery of the more general Theorem 4.7.
The corollary can also be proved, taking the Kottwitz conjecture into account,
by purely combinatorial considerations in the Iwahori-Hecke algebra H (recall
that the traces of Frobenius and the multiplicities are related by a base change
in H). But it seems impossible to prove anything about the multiplicities for
other w’s in that way.

More generally, by applying section 4.6.1 to F = RΨ, we get

Corollary 6.4 Suppose w ∈ Adm(µ) belongs to (W̃/W )min. Then the multi-
plicity function is given by

∑

i

m(RΨ, w, i)qi = Tr(Frq, H
•
c (Q̄µ, IC(Q̄µ)⊗ IC(Qπ(w)))).

7 Wakimoto sheaves

7.1 Definition and properties

We have a convolution product

⋆ : PB
Weil(F l,Qℓ)× PB

Weil(F l,Qℓ) −→ Db
c,Weil(F l,Qℓ),

see [L3], [HN1]. Using the usual sheaf-function dictionary, it is easy to see that
convolution of sheaves corresponds to multiplication of their functions in the
Hecke algebra.

Definition 7.1 The Wakimoto sheaf associated to v, w ∈ W̃ is the sheaf
Mv,w := jv!Qℓ[ℓ(v)] ⋆ jw∗Qℓ[ℓ(w)].

Note that, as usual, jv! and jw∗ denote the derived functors. The function
in the Iwahori-Hecke algebra H corresponding to Mv,w is εvεwqwTvT

−1
w−1 =

εvεwq
1/2
v q

1/2
w T̃vT̃

−1
w−1 . As usual, we write T̃x = q

−1/2
x Tx.

Proposition 7.2 Properties of Wakimoto sheaves

(1) Mv,w is perverse.

(2) Mv,w satisfies (P), with d = ℓ(v) + ℓ(w).
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Proof. (1) This result is due to Mirkovic. See [HP] Prop. 6.2, or [AB] Thm. 5.

(2) The function corresponding to the dual of Mv,w is εvεwq
−1
w TwT

−1
v−1 =

εvεwq
−1/2
w q

−1/2
v T̃wT̃

−1
v−1 . We have

DMv,w(y) = εvεwq
−1/2
w q−1/2

v q−1/2
y Rwy,v(Q)

where Rwy,v ∈ N[Q] is such that Qi occurs only for i ≡ ℓ(w)+ ℓ(v)+ ℓ(y) mod 2.
(Use, for example, Lemma 6.1.) Thus,

DMv,w(y) = εvεwεyqwqvqyDMv,w(y),

which proves property (P) with d = ℓ(v) + ℓ(w). �

The proposition shows that there is a large class of sheaves which satisfy the
property (P).

Proposition 7.3 Let F ∈ PB√
q(F l,Qℓ) be a sheaf which has a filtration whose

graded pieces are of the form Mvi,wi
(−αi), where αi ∈ Z is such that 2αi+ℓ(vi)+

ℓ(wi) is independent of i. Then F satisfies (P), with d = ℓ(vi) + ℓ(wi) + 2αi.

Proof. The function corresponding to F is

∑

i

qαiqwi
εvi
εwi

Tvi
T−1

w−1
i

,

and the function of the dual of F is obtained by applying ·. A computation
similar to the one above yields the result. �

Remark. In their recent paper [AB], Arkhipov and Bezrukavnikov show that the
sheaf of nearby cycles RΨ has a filtration whose graded pieces are Wakimoto
sheaves.

Their theorem relies on the sheaf of nearby cycles being central, so that we do
not get a proof of (P) for RΨ which does not use the Kottwitz conjecture.

7.2 The elements in the Hecke algebra corresponding to Waki-
moto sheaves

Fix v, w ∈ Waff , and suppose w = s1 · · · sr is reduced. There are unique poly-
nomials Rvx,w(Q) in the parameter Q := q−1/2 − q1/2 and with non-negative
integral coefficients, such that

T̃vT̃
−1
w−1 =

∑

x≤v|w
Rvx,w(Q)T̃x.

Here the notation x ≤ v|w means by definition that x is the terminal element of
a v-distinguished subexpression with respect to w (see section 5 of [H1]). Recall
that an r+1-tuple [σ0, . . . , σr] is v-distinguished if σ0 = v, and if for each j ≥ 1,
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1. σj ∈ {σj−1, σj−1sj}; and

2. σj = σj−1 only if σj−1 < σj−1sj .

We are going to prove a formula for Rvx,w(Q). We need first some more defini-
tions.

For a v-distinguished subexpression σ = [σ0, . . . , σr], we set π(σ) = σr. Also
define

D(x) = {σ |π(σ) = x}.
Further define integers n(σ) = |{j |σj−1 = σj}|, and m(σ) = |{j |σj−1 > σj}|.
We have the following easy lemma.

Lemma 7.4 If σ is v-distinguished with respect to w, then

ℓ(π(σ)) = ℓ(v) + ℓ(w)− n(σ)− 2m(σ).

Now write w′ = s1 · · · sr−1, so that w′ = wsr < w. The equality

∑

y≤v|w′

Rvy,w′(Q)T̃y(T̃sr +Q) =
∑

x≤v|w
Rvx,w(Q)T̃x

give rise to recurrence relations for the polynomials Rvx,w. Using these, we can
prove the following proposition by induction on ℓ(w).

Proposition 7.5 If x ≤ v|w, then

Rvx,w(Q) =
∑

σ∈D(x)

Qn(σ) =
∑

σ∈D(x)

Qℓ(v)+ℓ(w)−ℓ(x)−2m(σ).

Taking the parity of the exponents into account, this proposition gives a direct
verification of the conclusion of Lemma 6.1 for Wakimoto sheaves.

Proof. The proof is by induction on ℓ(w), and uses case-by-case analysis. Write
w′ as above and write sr = s. We consider the set D′(y) of v-distinguished
subexpressions with respect to w′ which end with y. Integers n and m can be
attached to each of these in the same way as before.

Note that x ≤ v|w implies that xs ≤ v|w′ or x ≤ v|w′, or both.

Case 1: x ≤ v|w, x ≤ v|w′, and xs � v|w′.

(a) x < xs. Then every σ ∈ D(x) is of the form [?, x, x]. Given such, write
σ′ = [?, x] (the first part of σ). We see n(σ) = n(σ′) + 1, m(σ) = m(σ′), and
Rvx,w = QRvx,w′ . Moreover, we have a bijection of sets S : D(x)→̃D′(x) given by
σ 7→ σ′.

(b) xs < x. This cannot happen, since the only possible σ′ is of form [?, x],
and σ cannot have form [?, x, x], since then we would need to have x < xs (by
definition of v-distinguished).
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Case 2: x ≤ v|w, x � v|w′, and xs ≤ v|w′.

(a) x < xs. Then every σ is of form [?, xs, x]; set σ′ = [?, xs]. We have n(σ) =
n(σ′), and Rvx,w = Rvxs,w′ . Also, S : D(x)→̃D′(xs) by σ 7→ σ′.

(b) xs < x. Then σ is of form [?, xs, x]; let σ′ = [?, xs]. We have n(σ) = n(σ′),
and Rvx,w = Rvxs,ws, and S : D(x)→̃D′(xs) by σ 7→ σ′.

Case 3: x ≤ v|w, x ≤ v|w′, and xs ≤ v|w′.

(a) x < xs. We define A(x) = {σ is of the form [?, xs, x]}, and B(x) =
{σ is of the form [?, x, x]}. Note that D(x) = A(x)

∐B(x).

For σ = [?, xs, x] ∈ A(x), let σ′ = [?, xs]. The map σ 7→ σ′ gives A(x)→̃D′(xs),
and n(σ) = n(σ′).

For σ = [?, x, x] ∈ B(x), let σ′ = [?, x]. The map σ 7→ σ′ gives B(x)→̃D′(x), and
n(σ) = n(σ′) + 1.

In either case, we have Rvx,w = QRvx,ws +Rvxs,ws.

(b) xs < x. Then σ = [?, xs, x], and setting σ′ = [?, xs], we have n(σ) = n(σ′),
S : D(x)→̃D′(xs). We have Rvx.w = Rvxs,ws.

The proposition now follows easily by using the induction hypothesis and by
taking into account the various cases. �

In general it is difficult to say anything really concrete concerning the polyno-
mial Rvx,w(Q): even its degree is mysterious. However, suppose T̃vT̃

−1
w−1 has a

minimal expression, i.e., suppose we can write

T̃vT̃
−1
w−1 = T̃ ǫ1t1 · · · T̃

ǫk
tk
,

where t1 · · · tk = vw is a reduced expression, and ǫi ∈ {1,−1}, for each i. Letting
cx denote the coefficient of T̃x in the expansion of such a minimal expression,
one can easily prove by induction on k that the Q-degree of cx is bounded above:

degQcx ≤ k − ℓ(x).

We get the following consequence, which we record for later use.

Proposition 7.6 Suppose T̃vT̃
−1
w−1 has a minimal expression. Then

degQR
v
x,w(Q) ≤ ℓ(vw)− ℓ(x).

7.3 The situation at q = 1

Recall from section 4.2 that the elements C ′′
w = Tr(Frq, ICw) =

Tr(Frq, IC(Bw̄)[ℓ(w)]) form a basis of the Iwahori-Hecke algebra H. Consider

the algebra homomorphism H → Z[W̃ ] given by specializing q1/2 = 1. We will
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denote the image of C ′′
w by C ′′

w|, etc. The elements Tw map to the usual basis

of the group ring Z[W̃ ], and the elements C ′′
w map to another basis. In fact

C ′′
w| =

∑

y≤w
εwPy,w(1)Ty|.

We will identify Ty| with y in what follows.

Now fix a coweight λ, and write λ = λ1 − λ2, where both λi are dominant. We
have

ελq
1/2
λ Θλ = ελq

1/2
λ T̃λ1 T̃

−1
λ2

=
∑

w

awC
′′
w.

Since the Wakimoto sheaf giving rise to this function is perverse and B-
equivariant, we see that aw ∈ N[q1/2, q−1/2] for every w, and thus aw 6= 0 if

and only if aw(1) 6= 0. We call the set {w | aw 6= 0} the IC-support of ελq
1/2
λ Θλ.

Applying the homomorphism x 7→ x| to ελq1/2λ T̃λ1 T̃
−1
λ2

gives

ελtλ1t−λ2 = ελtλ =
∑

w≤tλ
Qw,tλ(1)C ′′

w|.

We thus see that
aw(1) = Qw,tλ(1),

and that the IC-support of ελq
1/2
λ Θλ is precisely the set {w ≤ tλ}.

Using now the geometric interpretation of inverse Kazhdan-Lusztig polynomials
in the affine case (cf. Theorem 3.5), we get the following proposition.

Proposition 7.7 The IC-support of the function ελq
1/2
λ Θλ is precisely the set

{w ≤ tλ}. For each such w, the sum of the multiplicities
∑

im(λ,w, i) is equal
to the intersection Euler characteristic of the space

Btλ ∩ Bw.

8 Applications to Shimura varieties

8.1 Relating nearby cycles on local models and Shimura vari-
eties with Iwahori level structure

In certain cases, the singularities occurring in the bad reduction of Shimura
varieties of PEL type with Iwahori level structure are equivalent to the singu-
larities of one of the schemes Mµ/Zp that we were considering. More precisely,
for minuscule µ, Mµ is a local model in the sense of Rapoport and Zink [RZ2]
of a certain Shimura variety.

Consider a Shimura variety Sh = ShK(G,X) of PEL type, with Iwahori level
structure at p. (The same methods should yield analogous results for arbitrary
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parahoric level structure.) Denote by E its reflex field. Since Shimura varieties of
PEL type are moduli spaces of abelian varieties with additional structure, there
is a natural way to define a model over the ring of integers of the completion of
E at a prime p over p (see [Ko], [RZ2]).

Furthermore, Rapoport and Zink have defined a so-called local model of the
Shimura variety: a scheme defined in terms of linear algebra, which has ’the
same’ singularities as the model of the Shimura variety.

Now assume that GQp is isomorphic to GLn,Qp ×Gm,Qp or GSp2g,Qp .

The Shimura datum gives rise to a minuscule cocharacter µ of GLn,Qp or
GSp2g,Qp , respectively. The functorial description of the local model shows that
it can be embedded into the deformation from GrassQp to F lFp à la Laumon
(see [HN1]), with generic fibre Qµ. Since the local model is flat [G1], [G2], it
coincides with the scheme-theoretic closure Mµ of Qµ in this deformation.

The relation between the model of the Shimura variety over Zp and its local
model is given by a diagram

Sh Mϕ
oo

ψ
// Mloc

of OE-schemes, where ϕ is a torsor under a smooth affine group scheme, and
ψ is smooth. The fibres of ϕ are geometrically connected (more precisely, this
holds for the restriction of ϕ to any geometric connected component ofM). One
can show that étale-locally around each point of the special fibre, the model of
the Shimura variety and the local model are isomorphic. (See [RZ2].)

The stratification of the special fibre of Mloc induces stratifications of the spe-
cial fibres of M and Sh: the inverse images under ψ of strata in Mloc

Fp
define

a stratification of M, and there is a stratification of Sh such that the inverse
images of strata under ϕ are the strata in M. For details see [GN]. Follow-
ing loc.cit., we call the resulting stratification on ShFp the Kottwitz-Rapoport
stratification.

The smooth base change theorem implies that the nearby cycles functor com-
mutes with pull-back under smooth morphisms, so we have (up to shifts by the
dimensions)

ϕ∗RΨSh
∼= RΨM ∼= ψ∗RΨMloc .

Furthermore, the intermediate extension commutes with pull-back under
smooth morphisms (see the proof of theorem III.11.3 in [KW]), which implies
that

ϕ∗ICSh,w ∼= ICM,w
∼= ψ∗ICMloc,w

3.

(Again, this is up to a shift by the dimensions of the strata: these intersection
complexes are normalized so that they are perverse.)

3As in the introduction ICSh,w and ICM,w should be interpreted as direct sums of inter-
section complexes over geometric connected components of Sh and M.
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So we see that (since φ and ψ have the same relative dimension)

ϕ∗RΨss
Sh
∼= ϕ∗

(
⊕

w

⊕

i

ICSh,w(−i)m(w,i)

)
,

and because ϕ (restricted to any geometrically connected component of M) is
smooth with geometrically connected fibres, this yields

RΨss
Sh
∼=
⊕

w

⊕

i

ICSh,w(−i)m(w,i).

Hence the sheaf of nearby cycles on the Shimura variety decomposes in the
same way as the sheaf of nearby cycles on the local model.

8.2 The weight spectral sequence

By virtue of the Appendix, Theorem 10.1, the nearby cycles RΨ := RΨSh is
a mixed perverse sheaf on the special fiber of Sh. Therefore, RΨ possesses a
weight filtration ([BBD], §5), that is, an increasing filtration W such that each
graded piece

grWi := grWi (RΨ)

is a pure perverse sheaf of weight i. Now assume that Sh is proper over OE
(here E denotes the completion of the reflex field at a prime above p). Then we
have a canonical isomorphism of Galois modules

H i(ShFp
, RΨ) = H i(ShQp

,Qℓ[ℓ(µ)]),

and the weight filtration on RΨ yields the weight spectral sequence

WE
pq
1 = Hp+q(Sh

Fp
, grW−p) =⇒ Hp+q(Sh

Qp
,Qℓ[ℓ(µ)]).

This spectral sequence degenerates in E2, and abuts to the weight filtration
on the cohomology group on the right hand side. Deligne’s monodromy-weight
conjecture asserts that the weight filtration on the right hand side is the same
as the monodromy filtration defined with the help of the inertia action.

One might hope that an explicit description of the E1-terms might provide a
modest first step toward the monodromy-weight conjecture for these Shimura
varieties. The methods of this paper allow us to completely describe the semi-
simplification (grWi )ss of each graded piece grWi (RΨ), in the category P (Sh×s
η,Qℓ). This can be used to describe the E1-terms, if one forgets the Galois
action. The following summarizes our results in this direction. (We will write
m(w, i) for m(RΨ, w, i) here.)

Proposition 8.1 In the category P (Sh×s η,Qℓ), we have the identity

(grWi )ss =
⊕

w∈Adm(µ)
ℓ(w)+2j=i

ICSh,w(−j)⊕m(w,j).
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Here ICSh,w is the intersection complex of the closure of the Kottwitz-Rapoport
stratum Shw in Sh

Fp
. Consequently, if Sh is proper over OE, we deduce (for-

getting the Galois actions) isomorphisms of Qℓ-spaces

WE
pq
1 =

⊕

w∈Adm(µ)
ℓ(w)+2j=−p

IHp+q+ℓ(w)(Shw,Qℓ)
⊕m(w,j).

These results illustrate the fundamental importance of the Kottwitz-Rapoport
stratification on ShF̄p

. That stratification is indexed by the familiar set Adm(µ),
but the strata themselves are still rather mysterious. In future work we will
examine these strata more closely.

9 Examples

In this section we present a few examples for multiplicities of nearby cycles
sheaves RΨ = RΨ(IC(Qµ)[ℓ(tµ)]). Most of the examples are for G = GLn, but
there is one example for each of GSp4 and GSp6, and also one for G of type
G2.

9.1 The case of a divisor with normal crossings

Proposition 9.1 In the Drinfeld case, where GLn and µ = (1, 0, . . . , 0), we
have m(x, i) = 1 for all x ∈ Adm(µ), 0 ≤ i ≤ ℓ(tµ) − ℓ(x), and m(x, i) = 0
otherwise.

Proof. This is a combinatorial exercise using the following facts. In this case all
Kazhdan-Lusztig polynomials are 1 (since the special fiber is a union of smooth
divisors with normal crossings) and Tr(Frq, RΨx) = εµ(1− q)ℓ(tµ)−ℓ(x) (cf. [H3],
Prop. 5.2). �

9.2 GL2

Proposition 9.2 In the case of GL2 and an arbitrary coweight µ, all multi-
plicities m(x, i) = 1 for x ∈ Adm(µ) and 0 ≤ i ≤ ℓ(tµ)− ℓ(x), and m(x, i) = 0
otherwise.

Proof. Argue as above, using the explicit formula for Tr(Frq, RΨx) given in [H1],
Prop. 10.3. �
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9.3 Other examples

Further examples can be computed in the following way: the Kottwitz conjec-
ture (see section 2.7) describes the semi-simple trace of Frobenius on RΨ, and
since the inertia action is unipotent, this is the same as the usual trace. So the
function of RΨ is known, and thus the multiplicities can be computed by ap-
plying the base change from the Tw-basis to the C ′′

w-basis in the Hecke algebra.
In order to carry this out, though, Bernstein functions and lots of Kazhdan-
Lusztig polynomials have to be computed, so it is almost impossible to do this
manually. The following examples were computed with the help of a computer
program.

Because in all the interesting examples the number of alcoves is quite large, we
did not print out the multiplicities for each single alcove, but we subsumed the
information for several alcoves into one line.

Besides the length l and the number of alcoves that have certain multiplicities,
we also put the ’Bruhat configuration’ in the tables, i.e. the number of alcoves
of length l + 1, l + 2, . . . which are greater than the given alcove with respect
to the Bruhat order; cf. the remarks below.

The multiplicities listed below are always the numbers m(w, i) where i is under-
stood to range from 0 to ℓ(tµ)− ℓ(w) (the multiplicities for i not in this range
always happen to vanish, cf. section 9.4 for some discussion of this point).

9.3.1 G = GL4, µ = (1, 1, 0, 0)

Number of admissible alcoves: 33

Length #Alcoves Multiplicities Bruhat configuration

l=0 1 1,1,2,1,1 4, 10, 12, 6

l=1 4 1,2,2,1 5, 8, 5

l=2 8 1,1,1 3, 3

2 1,2,1 4, 4

l=3 12 1,1 2

l=4 6 1 -

This is the simplest non-trivial case. We see already that the multiplicities for
w are not determined by the length of w.
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9.3.2 G = GL5, µ = (1, 1, 0, 0, 0)

Number of admissible alcoves: 131

Length #Alcoves Multiplicities Bruhat configuration

l=0 1 1, 1, 2, 2, 2, 1, 1 5, 15, 30, 40, 30, 10

l=1 5 1, 2, 3, 3, 2, 1 6, 17, 28, 24, 9

l=2 5 1, 1, 2, 1, 1 4, 10, 12, 6

5 1, 2, 2, 2, 1 6, 14, 15, 7

5 1, 3, 4, 3, 1 7, 17, 18, 8

l=3 5 1, 1, 1, 1 4, 6, 4

20 1, 2, 2, 1 5, 8, 5

5 1, 2, 2, 1 5, 9, 6

l=4 30 1, 1, 1 3, 3

10 1, 2, 1 4, 4

l=5 30 1, 1 2

l=6 10 1 -

9.3.3 G = GL6, µ = (1, 1, 0, 0, 0, 0)

Number of admissible alcoves: 473

Length #Alcoves Multiplicities Bruhat configuration

l=0 1 1, 1, 2, 2, 3, 2, 2, 1, 1 6, 21, 50, 90, 120, 110, 60, 15

l=1 6 1, 2, 3, 4, 4, 3, 2, 1 7, 24, 55, 86, 88, 52, 14

l=2 6 1, 1, 2, 2, 2, 1, 1 5, 15, 30, 40, 30, 10

6 1, 2, 3, 3, 3, 2, 1 7, 24, 48, 58, 39, 12

9 1, 3, 5, 6, 5, 3, 1 8, 28, 56, 67, 44, 13

l=3 30 1, 2, 3, 3, 2, 1 6, 17, 28, 24, 9

6 1, 2, 2, 2, 2, 1 7, 20, 30, 24, 9

12 1, 3, 4, 4, 3, 1 8, 25, 39, 31, 11

2 1, 4, 7, 7, 4, 1 9, 30, 47, 36, 12

l=4 15 1, 1, 2, 1, 1 4, 10, 12, 6

6 1, 1, 1, 1, 1 5, 10, 10, 5

30 1, 2, 2, 2, 1 6, 14, 15, 7

6 1, 2, 2, 2, 1 6, 14, 16, 8

3 1, 2, 3, 2, 1 6, 15, 18, 9

30 1, 3, 4, 3, 1 7, 17, 18, 8

l=5 30 1, 1, 1, 1 4, 6, 4

60 1, 2, 2, 1 5, 8, 5

30 1, 2, 2, 1 5, 9, 6

l=6 80 1,1,1 3, 3

30 1,2,1 4, 4

l=7 60 1,1 2

l=8 15 1 -
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9.3.4 G = GL3, µ = (2, 2, 0)

Number of admissible alcoves: 19

Length #Alcoves Multiplicities Bruhat configuration

l=0 1 1, 1, 2, 1, 1 3, 6, 6, 3

l=1 3 1,2,2,1 4, 5, 3

l=2 3 1,1,1 2, 2

3 1,1,1 3, 3

l=3 6 1,1 2

l=4 3 1 -

9.3.5 G = GL3, µ = (3, 1, 0)

Number of admissible alcoves: 49

Length #Alcoves Multiplicities Bruhat configuration

l=0 1 1, 2, 3, 3, 3, 2, 1 3, 6, 9, 12, 12, 6

l=1 3 1, 3, 5, 5, 3, 1 4, 8, 12, 12, 6

l=2 3 1, 2, 3, 2, 1 4, 9, 11, 6

3 1, 3, 4, 3, 1 4, 9, 11, 6

l=3 3 1,2,2,1 4, 6, 4

3 1,2,2,1 4, 8, 6

3 1,4,4,1 6, 10, 6

l=4 3 1,1,1 2, 2

9 1,2,1 4, 4

l=5 12 1,1 2

l=6 6 1 -

This example shows that the Bruhat configuration numbers given in the table
do not determine the multiplicities (look at the elements of length 2). On the
other hand, in this example it is still quite easy to check that the Bruhat graphs
for the two types of elements are different.

9.3.6 G = GL4, µ = (2, 0, 0, 0)

Number of admissible alcoves: 65

Length #Alcoves Multiplicities Bruhat configuration

l=0 1 1, 1, 2, 2, 2, 1, 1 4, 10, 16, 18, 12, 4

l=1 4 1, 2, 3, 3, 2, 1 5, 11, 15, 11, 4

l=2 4 1, 1, 2, 1, 1 3, 6, 6, 3

4 1, 2, 2, 2, 1 5, 10, 9, 4

2 1, 3, 4, 3, 1 6, 12, 10, 4

l=3 12 1,2,2,1 4, 5, 3

4 1,1,1,1 4, 6, 4

l=4 6 1,1,1 2, 2

12 1,1,1 3, 3

l=5 12 1,1 2

l=6 4 1 -
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9.3.7 G = GL4, µ = (2, 1, 0, 0)

Number of admissible alcoves: 143

Length #Alcoves Multiplicities Bruhat configuration

l=0 1 1, 2, 3, 4, 4, 3, 2, 1 4, 10, 20, 30, 36, 30, 12

l=1 4 1, 3, 5, 6, 5, 3, 1 5, 14, 25, 33, 29, 12

l=2 4 1, 3, 4, 4, 3, 1 5, 12, 20, 21, 10

4 1, 2, 3, 3, 2, 1 5, 14, 25, 26, 12

2 1, 6, 11, 11, 6, 1 8, 20, 30, 28, 12

l=3 4 1,2,2,2,1 3, 6, 9, 6

4 1,2,3,2,1 5, 13, 17, 9

12 1,3,4,3,1 6, 15, 19, 10

l=4 12 1,2,2,1 4, 8, 6

8 1,2,2,1 5, 9, 6

8 1,3,3,1 6, 11, 7

2 1,3,3,1 6, 12, 8

l=5 8 1,1,1 3, 3

28 1,2,1 4, 4

l=6 30 1,1 2

l=7 12 1 -

9.3.8 G = GSp4, µ = (1, 1, 0, 0)

Number of admissible alcoves: 13

Length #Alcoves Multiplicities Bruhat configuration

l=0 1 1, 1, 1, 1 3, 5, 4

l=1 2 1, 1, 1 3, 3

1 1, 2, 1 4, 4

l=2 5 1,1 2

l=3 4 1 -
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9.3.9 G = GSp6, µ = (1, 1, 1, 0, 0, 0)

Number of admissible alcoves: 79

Length #Alcoves Multiplicities Bruhat configuration

l=0 1 1,1,1,2,1,1,1 4, 9, 17, 22, 18, 8

l=1 2 1,1,2,2,1,1 4, 10, 16, 15, 7

2 1,2,3,3,2,1 5, 13, 19, 17, 8

l=2 1 1,1,2,1,1 4, 10, 12, 6

4 1,2,2,2,1 5, 10, 11, 6

2 1,2,2,2,1 5, 11, 14, 8

2 1,3,4,3,1 6, 13, 14, 7

l=3 6 1,1,1,1 3, 5, 4

2 1,1,1,1 4, 6, 4

4 1,2,2,1 5, 8, 5

4 1,2,2,1 5, 9, 6

1 1,3,3,1 6, 12, 8

l=4 14 1,1,1 3, 3

8 1,2,1 4, 4

l=5 18 1,1 2

l=6 8 1 -

9.3.10 G of type G2, µ = (2, 1, 0)

Number of admissible alcoves: 41

Length #Alcoves Multiplicities Bruhat configuration

l=0 1 1, 1, 1, 1, 1, 1, 1 3, 5, 7, 9, 10, 6

l=1 1 1, 1, 1, 1, 1, 1 3, 5, 7, 9, 6

1 1, 1, 1, 1, 1, 1 3, 6, 9, 10, 6

1 1, 2, 2, 2, 2, 1 4, 7, 9, 10, 6

l=2 2 1,1,1,1,1 3, 5, 7, 5

1 1,2,2,2,1 4, 7, 9, 6

2 1,2,2,2,1 4, 8, 10, 6

l=3 3 1,1,1,1 3, 5, 4

2 1,2,2,1 4, 7, 5

1 1,2,2,1 4, 8, 6

1 1,2,2,1 5, 9, 6

l=4 4 1,1,1 3, 3

5 1,2,1 4, 4

l=5 10 1,1 2

l=6 6 1 -

9.4 Numerical Observations and Conjectures

Looking at the tables, one can make several empirical observations:

(A) We have m(w, i) ∈ [0, ℓ(µ) − ℓ(w)], or equivalently, the function
Tr(Frq, RΨw) is a polynomial in q of degree ≤ ℓ(µ)− ℓ(w);
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(B) The sequence m(w, 0), . . . ,m(w, ℓ(µ) − ℓ(w)) is palindromic; it increases
to the middle, then decreases again.

(C) We have m(w, 0) = m(w, ℓ(µ)− ℓ(w)) = 1.

From some more detailed information not contained in the tables, we also made
the following striking observation:

• The multiplicity polynomial m(w) =
∑

im(w, i)qi is determined by the iso-
morphism type of the Bruhat graph of the set {x ∈ Adm(µ) | x ≥ w} (although
not by the Bruhat configuration numbers alone). It is remarkable that the mul-
tiplicity polynomials seem to be determined by data that is independent of the
underlying root system.

Using the explicit formula for Tr(Frq, RΨw) in the minuscule case, proved in
[H3],[HP], we can prove this last observation in that case. Based on our data we
conjecture it holds in complete generality. We offer the following explanations
for (A)-(C).

Proof of (A) for GLn, or for µ minuscule.

From the definition, we get a recursive procedure to compute the multiplicities:

εw
∑

i

m(w, i)qi = Tr(Frq, RΨw)−
∑

x∈Adm(µ)
x>w

εxm(x)Pw,x.

By downward induction on ℓ(w), we deduce that Tr(Frq, RΨw) is a polynomial
of degree ≤ ℓ(µ)− ℓ(w) for all w ∈ Adm(µ) if and only if m(w) is a polynomial
of degree ≤ ℓ(µ)− ℓ(w), for all such w.

Now suppose µ is either a minuscule coweight, or an arbitrary coweight for the
group GLn. In [H3] and [HP] it is proved that for any coweight ν ∈ Ω(µ), the
function Θν has a minimal expression. Therefore by Proposition 7.6, we see that

Θν(w) = q−1/2
w R(Q),

where R(Q) ∈ N[Q], and degQR(Q) ≤ ℓ(tν) − ℓ(w). From this it is easy to see
(via the Kottwitz conjecture), that Tr(Frq, RΨw) is a polynomial in q of degree
≤ ℓ(µ)− ℓ(w).

We remark that the conclusion also holds when every dominant coweight λ ≤ µ
is a sum of dominant minuscule coweights.

Some time after this article had been submitted, we found a proof which works
without using minimal expressions and hence works without the above restric-
tion onG or µ [GH]. Furthermore, it follows from recent results of Ram [Ra] that
in fact minimal expressions always exist; hence the proof above is applicable to
the general case.

Proof of (B).
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Recall that DRΨ = RΨ(ℓ(µ)). Using Lemma 4.5, we deduce immediately that
the multiplicity function m(RΨ, w) :=

∑
im(RΨ, w, i)qi is palindromic, i.e.,

m(RΨ, w) = q−1
µ qwm(RΨ, w).

The multiplicities being palindromic is also a consequence of the conjecture that
the monodromy and the weight filtration on nearby cycles agree. In the function
field case this is known to be true (cf. [BB] §5); since the multiplicities in the
unequal characteristic case and in the function field case coincide, we get the
same consequences in the unequal characteristic case. In particular this proves
also that the multiplicities increase to the middle, and then decrease again.

Proof of (C) in the minuscule case.

It is easy to see that, for minuscule µ, m(w, l(µ)− l(w)) = 1 for all w because
then Tr(Frq, RΨw) is essentially an R-polynomial ([H3], [HP]), and thus the
coefficient of ql(µ)−l(w) in Tr(Fr, RΨw) is εw.

This also implies m(w, 0) = 1 for all w, since the multiplicities are palindromic.

If µ is minuscule, the identity m(x, 0) = 1 for all x ∈ Adm(µ) is equivalent to
the following combinatorial identity for such x:

∑

w∈Adm(µ)
w≥x

εw = εµ.

This has certain geometric consequences. For example, it shows that any codi-
mension 1 Iwahori-orbit in a local model is contained in at least two irreducible
components. It follows from this and properties of the Bruhat order that the
smooth locus of a local model is precisely the union of the extreme strata. Con-
sequently, we get the analogous results for certain Shimura varieties. (See [GN]
for related results, proved by a different method.)

Proposition 9.3 Let Sh be a Shimura variety as in section 8. Then the smooth
locus of the special fiber of Sh is precisely the union of the Kottwitz-Rapoport
strata indexed by the translation elements in the set Adm(µ). Here µ is the
minuscule coweight in the Shimura datum for Sh.
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10 Appendix

Part I: Nearby cycles preserve mixedness

Due to fundamental results of Deligne [Weil2], it is known that nearby cycles
preserve mixedness in the function-field setting (i.e., when working over a trait
which is the Henselization at a point of a smooth curve over a finite field). The
aim of this appendix is to prove an analogous result in the setting of unequal
characteristic traits. This result applies to nearby cycles on local models and
integral models for Shimura varieties over p-adic number rings, ensuring that
they possess weight filtrations, as postulated in the introduction.

Let (S, s, η) denote a Henselian trait (i.e, the spectrum of a complete discrete
valuation ring). We assume that the residue field k(s) is finite. Let k(η̄) be a
separable closure of k(η), and let S̄ denote the normalization of S in η̄, with
closed point s̄. Let X → S be a separated, finite-type scheme over S.

We will use the notion of S-variety (cf. [deJ2], 2.15). A separated finite-type
S-scheme X will be called an S-variety if X → S is flat and X is integral.

For A ∈ Db
c(Xη, Q̄ℓ), define RΨX(A) = ī∗Rj̄∗Aη̄, an object in Db

c(X ×s η, Q̄ℓ).

Let Λη denote the constant ℓ-adic sheaf Q̄ℓ on Xη (or some λ-adic constant
sheaf Eλ, for λ|ℓ) We will prove the following theorem.

Theorem 10.1 Suppose that Xη is smooth. Then the complex RΨX(Λη) is
mixed.

The proof of the theorem consists of several steps which eventually reduce
it to the calculations of Rapoport-Zink ([RZ1], [I]) for the case of a proper
strictly semi-stable S-variety (for the precise definition of strictly semi-stable,
see [deJ2], 2.16). We will use de Jong’s alterations [deJ2] to reduce the general
case to that case. Roughly, if X/S is a proper S-variety, one takes a strictly
semi-stable alteration π : X ′ → X, and then applies the push-forward functor
π∗ to appropriate nearby cycles on the alteration. Thanks to Rapoport-Zink
and properties of the push-forward functor, the resulting complex is mixed.
One proves using the trace map that it contains the original nearby cycles as
a subobject, thus essentially completing the proof of the theorem in that case.
(An extra difficulty arises because in the end we have to descend from a finite
extension k(s′) back down to k(s); see Corollary 10.5.) It is convenient to work
with perverse sheaves throughout this process. In particular, we will work with
the perverse push-forward pπ∗.
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10.1 Alterations

The following theorem is a direct consequence of [deJ2], Theorem 6.5.

Theorem 10.2 (de Jong) Let X/S be an S-variety. Then there exists a trait
S′ = (S′, s′, η′) finite over S, an S′-variety X ′ for which there is an alteration
X ′ → X of S-varieties, and an open immersion j : X ′ →֒ X ′ of S′-varieties
such that X ′ is a proper strictly semi-stable S′-variety:

X ′

��

X ′j
oo

��

// X

��

S′ S′idoo // S.

10.2 Proof for X ′/S ′

Let X ′, S′ etc. be as in Theorem 10.2. The special fiber X ′
s′ is globally a union

of reduced divisors with normal crossings and the calculations of Rapoport-Zink
are valid (cf. [I], Th. 3.2). The sheaves RqΨX′

(Λη′) are explicitly computed in
loc. cit, and are easily seen to be mixed. Thus Theorem 10.1 holds in this case.

This implies the theorem for X ′/S′. By Theorem 10.2 the morphism j embeds
X ′ as an open subscheme in X ′. Then the formula

j∗RΨX′
(Λη′) = RΨX′

(Λη′)

shows that the right hand side is mixed.

10.3 Proof for Xη smooth and geometrically integral

Assume that X/S is finite-type and separated, with Xη smooth and geometri-
cally integral. The nearby cycles are supported on the scheme-theoretic closure
of Xη in Xs. We may therefore assume X/S is flat by replacing X with the
scheme-theoretic closure of Xη in X (which is flat with the same generic fiber
since Xη is reduced). Thus, we may assume X/S is an S-variety whose generic
fiber is smooth and geometrically integral.

Let S′ and X ′ be as in Theorem 10.2.

Let us denote by π : X ′ → XS′ the resulting alteration of S′-varieties. Let us
also denote by π : X ′

η′ → Xη′ the morphism on the generic fibers. This is an
alteration, hence by definition is generically finite, say of degree n. Since Xη′

is integral, π is also generically flat. More precisely, there exists a non-empty
open subset U ⊂ Xη′ such that π : π−1(U)→ U is flat and finite.
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Let us denote pπ∗ := pH0π∗ (resp. pπ∗ := pH0π∗), the perverse versions of the
pull-back and push-forward functors via π. Since π is proper, we have π∗ = π!

and so pπ∗ = pπ!.

Let ΛXη′ denote the constant sheaf on Xη′ , and let ΛX
′

η′ denote the constant

sheaf on X ′
η′ . For d = dim(Xη), let AX = ΛXη′ [d](

d
2), and AX

′
= ΛX

′

η′ [d](d2); the

smoothness of X ′
η′ (resp. Xη′) ensures that AX

′
(resp. AX) is perverse of weight

zero. We will need the following lemma.

Lemma 10.3 The perverse sheaf AX is a subobject of pπ∗(AX
′
), in the cate-

gory P (Xη′ ,Qℓ).

Proof. The adjunction morphism AX → π∗π∗AX and the perversity of AX

yield a morphism of perverse sheaves AX → pπ∗AX
′
. Since AX is simple, it is

sufficient to prove this morphism is not the zero morphism. This can be detected
by showing that for some dense open U ⊂ Xη′ , the restriction of the morphism
to U is nonzero. Now choose U over which π is flat and finite, and use the trace
map

Tr : (π!π
∗(ΛXη′ ))|U → (ΛXη′ )|U ,

which composed with the canonical adjunction map ΛXη′ → π∗π∗(ΛXη′ ) =

π!π
∗(ΛXη′ ) is just multiplication by the degree n. For the definition and basic

properties of this trace map, see [SGA 4, Exp. XVII, p. 553-554]. �

Now let r : XS′ → X denote the projection morphism. Since r arises from a
finite “change of trait” morphism, the invariance of nearby cycles under change
of trait ([SGA 4 1/2, Thm. finitude 3.7]) implies that we have a canonical
isomorphism r∗RΨX(Λη[d](

d
2)) = RΨXS′ (AX) in the category Db

c(X ×s η′, Q̄ℓ).
Here the meaning of this last category and of the left hand side of the equality
is the following. The nearby cycles RΨX(Λη[d](

d
2)) live on the geometric special

fiber Xs̄ = Xs̄′ , and naturally carry a compatible action of Gal(η̄/η). The sheaf
r∗RΨX(Λη[d](

d
2)) is just that same sheaf together with the compatible action of

Gal(η̄′/η′) via the canonical restriction map Gal(η̄′/η′)→ Gal(η̄/η). By Lemma
10.3, this is a subobject (in the category P (X ×s′ η′,Qℓ)) of

RΨXS′ ( pπ∗(AX
′

)) = pπ∗RΨX′

(AX
′

).

(The last equality follows from the compatibility of nearby cycles and proper
push-forwards together with the fact that RΨ commutes with the perverse trun-
cation functors pτ≤0 and pτ≥0, hence with the functor pH0. The compatibility
of RΨ and the perverse truncation functors follows easily from the fact that
RΨ preserves pD≤0

c and commutes with Verdier duality.)

We have used here the basic fact that the functor RΨ, being t-exact, induces
an exact functor on categories of perverse sheaves.

We can now complete the argument. By the case of X ′/S′ treated above, the
complex RΨX′

(AX
′
) is mixed. Thus by [BBD] §5, pπ∗RΨX′

(AX
′
) is mixed. Its
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subobject r∗RΨX(Λη[d](
d
2)) is mixed too. By the lemma and corollary in the

following section on descent, we deduce finally that RΨX(Λη) is also mixed.
This proves Theorem 10.1 in the case of finite-type separated S-schemes X
where Xη is smooth and geometrically integral.

10.4 Proof for Xη smooth

We consider finally the general case, where Xη is only assumed smooth. Since
Xη̄ is smooth, its connected components are integral. If η′/η is a finite extension
over which all the connected components are defined, then it follows that each
connected component of Xη′ is smooth and geometrically integral. Let S′ denote
the normalization of S in η′; then S′ is a trait, finite over S. As above let

r : XS′ → X denote the projection. For each connected component X
(α)
η′ ,

α = 1, 2, . . . ,m, let X(α) denote its scheme-theoretic closure in XS′ . We have
closed immersions of S′-schemes iα : X(α) →֒ XS′ . Each X(α) is a separated
finite-type S′-scheme whose generic fiber is smooth and geometrically integral;
hence the results of the previous section obtain for it.

It is clear that

RΨXS′ (Λη′) =
⊕

α

iα,∗RΨX(α)
(Λη′);

by the previous section the right hand side is mixed, hence so is the left
hand side. Further, as before, r∗RΨX(Λη) = RΨXS′ (Λη′) is just the complex
RΨX(Λη) endowed with its compatible action of Gal(η̄′/η′) via Gal(η̄′/η′) →
Gal(η̄/η). Now Corollary 10.5 finally proves that RΨX(Λη) is mixed, as desired.

10.5 Descent step

The following results are well-known (cf. [KW], p.14); we include them for the
reader’s convenience.

Lemma 10.4 Let r : S′ → S denote a finite surjective morphism of traits with
finite residue fields. Let X/S be finite-type, and by abuse denote also by r the
morphism Xs′ → Xs on special fibers deduced from r ×S idX : XS′ → X.

If G is a smooth étale Weil sheaf on Xs such that r∗G is a mixed sheaf on X ′
s′

with weights ≤ w, then G is also mixed with weights ≤ w.

We suppose k(s) has q elements. As noted above in section 10.3, because Xs̄ =
Xs̄′ , we can regard G as a sheaf on Xs̄ endowed with a compatible action of a
geometric Frobenius Frobq ∈ Gal(η̄/η), and we can regard r∗G as this same sheaf
endowed with a compatible action of a geometric Frobenius in Gal(η̄′/η′) which
maps to Frobnq = Frobqn under the restriction map Gal(η̄′/η′) → Gal(η̄/η),
where n = [k(s′) : k(s)].
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Proof. Let X0 = Xs = s ×S X. Note that the “change of trait” morphism r
above is the morphism

s′ ×S′ X ′ → s×S X
which arises via the canonical identifications s′×S′(S′×SX) = s′×SX = s′×sXs

from the projection
r : X0 ×κ κ′ → X0,

where X0 = Xs, κ = Fq, and κ′ = Fqn .

The sheaf r∗G is by hypothesis a smooth mixed Weil sheaf on X0 ×κ κ′. We
want to prove that G is a mixed Weil sheaf on X0.

Since r∗ is exact, we can assume without loss of generality that G is simple. We
will prove that in this case G is pure.

Since r∗G is mixed, there is a non-zero smooth Weil sheaf F on X0×κ κ′ which
is a simple (thus pure) Weil subsheaf of r∗G.
Let now F denote the Frobenius automorphism Frq for X0, so that Fn is
the Frobenius automorphism for X0 ×κ κ′. We are given an isomorphism
(Fn)∗F−̃→F . Using this and the fact that the category of Weil sheaves is closed
under the formation of kernels and cokernels, one can show that

n−1∑

i=0

(F i)∗F

is a nonzero Weil subsheaf of G. Since the latter is simple, we have in fact

⊕

i∈I
(F i)∗F = G,

where I ⊂ {0, 1, . . . , n − 1} is a nonempty subset. (The sum can be made a
direct sum by omitting certain i’s.)

Now fix any isomorphism τ : Q̄ℓ−̃→C. Note that the summands above are pure
Weil sheaves on X0 ×κ κ′, whose τ -weights are all identical. Suppose each is τ -
pure of weight w. For any geometric point x̄ over a closed point x ∈ X0, we set
Fx = F [κ(x):κ]; then for any eigenvalue α of Fnx on an irreducible summand of
Gx̄, we have |τ(α)| = qnd(x)w/2. A similar statement thus holds for Fx replacing
Fnx and qwd(x)/2 replacing qwd(x)n/2. This holds for every choice of x, and w is
independent of that choice. It follows that G is pure of weight w. �

Corollary 10.5 Let r,X be as above. Let G ∈ Db,Weil
c (Xs, Q̄ℓ). If r∗G is a

mixed complex in Db,Weil
c (Xs′ , Q̄ℓ), then G is also mixed.

Proof. By passing to cohomology sheaves, we can reduce to the case where G and
r∗G are constructible Weil sheaves on Xs and X ′

s′ , respectively. By Noetherian
induction and gluing of constructible sheaves, we can reduce further to the case
where G and thus r∗G is a smooth Weil sheaf, where the result was proved in
the foregoing lemma. �
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10.6 A variant

The following variant applies to the nearby cycles appearing in the local models
and deformations of affine flag varieties treated in this paper. It does not apply
to Shimura varieties: while the generic fibers of these are smooth, they are
usually not geometrically integral.

Theorem 10.6 Suppose Xη is geometrically integral, with intersection complex
0IC(Xη). Then RΨX( 0IC(Xη)) is mixed.

Here, 0IC(Xη) denotes the intersection complex of Xη, suitably Tate-twisted
and shifted to make it a pure self-dual perverse sheaf of weight zero. This
normalization is convenient but of course not necessary for the theorem.

Proof. The proof works the same way as before. First, replacing X with the
scheme-theoretic closure of Xη, we may assume X/S is flat, hence integral, i.e.,
we may assume X is an S-variety with geometrically integral generic fiber.

Now consider the alterations π : X ′ → XS′ and π : X ′
η′ → Xη′ associated to the

diagram in Theorem 10.2. Let r : XS′ → X denote the projection morphism.
Arguing almost as before (see the Lemma below) we can use the trace map to
prove that 0IC(Xη′) = 0IC(Xη)η′ is a subquotient of pπ∗AX

′
. By invariance of

nearby cycles under change of traits, r∗RΨX( 0IC(Xη)) = RΨXS′ ( 0IC(Xη′)),
which is a subquotient of RΨXS′ ( pπ∗AX

′
) = pπ∗RΨX′

(AX
′
). The latter is

mixed by section 10.2. Applying descent as in section 10.5, the result follows.
�

Lemma 10.7 The perverse sheaf 0IC(Xη′) is a subquotient of pπ∗(AX
′
), in

the category P (Xη′ ,Qℓ).

Proof. Choose the open set U ⊂ Xη′ as in Lemma 10.3. Let j′ : U ′ := π−1(U)→
X ′
η′ be the open immersion. Note that IC := 0IC(Xη′) is just j!∗AU , and

AX
′
= j′!∗A

U ′
, where AU , resp. AU

′
has the obvious meaning.

By using adjunction maps and the morphism of functors j!∗ → j∗, we get
morphisms

IC → pπ∗π∗j!∗A
U → pπ∗π∗j∗AU → pπ∗j′∗π

∗AU = pπ∗j′∗A
U ′

,

and
pπ∗AX

′

= pπ∗j′!∗A
U ′ → pπ∗j′∗A

U ′

.

Now restricting to U with j∗ and using the trace map as before shows that the
first map is non-zero, hence a monomorphism. Also, restricting shows that the
image of IC under the first map lies in the image of the second map (if not,
then IC embeds into the cokernel of the second map, which is ruled out after
restricting both to U). Thus, IC is a subquotient of pπ∗AX

′
. �
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Part II: A bound on the weights of nearby cycles

The method of proof of Theorem 10.6 gives an estimate on the weights:

w(RΨX( 0IC(Xη))) ≤ dim(Xη).

(One is reduced to the proper strictly semi-stable case, where it is easy).

Now let RΨ = RΨ(IC(Q̄µ)[ℓ(tµ)]), as usual.

The fact (proved in section 7.2) that for µ either minuscule, or a coweight for
GLn, the function Tr(Frq, RΨx) is polynomial in q of degree ≤ ℓ(µ) − ℓ(x),
is equivalent to the following much stronger bound on the weights of 0RΨ :=
RΨ( ℓ(µ)

2 ): for each x ∈ Adm(µ), and each closed point z ∈ Bx, the weights of
the complex 0RΨz are ≤ ℓ(µ)−ℓ(x). In all the examples we computed, it is true
that the trace of Frobenius is always a polynomial in q with this degree. In all
the cases we have proved this (thus far), it follows from the existence of minimal
expressions for the functions Θλ in the Iwahori-Hecke algebra (cf. section 9.4).
It would be interesting to find a direct geometric argument to prove this sharper
bound on the weights in all cases.4

The following gives a sufficient condition for the sharp bound to hold. In this
statement, we assume there is the action of a geometrically connected smooth
group scheme G/S on X/S, and we say a Gs̄-equivariant Weil perverse sheaf K
on Xs̄ satisfies the sharp bound if for each locally closed immersion i : O → Xs̄

of a Gs̄-orbit O, we have w(i∗K) ≤ dim(Xs̄)− dim(O).

Proposition 10.8 Let X/S be an S-variety such that Xη is geometrically in-
tegral. Suppose that X/S carries an action of a geometrically connected smooth
group scheme G/S. Suppose that there exists a trait S′, finite over S, and an
S-alteration X ′ → X with compactification X ′ as in Theorem 10.2, each carry-
ing an action of GS′, such that the inclusion j : X ′ →֒ X ′ and the S′-alteration
π : X ′ → XS′ are GS′-equivariant. Then RΨX( 0IC(Xη)) satisfies the sharp
bound on its weights.

Proof. This is similar to the proof of Theorem 10.6. The sharp bound holds for
the strictly semi-stable case, and thus also for RΨX′

(AX
′
). It is enough to prove

that the sharp bound holds for pπ!RΨX′
(AX

′
). So, let O ⊂ Xs′ denote a Gs′-

orbit of dimension m, and suppose z ∈ O is a closed point. Using equivariance,
one can show that anyGs′-orbit contained in π−1(O) dominatesO, hence has di-
mension ≥ m. Thus, the weights of π!RΨX′

(AX
′
)z = RΓc(π

−1(z), RΨX′
(AX

′
))

are ≤ dim(X ′
s̄′)−m, and we are done. �

There are B-equivariant semi-stable resolutions for the local models Mloc = Mµ,
in the cases GSp4, µ = (1, 1, 0, 0) [deJ1], and GSp6, µ = (1, 1, 1, 0, 0, 0) [Ge].
Together with the above considerations, we get the following corollary.

4In the meantime, we have found such a proof, see [GH].
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Corollary 10.9 Let µ be the minuscule coweight (1, 1, 0, 0) for GSp4 or the
minuscule coweight (1, 1, 1, 0, 0, 0) for GSp6. Then the sharp bound holds for the
weights of 0RΨ. In particular, in each of these cases the multiplicity functions

∑

i

m(RΨ, w, i)qi

are polynomials of degree at most ℓ(µ)− ℓ(w), for every w ∈ Adm(µ).

This Corollary also follows from results already announced in section 9, but the
approach given here is perhaps more conceptual.
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