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Abstract. We consider the matrix for the Satake isomorphism with respect to natural
bases. We give a simple proof in the case of Chevalley groups that the matrix coefficients
which are not obviously zero are in fact positive numbers. We also relate the matrix coeffi-
cients to Kazhdan-Lusztig polynomials and to Bernstein functions.

Introduction

M. Rapoport’s paper ([10]) is concerned with a matrix Cλ,µ which expresses the Satake
isomorphism in terms of natural bases (see below for a precise definition of Cλ,µ). The main
theorem is that all of the matrix coefficients Cλ,µ which are not obviously zero are in fact
positive numbers. The present article is intended to complement that of Rapoport, and
consists of three parts. In the first section we present the main result, which is a short
proof of the positivity property in the case of p-adic Chevalley groups. The key tools are a
theorem of Dabrowski ([2]) which gives a criterion for the intersection of cells in the Iwahori
and Iwasawa decompositions of a p-adic Chevalley group, and Macdonald’s formula for the
Satake transform.

In the second section we relate the matrix Cλ,µ to the Kazhdan-Lusztig polynomials for
the affine Weyl group attached to a split p-adic group. We use the work of S. Kato ([7]),
which is itself an extension of work of G. Lusztig ([8]). For the affine Weyl group of type

Ã1 the Kazhdan-Lusztig polynomials are very simple, and using this observation we identify
the coefficients Cλ,µ for the group Gl2. This provides a direct verification of the positivity
property in this case, and indicates that Kazhdan-Lusztig polynomials might provide an
explanation of the positivity phenomenon in general.

In the third section we show that the matrix Cλ,µ is also the one that relates Bernstein
functions to spherical functions, relative to the natural isomorphism between the center of
the Iwahori-Hecke algebra and the spherical Hecke algebra of a split p-adic group.

1. A simple proof of Positivity for Chevalley groups

Let F be a p-adic field, with algebraic closure F . Let q = pj denote the cardinality of
the residue field of F . Let O denote the ring of integers in F , with $ a uniformizer of the
maximal ideal. Let G be a Chevalley group, or more generally a split connected reductive
group over F whose adjoint group is the Chevalley group corresponding to an irreducible
and reduced root system R. The group G is then defined over O. Fix a choice of positive
roots R+ and simple positive roots ∆. For any root α ∈ R+, let Φα denote the corresponding
group homomorphism Φα : Sl2 → G. For any a, c ∈ F , c 6= 0, let

xα(a) = Φα

(
1 a
0 1

)
,
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x−α(a) = Φα

(
1 0
a 1

)
,

tα(c) = Φα

(
c 0
0 c−1

)
,

ωα = Φα

(
0 1
−1 0

)
.

Let Z denote the center of G. Let U , T , and N be respectively the subgroups of G
generated by the sets {xα(a) | a ∈ F , and α ∈ R+}, Z∪{tα(c) | c ∈ F , c 6= 0, and α ∈ R+},
and T ∪ {ωα | α ∈ R+}. Then T is a maximal torus of G, contained in the Borel subgroup
B = TU , and N is the normalizer of T in G. Let K = G(O); it is a special, good, maximal
compact open subgroup of G(F ). Let Tsc = T ∩Gsc, the inverse image of T under Gsc → G.
Let T0, U0 and N0 denote, respectively, the intersections T (F )∩K, U(F )∩K and N(F )∩K.

Let W = N(F )/T (F ) be the finite Weyl group of G, and let W̃ = N(F )/T0 denote the

extended affine Weyl group. There is a canonical isomorphism W̃
v

−→ X∗(T ) o W . Let
Wa = X∗(Tsc) o W ; this is a Coxeter group with generators consisting of the simple affine

reflections Sa = {sα | α ∈ ∆}∪{sa = t−α̌0
sα0

}, where tλ ∈ W̃ is the translation corresponding
to the cocharacter λ ∈ X∗(T ), and α0 is the highest root of R+. Let Ω denote the subgroup

of W̃ which preserves the set of simple reflections Sa ⊂ W̃ under conjugation. Then there is

a canonical isomorphism W̃
v

−→ Ω n Wa. The length function l : Wa → N is extended to a

length function on W̃ by setting the length of ωx (ω ∈ Ω, x ∈ Wa) to be l(x).
We fix an Iwahori subgroup for G(F ) as follows. Let I denote the subgroup of K generated

by U0, T0, and the subgroup V generated by the set {x−α(a) | a ∈ $O, α ∈ R+}. Then I is
an Iwahori subgroup of G(F ) in good position relative to K, meaning that IWI = K. Note

that both I and K contain T0, so for any w ∈ W̃ it makes sense to write wI = nI (resp.

wK = nK), where n ∈ N(F ) maps to w under the projection N(F ) → W̃ . For λ ∈ X∗(T ),

let $λ denote the image of λ ⊗ $ under the canonical isomorphism X∗(T ) ⊗ F× v

−→ T (F ).

The element $λ ∈ T (F ) maps to tλ ∈ W̃ under the projection N(F ) → W̃ , so with the
conventions above we can write KtλK = K$λK, ItλI = I$λI, and U(F )tλI = U(F )$λI,
etc. (The notation in the main theorem below thus differs slightly from that of Rapoport
[10].)

Although the groups G(F ), K, T (F ), T0, U(F ) and I change if F is replaced by a finite

extension field, the groups W , W̃ , and Wa do not; in particular they are independent of the
quantity q.

Next we will summarize some definitions and results of R. Dabrowski ([2]). If w ∈ W̃ ,
denote by w the image of w in the finite Weyl group W under the canonical projection

W̃ → W . Fix an element τ ∈ W̃ and a reduced expression τ = ωs1 . . . sk, where the si are
simple affine reflections, and ω ∈ Ω. Following Deodhar ([4]) we call a sequence of elements
{σj}

k
j=0 a subexpression if σ0 = ω and for each j ≥ 1, σj ∈ {σj−1, σj−1sj}. Following

Dabrowski ([2]) we call the subexpression good if the following hold:

• σj−1sj ≤ σjfor all j such that sj ∈ S,
• σj−1sα0

≥ σj for all j such that sj = sa.

Here α0 denotes the highest root of R+ and sa = t−α̌0
sα0

is the corresponding simple affine
reflection. The ordering ≤ denotes the Bruhat order on the Coxeter group (W, S), where
S is the set W ∩ Sa. Let G denote the set of all good subexpressions (relative to a fixed
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reduced expression of a fixed τ). Denote by G(τ) the set {σk | {σj}
k
j=0 ∈ G}. We will use

the following result of Dabrowski:

Proposition 1.1. Let τ and ω be arbitrary elements of W̃ . Then the following are equiva-

lent:

(1) U(F )ωI ∩ IτI 6= ∅,
(2) ω ∈ G(τ).

In particular, the set G(τ) is independent of the choice of reduced expression for τ .

Proof. This is Proposition 3.2 of [2].
�

Let b : Cc(K\G(F )/K)
v

−→ C[X∗(T )]W denote the Satake isomorphism, as defined in ([1]).
In particular, this means that Haar measure on G(F ) is normalized so that K has volume
1. For µ ∈ X∗(T ) a dominant coweight, let fµ = char(KtµK) and mµ = |Wµ|

−1
∑

w∈W w(µ)
(here Wµ is the stabilizer of µ in W ). We define the matrix Cλ,µ by the following equation

b(fλ) =
∑

µ

Cλ,µmµ.

For µ and λ in X∗(T ), we write µ
!
≤λ if λ − µ is a (possibly empty) sum of simple coroots.

When in addition µ 6= λ, we write µ
!
< λ.

The main result of this paper is the following theorem.

Theorem 1.2. Let µ and λ be dominant coweights in X∗(T ). Then the following statements

are equivalent:

(1) Cλ,µ > 0,
(2) U(F )tµK ∩ KtλK 6= ∅,

(3) µ
!
≤λ,

(4) U(F )tµI ∩ IτI 6= ∅, for some τ ∈ WtλW ,

(5) tµ ∈ G(τ), for some τ ∈ WtλW .

Proof. The equivalence of (1) and (2) is well-known ([1]). The equivalence of (4) and (5) is
a special case of Proposition 1.1 above. The implication (4) ⇒ (2) holds because I ⊂ K and
KτK = KtλK (the group K∩N(F ) contains a set of representatives of W ). The implication
(2) ⇒ (4) follows from KtλK = IWItλIWI = IWtλWI. We now prove (5) ⇒ (3): It is

clear from the definition that G(τ) ⊂ {x ∈ W̃ |x ≤ τ} , where ≤ denotes the Bruhat order on

W̃ . Therefore if (5) holds, then tµ ≤ τ and so WtµW ≤ WτW = WtλW in the Bruhat order

on W\W̃/W . It is well-known that this implies µ
!
≤λ. Finally, we show (3) ⇒ (4): Suppose

µ
!
≤λ. Then by the Lemma below we see that (2) holds for sufficiently large q. Then as above

it follows that (4) holds for sufficiently large q. But (5) and hence (4) is independent of q;
hence (4) holds for all q. �

Lemma 1.3. If µ
!
≤λ, then U(F )tµK ∩ KtλK 6= ∅ for q � 0.

Proof. The intersection is nonempty if and only if the matrix coefficient Cλ,µ(q) > 0, where

b(fλ) =
∑

µ

Cλ,µ(q)mµ.
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We write Cµ,λ(q) to emphasize the dependence of this matrix on q.
Now recall Macdonald’s formula (see Theorem 2.4 of [7]):

b(fλ) =
ql(λ)/2

Wλ(q−1)

∑

w∈W

ew(λ)
∏

α>0

1 − q−1e−w(α)

1 − e−w(α)
.

As q → ∞, the sum approaches
∑

w∈W

ew(λ)
∏

α>0

(1 − e−w(α))−1.

By Weyl’s character formula, this last expression is the character of the highest weight module
for λ:

χλ =
∑

µ

mλ(µ)mµ.

One knows that mλ(µ) > 0 if and only µ
!
≤λ (see [5], p.204), and if so it follows that

(Wλ(q−1)/ql(λ)/2)Cµ,λ(q) and therefore Cµ,λ(q) is > 0 for q � 0. �

2. The Relation with Kazhdan-Lusztig polynomials

Let G be as above (or more generally an almost simple, connected reductive group, defined
and split over F ). Define a matrix M(q) by

M(q)µ,λ = q−l(λ)/2Pw0µ,w0λ(q).

Here µ and λ range over dominant coweights in X∗(T ) (in a suitable ordering compatible with
!
≤), w0 denotes the longest element of W , and Px,y(q) are the Kazhdan-Lusztig polynomials

for the group W̃ .
Note first that Theorem 1.5 of [7] with q = 1 gives

χλ =
∑

µ

M(1)µ,λmµ.

On the other hand, Lemma 2.7, (3.5), and Theorem 1.8 of (loc. cit.) imply that

χλ =
∑

µ

M(q)µ,λb(fµ).

It follows that

Proposition 2.1. Cλ,µ(q) = [M(1)M(q)−1]µ,λ.

We can use this to illustrate the positivity property in the case of Gl2. Since Gl2 is

of type A1, we know that the Kazhdan-Lusztig polynomials for W̃ are particularly simple:
Px,y(q) = 1 if x ≤ y and 0 otherwise. It follows that

M(1)µ,λ =

{
1, if µ

!
≤λ,

0, otherwise,

and thus

M(1)−1
µ,λ =





−1, if µ = λ − α̌,

1, if µ = λ,

0, otherwise.
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Here α̌ = (1,−1) is the unique simple coroot. Moreover M(q) = M(1)diag(. . . , q−l(λ)/2, . . . ).
This implies

M(q)−1
σ,λ =





−q(l(λ)/2)−1, if σ = λ − α̌,

ql(λ)/2, if σ = λ,

0, otherwise,

and thus

Cλ,µ(q) =
∑

µ
!

≤σ
!

≤λ

M(1)µ,σM(q)−1
σ,λ =





ql(λ)/2 − q(l(λ)/2)−1, if µ
!
< λ,

ql(λ)/2, if µ = λ,

0, otherwise.

The positivity of Cλ,µ(q) for µ
!
≤λ is therefore evident in this case.

3. The Relation with Bernstein Functions

We retain the notation of the previous section. Consider the following diagram:

C[X∗(T )]W Cc(K\G(F )/K)
b
v

oo

C[X∗(T )]W
Bern.

v

// Z(Cc(I\G(F )/I))

eK∗−

OO

Here the right vertical map is multiplication by eK = char(K). The convolution product
in Cc(K\G(F )/K) (resp. Cc(I\G(F )/I)) is defined using the Haar measure on G(F ) for
which vol(K) = 1 (resp. vol(I) = 1). The Satake isomorphism is defined using the same
normalizations as in [1]. The map Bern was discovered by Bernstein and is constructed as
follows (see [8], [9]). For any coweight ν ∈ X∗(T ), write ν = ν1 − ν2 where the elements νi

are dominant. Then define an element of the Iwahori-Hecke algebra

Θν = q−(l(ν1)−l(ν2))/2Ttν1
T−1

tν2

,

where Tw denotes the generator of the Iwahori-Hecke algebra Cc(I\G(F )/I) given by the

characteristic function of the double coset IwI, for any w ∈ W̃ . Then the element Θν is
independent of the choice of ν1 and ν2. Moreover it is proved in [8] that if µ ∈ X∗(T ) is
dominant and we set

zµ =
∑

ν∈W (µ)

Θν ,

then the element zµ is in Z(Cc(I\G(F )/I), and moreover the map which associates to mµ ∈

C[X∗(T )]W the element zµ defines an isomorphism of C-algebras Bern : C[X∗(T )]W
v

−→
Z(Cc(I\G(F )/I). We call the elements zµ the Bernstein functions.

The next proposition seems to be well-known to the experts. It implies that the center of
the Iwahori-Hecke algebra is naturally isomorphic to the spherical Hecke algebra. A proof
can be found in a paper of J.-F. Dat ([3]). It can also be deduced easily from known results
of Lusztig ([8]) and S. Kato ([7]), as is explained in [6].

Proposition 3.1. The Satake and Bernstein isomorphisms are compatible, i.e., the diagram

above is commutative.

We deduce that the matrix Cλ,µ relates the Bernstein functions to the spherical functions.
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Proposition 3.2. fλ =
∑

µ Cλ,µeK ∗ zµ.

Proof. Apply the Satake isomorphism b to both sides, then use the commutativity of the
above diagram and the definition of the matrix Cλ,µ. �

From this we get an interesting relation for the matrix coefficients Cλ,µ:

Corollary 3.3. Let ρ denote half the sum of the positive roots. Let W (q) =
∑

w∈W ql(w).

Then for any dominant λ ∈ X∗(T ),

W (q)−1
∑

w∈WtλW

ql(w) =
∑

µ
!

≤λ

Cλ,µ(q)(
∑

ν∈W (µ)

q〈ρ,ν〉).

Proof. Consider the C[q1/2, q−1/2]-algebra homomorphism χ : Cc(I\G(F )/I) → C[q1/2, q−1/2]

defined by χ(Tw) = ql(w), where Tw denotes the generator of the Iwahori-Hecke algebra

corresponding to w ∈ W̃ . We have fλ =
∑

w∈WtλW Tw and eK =
∑

w∈W Tw. Moreover, if

ν ∈ W (µ) and ν = ν1 − ν2 (νi dominant), one has χ(Θν) = q−(l(ν1)−l(ν2))/2χ(Tν1
)χ(Tν2

)−1 =

q(〈2ρ,ν1〉−〈2ρ,ν2〉)/2 = q〈ρ,ν〉. The result now follows by applying χ to the equation in the
preceeding proposition. �
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