Calculus 130, section 3.1b Limits, section 3.2 Continuity
notes prepared by Tim Pilachowski

1) The notation \(\lim_{x \to a^+} f(x) \) is read “the limit of \(f(x) \) as \(x \) approaches \(a \) from the right”.

2) The notation \(\lim_{x \to a^-} f(x) \) is read “the limit of \(f(x) \) as \(x \) approaches \(a \) from the left”.

3) If there is some identifiable real number \(L \) such that \(\lim_{x \to a^+} f(x) = L \) and also \(\lim_{x \to a^-} f(x) = L \), then we will be able to write \(\lim_{x \to a} f(x) = L \), which is read “the limit of \(f(x) \) as \(x \) approaches \(a \)”. It is implicit in this statement that the limit is being taken as “\(x \) approaches \(a \) from either side”.

In some of the examples done last time, we had \(\lim_{x \to a} f(x) = \infty \). Now we turn to consideration of \(\lim_{x \to \infty} f(x) \).

(This is the concept underlying the determination of horizontal and slant asymptotes for rational and exponential functions.)

Examples D: For the following functions, determine whether \(\lim_{x \to \infty} f(x) = L \) exists, and if so, the value of \(L \).

\[
\begin{align*}
\text{a)} f(x) &= 3 & \text{b)} f(x) &= \frac{3x^2 - 1}{2} & \text{c)} f(x) &= \frac{3x^2 - 1}{2x - 1} & \text{d)} f(x) &= \frac{3x^2 - 1}{2x^2 - 1} & \text{e)} f(x) &= \frac{3x^2 - 1}{2x^3 - 1}
\end{align*}
\]

answers: 3, \(\infty \), \(\infty \), \(\frac{3}{2} \), 0
Examples E: For the following functions, determine whether \(\lim_{x \to \infty} f(x) = L \) exists, and if so, the value of \(L \).

a) \(f(x) = \ln(x - 1) \)
 b) \(f(x) = e^{x-1} \)
 c) \(f(x) = e^{1-x} \)
 d) \(f(x) = \frac{3}{2 + e^{-x}} \)
 e) \(f(x) = \cos(x - 1) \)

answers: \(\infty, \infty, 0, \frac{3}{2}, \text{DNE} \)

A pair of basic but very important principles are illustrated in the Examples above: As a denominator \(\to \infty \), a fraction \(\to 0 \), while any constants \(\to \) themselves.

With respect to power functions, for any real number \(n > 0 \), \(\lim_{x \to \infty} x^n = \infty \) and \(\lim_{x \to \infty} \frac{1}{x^n} = 0 \).

With respect to exponential functions, for any real number \(k > 0 \), \(\lim_{x \to \infty} b^{kx} = \infty \) and \(\lim_{x \to \infty} \frac{1}{b^{kx}} = 0 \).

Finally, for a given constant \(a \), \(\lim_{x \to \infty} a = a \).
An extension of limits is the concept of **continuity of a function**. Specifically, a function is continuous at a value \(x = c \) if and only if

1) \(f(c) \) is defined
2) \(\lim_{{x \to c}} f(x) \) exists
3) \(\lim_{{x \to c}} f(x) = f(c) \).

If a function is not continuous at \(x = c \), then it is **discontinuous**.

Examples A revisited: Determine whether the following functions are continuous at \(x = 1 \). Explain why.

\[a) f(x) = x - 1 \quad b) f(x) = e^{x-1} \quad c) f(x) = \ln(x-1) \quad d) f(x) = \cos(x-1) \]

answers: yes, yes, no, yes

Examples B revisited: Determine whether the following functions are continuous at \(x = 1 \). Explain why.

\[a) f(x) = \frac{1}{x-1} \quad b) f(x) = \frac{x^2 - 1}{x-1} \quad c) f(x) = \frac{x-1}{x^2 - 1} \quad d) f(x) = \frac{x-1}{x^2 + 1} \quad e) f(x) = \frac{|x-1|}{x-1} \]

answers: no, no, no, yes, no
Definition: A function is **continuous on an open interval** \((a, b)\) [i.e. \(a < x < b\)] if it is continuous at every \(x\)-value in that interval.

Examples B again: Determine all open intervals on which each of the following functions is continuous.

a) \(f(x) = \frac{1}{x-1}\)
 ![Graph of f(x) = 1/(x-1)](image1)
 Answers: \((-\infty, 1) \cup (1, \infty)\)

b) \(f(x) = \frac{x^2 - 1}{x-1}\)
 ![Graph of f(x) = (x^2 - 1)/(x-1)](image2)
 Answers: \((-\infty, 1) \cup (1, \infty)\)

c) \(f(x) = \frac{x-1}{x^2-1}\)
 ![Graph of f(x) = (x-1)/(x^2-1)](image3)
 Answers: \((-\infty, -1) \cup (-1, 1) \cup (1, \infty)\)

d) \(f(x) = \frac{x-1}{x^2+1}\)
 ![Graph of f(x) = (x-1)/(x^2+1)](image4)
 Answers: \((-\infty, 1) \cup (1, \infty)\)

e) \(f(x) = \frac{x-1}{x-1}\)
 ![Graph of f(x) = (x-1)/(x-1)](image5)
 Answers: \((-\infty, 1) \cup (1, \infty)\)

Examples F: Determine all intervals on which each of the following functions is continuous.

a) \(f(x) = \sqrt{x-1}\)
 ![Graph of f(x) = sqrt(x-1)](image6)

b) \(f(x) = \sqrt{9-x^2}\)
 ![Graph of f(x) = sqrt(9-x^2)](image7)

Neither of these functions satisfies the definition of “continuous” at their endpoints: for a) at \((1, 0)\), and for b) at \((-3, 0)\) and \((3, 0)\). Is there a way that we can think about continuity so that we can include such endpoints?

Definition: A function is **continuous on a closed interval** \([a, b]\) if and only if

1) it is continuous on \((a, b)\)
2) it is continuous from the right at \(x = a\), i.e. \(\lim_{x \to a^+} f(x) = f(a)\)
3) it is continuous from the left at \(x = b\), i.e. \(\lim_{x \to b^-} f(x) = f(b)\)

Examples F: Determine all intervals on which each of the following functions is continuous.

a) \(f(x) = \sqrt{x-1}\)
 ![Graph of f(x) = sqrt(x-1)](image6)

b) \(f(x) = \sqrt{9-x^2}\)
 ![Graph of f(x) = sqrt(9-x^2)](image7)

Answers: \([1, \infty)\), \([-3, 3]\)